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/e optimal linear estimation problems are investigated in this paper for a class of discrete linear systems with fading mea-
surements and correlated noises. Firstly, the fading measurements occur in a random way where the fading probabilities are
regulated by probability mass functions in a given interval. Furthermore, time-delay exists in the system state and observation
simultaneously. Additionally, the multiplicative noises are considered to describe the uncertainty of the state. Based on the
projection theory, the linear minimum variance optimal linear estimators, including filter, predictor, and smoother are presented
in the paper. Compared with conventional state augmentation, the new algorithm is finite-dimensionally computable and does
not increase computational and storage load when the delay is large. A numerical example is provided to illustrate the effectiveness
of the proposed algorithms.

1. Introduction

NCSs have received significant attention for their successful
applications in space exploration, target tracking, remote
surgery, unmanned aerial vehicles, industrial monitoring,
and other areas in recent years [1–12]. As is well known,
network-induced phenomena, such as communication de-
lays, fading measurements or packet dropouts, quantization
effects, and sensor saturations, are unavoidable in data
transmission of practical networked systems due mainly to
the sudden environment changes, intermittent transmission
congestions, random failures, and repairs of components
[13]. Hence, the data received by the estimator may not be
real-time ones, which leads to the traditional estimation
algorithms being no longer applicable.

Fading measurements are important issues in NCSs. /e
phenomenon of packet dropouts in the network can be seen
as a special case of fading measurement. Fortunately, many
efficient approaches have been developed for the systems
with fading measurements [14–17]. It is considered in [14]
that a sensor network where single or multiple sensors
amplify and forward their measurements of a common
linear dynamic system to a remote fusion center via noisy

fading wireless channels and shows that the expected error
covariance (with respect to the fading process) of the time-
varying Kalman filter is bounded and converges to a steady
state value. Yan et al. [15] concentrated on the H∞ state
estimator’s design problems for a kind of discrete-time
artificial neural networks (ANNs) with multiple fading
measurements. /e phenomenon of multiple fading mea-
surements is represented by a set of individual stochastic
variables obeying a predetermined distribution on interval
[0,1]. In [16], a modified stochastic fading model with
disturbance-dependent Gaussian noise is put forward to
better reflect the fading phenomena in complex wireless
communication networks. By introducing a novel concept
of finite-time stochastic exponential dissipative, a state-
feedback controller is designed. For a class of nonlinear
systems with stochastic nonlinearities and multiple fading
measurements, the stochastic nonlinearities are represented
by statistical means which indicates multiplicative stochastic
disturbances, and sufficient conditions are obtained to en-
sure stochastic stability of the modified unscented Kalman
filter [17].

However, in practical applications, considering that the
dynamic system is a discretized version of a continuous
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dynamic system with noise and the state of the dynamic
system is observed by some sensors in a time-correlated
noisy environment, such as during noise jamming generated
by some target, the noises may be correlated and even finite-
step correlated [18]. At present, many experts and scholars
have adopted different algorithms to estimate the state of the
systems with correlated noises. Sun et al. proposed some
filtering algorithms for systems with fading measurements
and correlated noises [7, 19]. Sun et al. [7] consider that
different sensor channels have different fading measurement
rates, and the process and measurement noises are finite-
step autocorrelated and/or cross correlated with each other.
In such complex systems, the optimal linear state estimators
in the linear minimum variance (LMV) sense are presented
by using the innovation analysis approach. Liu concentrated
on the problems of state estimation for discrete-time linear
systems with fading measurements and time-correlated
channel noise [20–22]. /e fading measurement appears
in a random way, and the fading phenomenon for each
sensor is described by an individual random variable taking
a value in a given interval [20]. Furthermore, some results
have been reported on the Kalman filtering problems of
systems with uncertain correlated noise [23–26]. By intro-
ducing the fictitious noises to compensate the stochastic
uncertainties, the system under consideration can be con-
verted into one with only uncertain noise variances [23, 24].
However, in all these papers, the results focus on finding the
optimal estimators, under which the state delay and ob-
servation delay are not considered simultaneously. More-
over, a few phenomena of imperfect transmission including
the fading measurement and the time delay could be easily
incorporated, and the optimal estimation problems for
linear uncertain systems with single delayed measurement
have not taken fading measurements into account [25, 26].

Based on the discussions above, we aim to solve the
optimal linear estimation problems for a class of state delay
and observation delay systems with fading measurements
and correlated noises. In this paper, the aforementioned
problems are considered fully. /e probability mass functions
in a giving interval are used to describe a discrete random
variable, and themean and covariance of the variable depend
on the distribution law of each probability mass function.
Based on the minimum mean square error (MMSE) esti-
mation principle, we present the optimal linear state esti-
mators, including filter, predictor, and smoother by using
the projection theory [27]. Compared with conventional
state augmentation, the new algorithm is finite-dimensionally
computable and does not increase computational and
storage load with time. Hence, the proposed algorithm is
suitable for real-time applications.

/e rest of this work is organized as follows. Section 2
formulates the problems for a class of time-delay systems
with fading measurements and correlated noises and states
the assumptions under which we prove the results. /e
preliminary lemmas of this work are derived in Section 3. In
Section 4, the optimal linear estimators including filter,
predictor, and smoother are designed. A numerical example
is given in Section 5, which is followed by some conclusions
in Section 6.

2. Problem Formulation

Consider the state delay and observation delay systems
with fading measurements and correlated noises as
follows:

x(t + 1) � A + 􏽘
h

i�1
Aiζ i(t)⎡⎣ ⎤⎦x(t− d) + Γw(t), (1)

y(t) � c(t)Hx(t −d) + v(t), (2)

where t is the discrete time, x(t) ∈ Rn is the state, y(t) ∈ Rm

is the measurement received by the sensors, w(t) ∈ Rp is the
process noise, v(t) ∈ Rm is the measurement noise, d is
constant time delay, ζ i(t), i � 1, 2, . . . , h is the multiplicative
noise, and A, Ai, H, and Γ are known constant matrices with
appropriate dimensions.

We now have four assumptions upon the initial values,
statistical characteristic of system noise and random fading
variable c(t).

Assumption 1. /e process and measurement noise w(t)

and v(t) are cross-correlated with zero mean and

Ε
w(t)

v(t)
􏼢 􏼣 wT(j) vT(j)􏼂 􏼃􏼨 􏼩 �

Qw S

ST Qv

􏼢 􏼣δtj. (3)

Assumption 2. ζ i(t) is white noise with zero mean and
variance Qζ i

(t) independent of ζj(t), j≠ i. ζ i(t) is also
uncorrelated with other noise signals.

Assumption 3. c(t) ∈ R is the random fading variable with
mean c(t) and variance σ2(t), and the fading probabilities
are regulated by the probability mass functions in a given
interval [α, β], 0≤ α≤ β≤ 1. c(t) is uncorrelated with other
noise signals.

Assumption 4. /e initial state x(0) is uncorrelated with
w(t), v(t), ζ i(t), i � 1, 2, . . . , h and Ε[x(0)] � x(0),
Ε[(x(0)− x(0))(x(0) −x(0))T] � P(0).

Our aim is to find the optimal linear state estimators
􏽢x(j ∣ t) based on the measurements L(y(t), y(t− 1), . . . ,

y(0)) for j � t, j> t, and j< t, which is called state filter,
predictor, and smoother, respectively. Here, we will design the
estimators that depend on the attenuation rate c(t) based on
the received measurements.

3. Preliminary Lemmas

Firstly, system (1) can be converted to

x(t + 1) � A + 􏽘
h

i�1
Aiζ i(t)⎡⎣ ⎤⎦x(t− d) + Γw(t) + J[y(t)

−(c(t) − c(t))Hx(t − d)− c(t)Hx(t −d)− v(t)],

(4)

where J is the pending matrix.
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From (4), system (1) can be rewritten as follows:

x(t + 1) � Ax(t−d) +Ω(t) + Jy(t), (5)

where

Ω(t) � 􏽘
h

i�1
Aiζ i(t)x(t−d)− J(c(t)− c(t))Hx(t− d),

A � A− Jc(t)H,

w(t) � Γw(t) − Jv(t).

(6)

/en, it holds that Ε[Ω(t)] � 0 in view of Assumptions 1
and 2, where w(t) is zero-mean white noise and satisfies

Ε w(t)v
T
(j)􏽨 􏽩 � ΓS− JQv􏼂 􏼃δtj. (7)

From (7), we can see w(t) is uncorrelated with v(t) when
J � ΓSQ−1v , then we have

Ε w(t)v
T
(j)􏽨 􏽩 � 0. (8)

/e variance of w(t) can be computed by

Qw � Γ Qw − SQ
−1
v S

T
􏽨 􏽩ΓT. (9)

Defining the state expectation q(t) � Ε[x(t)] and the
state second moment Λ(t) � Ε[x(t)xT(t)], we have

Λ(t + 1) � AΛ(t−d)A
T

+ Jy(t)y
T
(t)J

T

+ 􏽘
h

i�1
Qζ i

AiΛ(t−d)A
T
i

+ Qw + Jσ2(t)HΛ(t−d)H
T
J

T
,

(10)

where the initial value Λ(0) � x(0)xT(0) + P(0).
/e variance of Ω(t) can be computed by

􏽘(t) � 􏽘

h

i�1
Qζ i

AiΛ(t− d)A
T
i + Qw + Jσ2(t)HΛ(t− d)H

T
J

T
.

(11)

/e estimation error covariance matrix at different times
is given by

Φt(i, j) � Ε 􏽥x(i ∣ t)􏽥x
T
(j ∣ t)􏽨 􏽩. (12)

Before giving the main results of optimal linear esti-
mators, some lemmas are presented firstly.

Lemma 1. For systems (2) and (5), the estimate
􏽢x(t−d ∣ t− i), i � 0, 1, . . . , d− 1 can be computed according
to the following equations:
􏽢x(t−d ∣ t− i) � 􏽢x(t−d ∣ t− i− 1) + K(t−d ∣ t− i)ε(t− i),

(13)

ε(t− i) � y(t− i)− c(t)H􏽢x(t−d− i ∣ t− i− 1), (14)

Qε(t− i) � σ2(t)HΛ(t−d− i)H
T

+ Qv

+ c
2
(t)HP(t − d− i ∣ t− i− 1)H

T
,

(15)

K(t− d ∣ t− i) � c(t)Φt−i−1(t− d, t− d− i)H
T
Q
−1
ε (t− i),

(16)

P(t−d ∣ t− i) � P(t−d ∣ t− i− 1)− c(t)K(t−d ∣ t− i)

× HΦt−i−1(t−d− i, t− d),

(17)

where the innovation ε(t) � y(t)− 􏽢y(t ∣ t− 1) and its co-
variance matrix Qε(t) � Ε[ε(t)εT(t)]. Λ(t−d− i) can be
obtained from (10).

Proof. According to the projection theory, we can easily get
(13).

/e gain matrix K(t−d ∣ t− i) is defined by

K(t− d ∣ t− i) � Ε x(t−d)εT
(t− i)􏽨 􏽩Q

−1
ε (t− i). (18)

From (2), we have

y(t− i) � c(t− i)Hx(t −d− i) + v(t− i). (19)

Taking projection on both sides of (19) yields
􏽢y(t− i ∣ t− i− 1) � c(t)H􏽢x(t− d− i ∣ t− i− 1)

+ 􏽢v(t− i ∣ t− i− 1),
(20)

where 􏽢v(t− i ∣ t− i− 1) � 0.
Substituting (20) in the definition of innovation, we

obtain (14).
From (2) and (14), we have

ε(t− i) � (c(t− i)− c(t))Hx(t − d− i) + v(t− i)

+ c(t)H􏽥x(t−d− i ∣ t− i− 1).
(21)

Noting Ε[(c(t)− c(t))2] � σ2(t), Ε[c(t)− c(t)] � 0,
and v(t− i)⊥ 􏽥x(t−d− i ∣ t− i− 1), we can easily obtain (13).

From Assumptions 1 and 2 and noting 􏽢x(t−d ∣ t−
i− 1)⊥ 􏽥x(t−d− i ∣ t− i− 1), we have

Ε x(t−d)εT
(t− i)􏽨 􏽩 � c(t)Φt−i−1(t−d, t−d− i)H

T
.

(22)

Substituting (22) in (18), we obtain (16).
According to the definition of the covariance matrix and

noting v(t− i)⊥ 􏽥x(t− d− i ∣ t− i− 1), we have

P(t− d ∣ t− i) � Ε 􏽥x(t− d ∣ t− i)􏽥x
T
(t− d ∣ t− i)􏽨 􏽩

� P(t− d ∣ t− i− 1)− 􏽥c(t)Φt−i−1

× (t− d, t− d− i)H
T
K

T
(t− d ∣ t− i)

− 􏽥c(t)K(t − d ∣ t− i)HΦt−i−1(t− d− i, t− d)

+ c
2
(t)K(t− d ∣ t− i)HP(t− d− i ∣ t− i− 1)

× H
T
K

T
(t− d ∣ t− i) + σ2(t)K(t− d ∣ t− i)

× HP(t− d− i ∣ t− i− 1)H
T
K

T
(t− d ∣ t− i)

+ K(t− d ∣ t− i)QvK
T
(t− d ∣ t− i).

(23)

From (16), we have
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c(t)Φt−i−1(t− d, t− d− i)H
T

� K(t−d ∣ t− i)Qε(t− i).

(24)

Substituting (24) in (23), we have (17).

Lemma 2. For systems (2) and (5) under the precondition of
Lemma 1, the estimation error covariance matrix
Φt−i−j(t−d− i + 1, t− d + 1) of the state is calculated by

Φt−i−j(t− d− i + 1, t− d + 1)

� Φt−i−j−1(t− d− i + 1, t− d + 1)− c(t)K(t− d− i + 1 ∣ t− i− j)

× HΦt−j−i−1(t−d− i− j, t− d + 1),

(25)

where i � 1, 2, . . . , d− 1, j � 1, 2, . . . , d− 1− i.

Proof. From Lemma 1, we can easily get

Φt−i−j(t− d− i + 1, t− d + 1)

� Ε􏼈[􏽥x(t− d− i + 1 ∣ t− i− j− 1)−K(t− d− i + 1 ∣ t− i− j)

× ε(t− i− j)][􏽥x(t− d + 1 ∣ t− i− j− 1)−K(t− d + 1 ∣ t− i− j)

× ε(t− i− j)]
T
􏼉,

(26)

where the innovation ε(t− i− j) can be calculated by
ε(t− i− j) � (c(t− i− j)− c(t))Hx(t − d− i− j)

+ v(t− i− j) + c(t)H􏽥x(t− d− i− j ∣ t− i− j− 1).

(27)

Substituting (27) in (26), we get
Φt−i−j(t− d− i + 1, t−d + 1)

� Φt−i−j−1(t− d− i + 1, t−d + 1)− c(t)

×Φt−i−j−1(t− d− i + 1, t− d− i− j)H
T

× K
T
(t− d + 1 ∣ t− i− j)

− c(t)K(t− d− i + 1 ∣ t− i− j)H

×Φt−i−j−1(t− d− i− j, t− d + 1)

+ K(t− d− i + 1 ∣ t− i− j)

× Qε(t− i− j)K
T
(t− d + 1 ∣ t− i− j),

(28)

where the gain matrix K(t− d ∣ t− i) is calculated by

K(t− d− i + 1 ∣ t− i− j)

� Ε x(t−d− i + 1)εT
(t− i− j)􏽨 􏽩Q

−1
ε (t− i− j)

� c(t)Φt−i−j−1(t−d− i + 1, t− d− i− j)H
T

Q
−1
ε (t− i− j).

(29)

Substituting (29) in (28), we obtain (25).

Lemma 3. For the systems (2) and (5), the estimation error
covariance matrix Φt−d+1(t− d− i + 1, t−d + 1) of the state is
calculated by

Φt−d+1(t−d− i + 1, t−d + 1)

� 􏼈 Ψd− i+1(t− i)􏼂 􏼃
T − c(t)K(t−d− i ∣ t−d)H

× P(t− 2d|t− d− 1)}A
T

− c(t)K(t−d− i + 1 ∣ t− d + 1)H Ψd(t)􏼂 􏼃
T
,

(30)

where i � 1, 2, . . . , d− 1.

Proof. Similar to Lemma 2, we can easily derive

Φt−d+1(t−d− i, t− d + 1)

� Φt−d(t−d− i + 1, t− d + 1)− c(t)

× K(t− d− i + 1 ∣ t−d + 1)H

×Φt−d(t− 2d + 1, t−d + 1).

(31)

From (5), we have 􏽥x(t− d + 1 ∣ t−d) � A􏽥x(t− 2d|t−d)+

Ω(t− d), and noting Ω(t− d) ⊥ 􏽥x(t−d− i + 1 ∣ t−d), we
can easily get

Φt−d(t−d + 1, t−d− i + 1) � AΦt−d(t− 2d, t−d− i + 1).

(32)

Noting Ψi(t) � Φt−i(t−d− i + 1, t− d + 1), we have

Φt−d−1(t− 2d, t− d− i + 1) � Ψd−i+1(t− i). (33)

Let j � d− i and similar to (25), (32) can be rewitten by

Φt−d(t−d− i + 1, t−d + 1)

� [Φt−d−1(t−d− i + 1, t− 2d)− c(t)

× K(t− d− i + 1 ∣ t− d)HP(t− 2d|t−d− 1)]A
T
.

(34)

Substituting (34) and (33) in (31), we have (30).

4. Optimal Linear Estimators

In this section, we obtain the main results on optimal
filter, predictor, smoother, and corresponding estimation
error covariance matrices for the system under consid-
eration in the sense of linear MMSE. At the end of this
section, the realization steps of the proposed algorithm are
explained.

4.1. Optimal Linear Filter

Theorem 1. For systems (2) and (5) under Assumptions 1–4,
the optimal linear filter is given by

􏽢x(t + 1|t + 1) � 􏽢x(t + 1|t) + K(t + 1)

× (y(t + 1)− c(t)H􏽢x(t−d + 1 ∣ t)),
(35)

where the gain matrix K(t + 1) and the covariance matrix
Qε(t + 1) are calculated, respectively, by
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K(t + 1) � c(t)ΨT
d (t + d)H

T
Q
−1
ε (t + 1), (36)

Qε(t + 1) � σ2(t)HΛ(t− d + 1)H
T

+ Qv

+ c
2
(t)HP(t− d + 1 ∣ t)HT

.
(37)

/e covariance matrix P(t + 1|t + 1) of the state filter
and Ψd(t + d) are calculated, respectively, by

P(t + 1|t + 1) � P(t + 1|t)− c(t)K(t + 1)HΨd(t + d),

(38)

ΨT
d (t + d) � A Ψ1(t)− c(t)K(t− d ∣ t)HΨ1(t)􏼂 􏼃. (39)

Proof. According to the projection theory and (2), we can
easily get

􏽢x(t + 1|t + 1) � 􏽢x(t + 1|t) + K(t + 1)ε(t + 1), (40)

y(t + 1) � c(t + 1)Hx(t− d + 1) + v(t + 1), (41)

where K(t + 1) � K(t + 1|t + 1).
/e gainmatrixK(t + 1) of the state filter is calculated by

K(t + 1) � Ε x(t + 1)εT
(t + 1)􏽨 􏽩Q

−1
ε (t + 1), (42)

where the innovation ε(t + 1) can be calculated by

ε(t + 1) � [c(t + 1)− c(t)]Hx(t− d + 1) + v(t + 1)

+ c(t)H􏽥x(t− d + 1 ∣ t).
(43)

Substituting (42) and (43) in (40), we obtain (35).
From Ψi(t) � Φt−i(t− d− i + 1, t− d + 1), we obtain

(36). According to the definition of the covariance matrix,
we can easily derive (37).

Noting
􏽥x(t + 1|t + 1) � 􏽥x(t + 1|t)−K(t + 1)ε(t + 1). (44)

/e covariance matrix P(t + 1|t + 1) of the state filter is
calculated by

P(t + 1|t + 1) � P(t + 1|t)− c
2
(t)Φt(t + 1, t− d + 1)H

T

× Q
−1
ε (t + 1)HΦT

t (t + 1, t− d + 1).

(45)

Let i � 0 and noting Φt−1(t−d, t−d) � P(t− d ∣ t− 1).
/en, (16) can be rewritten by

K(t−d ∣ t) � c(t)P(t−d ∣ t− 1)H
T
Q
−1
ε (t). (46)

Noting Ψd(t + d) � Φt(t− d + 1, t + 1), from (36) and
transforming (45), we have (38).

From (5), we can easily derive

􏽥x(t + 1|t) � A􏽥x(t− d ∣ t) +Ω(t). (47)

From (47) and noting Ω(t) ⊥ 􏽥x(t−d + 1 ∣ t), we obtain

Φt(t + 1, t−d + 1) � AΦt(t−d, t−d + 1). (48)

Let i � 1, j � −1. /en, (25) can be rewritten by

Φt(t− d, t− d + 1) � Φt−1(t− d, t−d + 1)

− c(t)K(t − d ∣ t)HΦt−1(t− d, t− d + 1).

(49)

Noting Ψi(t) � Φt−i(t−d− i + 1, t−d + 1) and sub-
stituing (49) in (48), we get (39).

4.2. Optimal Linear Predictor

Theorem 2. For systems (2) and (5) under Assumptions 1–4,
the optimal linear predictor is given by

􏽢x(t + 1|t) � A[􏽢x(t− d ∣ t− 1) + K(t−d ∣ t)

× (y(t)− c(t)H􏽢x(t− d ∣ t− 1)] + Jy(t),

(50)

where the gain matrix K(t− d ∣ t) of the state predictor is
calculated by

K(t− d ∣ t) � c(t)P(t− d ∣ t− 1)H
T
( σ2(t)HΛ(t− d)H

T

+ Qv + c
2
(t)HP(t− d ∣ t− 1)H

T
)
−1

.

(51)

:e estimation error covariance matrix P(t + 1|t) of the
state predictor is calculated by

P(t + 1|t) � A[P(t −d ∣ t− 1)− c(t)K(t−d ∣ t)H

× P(t−d ∣ t− 1)]A
T

+ Σ(t).
(52)

Proof. From (5) and (17), we can easily derive

􏽢x(t + 1|t) � A􏽢x(t−d ∣ t)

� A[􏽢x(t−d ∣ t− 1) + K(t− d ∣ t)(y(t)

− c(t)H􏽢x(t− d ∣ t− 1)] + Jy(t),

(53)

P(t + 1|t) � AP(t−d ∣ t)AT
+ Σ(t)

� A[P(t−d ∣ t− 1)− c(t)K(t− d ∣ t)

× HP(t− d ∣ t− 1)]A
T

+ Σ(t).

(54)

(51) has been obtained in /eorem 1.

4.3. Optimal Linear Smoother

Theorem 3. For the systems (2) and (5) under Assumptions
1–4, the optimal linear smoother is given by

􏽢x(t−d + 1 ∣ t) � 􏽢x(t− d + 1 ∣ t−d + 1)

+ 􏽘
d−1

i�1
K(t− d + 1 ∣ t− i + 1)(y(t− i + 1)

− c(t)H􏽢x(t−d− i + 1 ∣ t− i)),

(55)

where the gain matrix K(t−d + 1 ∣ t− i + 1) of the state
predictor is calculated by
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K(t−d + 1 ∣ t− i + 1)

� c(t)ΨTi (t)H
T[σ2(t)HΛ(t−d− i + 1)HT

+ Qv + c2(t)HP(t − d− i + 1 ∣ t− i)HT]−1.

(56)

�e estimation error covariance matrix P(t−d + 1 ∣ t) of
the state predictor is calculated by

P(t−d + 1 ∣ t) � P(t−d + 1 ∣ t−d + 1)

− ∑
d−1

i�1
c(t)K(t−d + 1 ∣ t− i + 1)HΨi(t),

(57)

Ψi(t) � [Ψ
T
d− i+1(t− i)− c(t)K(t−d− i ∣ t− d)H

× P(t− 2d|t−d− 1)]AT − c(t)K

× (t−d− i + 1 ∣ t−d + 1)H × ΨTd(t)

− ∑
d−1−i

j�0
c(t)K(t− d− i + 1 ∣ t− i− j)HΨi+j+1(t),

(58)

where Ψ i(t) � Φt−i(t−d− i + 1, t− d + 1), i � 1, 2, . . . , d.

Proof. According to the projection theorem, we obtain

x̂(t− d ∣ t− i) � x̂(t− d ∣ t− i− 1) +K(t− d ∣ t− 1)ε(t− i),
i � 0, 1, . . . , d− 1.

(59)

Let i � 1, 2, . . . , d− 1, and according to the iteration, we
have (55).

From (55), we can easily get

x̃(t− d + 1 ∣ t) � x̃(t−d + 1 ∣ t− d + 1)

− ∑
d−1

i�1
K(t−d + 1 ∣ t− i + 1)(y(t− i + 1)

− c(t)Hx̂(t−d− i + 1 ∣ t− i)).
(60)

From the de�nition of the gain matrix and the co-
variance matrix, we can obtain (56) and (57), respectively.

From Lemma 2, we have the covariance matrixes as
follows:

Φt−i(t−d− i + 1, t− d + 1)
� Φt−i−1(t− d− i + 1, t−d + 1)− c(t)
×K(t−d− i + 1 ∣ t− i)H
×Φt−i−1(t− d− i, t−d + 1), j � 0,

Φt−i−1(t−d− i + 1, t− d + 1)
� Φt−i−2(t− d− i + 1, t−d + 1)− c(t)
×K(t−d− i + 1 ∣ t− i− 1)H
×Φt−i−2(t− d− i− 1, t−d + 1), j � 1,
⋮

Φt−d+2(t− d− i + 1, t− d + 1)
� Φt−d+1(t− d− i + 1, t− d + 1)
− c(t)K(t−d− i + 1 ∣ t−d + 2)H
×Φt−d+1(t− 2d + 2, t− d + 1), j � d− 2− i.

(61)

According to the iteration, we have

Φt−i(t− d− i + 1, t−d + 1)

� Φt−d+1(t−d− i + 1, t−d + 1)− ∑
d−1−i

j�0
c(t)

×K(t− d− i + 1 ∣ t− i− j)H
×Φt−i−j−1(t−d− i− j, t−d + 1).

(62)

Substituting (30) in (62), we have (58).
Based on the above discussion, we propose a new al-

gorithm for the system under consideration in a recursive
form. Starting with the initial estimates Ψi(1),Ψi(2), . . . ,
Ψi(d), x̂(d|d), P(d|d), ε(d), Qε(d), i � 1, 2, . . . , 2d + 1, the
proposed algorithm is given by the following steps:

Step 1. Computing Ψd−1(t),Ψd−2(t), . . . , and Ψ1(t) in se-
quence using (58).
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Figure 1: Tracking performance of the state �lter.
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Step 2. Substituting the results of Step 1 in (56), computing
K(t−d+ 1 ∣ t−1), . . . ,K(t−d+ 1 ∣ t− i+ 1), . . . , andK(t−d+
1 ∣ t−d+ 2) in sequence.

Step 3. Substituting the results of Step 1 and Step 2 in (55)
and (57), computing x̂(t− d + 1 ∣ t) and P(t− d + 1 ∣ t),
respectively.

Step 4. Substituting the results of Step 3 in (50)–(52),
computing K(t− d ∣ t), x̂(t + 1|t), P(t + 1|t) in sequence.

x̂(t− d ∣ t− 1) and P(t− d ∣ t− 1) can be immediately ob-
tained from x̂(t− d + 1 ∣ t) and P(t− d + 1 ∣ t).

Step 5. Substituting the results of Step 1 and Step 4 in
(35)–(39), computing Ψd(t + d), x̂(t + 1|t + 1) and P(t+
1|t + 1) in sequence.

Step 6. Storing the results of Step 1–5 for computing the
optimal estimators at time t + 1.
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Figure 2: Comparison of error variances of the state �lter (P(c(t) � q) � 0.8, q � 0.3, 0.6, 1). (a) Estimation error variances for x1(t).
(b) Estimation error variances for x2(t).
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5. Numerical Example

Consider the systems (1) and (2), let h � 1, the time delay
d � 3, the state x(t) � [x1(t), x2(t)]

T, and w(t) and v(t) are
zero-mean white noise sequences with variance Qw � 0.3
and Qv � 0.3. �e multiplicative noise ζ1(t) is white noise
with zero mean and variance Qζ1(t) � 0.16, c(t) is a discrete
random variable with the probability mass function
P(c(t) � 0.95) � 0.05, P(c(t) � 0.98) � 0.15, and P(c(t) �

1) � 0.8. Γ � 1 1[ ]T, H � 0.5 1[ ], A � 0.4 0.7
0.2 0.6[ ], A1 �

0.1 0.2
0.2 −0.1[ ], x̂(0|0) � [0, 0]T, P(0|0) � 0.01I2, and ε(i) � 0,

i � 1, 2, . . . , 2d + 1. �e optimal estimated value x̂(t|t) and
x̂(t + 1|t) can be calculated using �eorems 1, 2, and 3,
respectively. To demonstrate the e�ectiveness of our pro-
posed estimation algorithm, the tracking curves of the �lter
are shown in Figure 1. We can see the �lter has the good
tracking performance. From the probability mass function
of c(t), it is obvious that the fading value c(t) � 1 plays
a bigger role than others because it has the greatest prob-
ability. In order to study the e�ect of the state �lter further,
we present the comparison of �lter error variances when
P(c(t) � q) � 0.8, q � 0.3, 0.6, 1 in Figure 2. From Figure 2,
we can see the �lter has the highest estimation accuracy
when q � 1. Figures 3 and 4 show the simulation results
under the 150 Monte Carlo experiments. From the

comparisons of mean square error (MSE) curves of �lter
and predictor with the �lter and predictor in [28] in
Figures 3 and 4, we can see the MSE curves of estimators in
[28] sit on the top because Chen et al. [28] have not
considered fading measurements and correlated noises. It
indicates the estimation accuracy in this paper is better
than that in [28]. Tables 1 and 2 give some speci�c values
for the MSEs of �lter and predictor for the �lter and
predictor in [28]. �ese simulation results show that the
estimation algorithm proposed in this paper can provide
satisfactory performance.

6. Conclusion

In this paper, we have investigated the recursive estimation
problems for time-delay systems with fading measurements
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Figure 3: Comparison between the MSE curves of the �lter and that of the predictor in [28].
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Figure 4: Comparison between the MSE curves of the one-step predictor and that of the predictor in [28].

Table 1: Comparison between the MSEs of the �lter and that of the
�lter in [28] (t � 25, 50, 75, 100, 125, 150).

t 25 50 75 100 125 150
x̂1(t|t) in this
paper 0.2156 0.1196 0.0887 0.0868 0.0784 0.0750

x̂1(t|t) in [28] 1.2208 0.8383 0.6919 0.6456 0.5965 0.6040
x̂2(t|t) in this
paper 0.0836 0.0486 0.0358 0.0332 0.0297 0.0287

x̂2(t|t) in [28] 1.0700 0.6941 0.5705 0.5296 0.4876 0.4783
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and correlated noises. /e time-delay exists in the system
state and observation simultaneously. /e fading mea-
surements have been addressed by the mean and covariance
of the variable which depend on the distribution law of each
probability mass function. Based on the projection theory,
the linear minimum variance optimal linear estimators,
including filter, predictor, and smoother have been pro-
posed. Finally, the effectiveness of the proposed estimators
has been illustrated by a numerical example. In addition, it
should be noted that the time-delay discrete system dis-
cussed in this paper defines that state and observation delay
are the same constant, but in practical applications, the time-
delay may be stochastic./erefore, one of the future research
topics is to develop more efficient algorithms for the
complex discrete or continuous systems subject to network-
induced phenomena [29, 30].

Notations

Rn: n-dimensional Euclidean space
Superscript T: Transpose
Ε(x): Mathematical expectation of random

variable x

tr(∘): Trace of matrix ∘
δtj: Kronecker delta function
In: n by n identity matrix
⊥ : Orthogonality
Prob(∗): Probability of the occurrence of the

event ∗
􏽢x(∘|·): Estimate of the stochastic variable

x(∘) based on measurements before
time ·, i.e., the projection of x(∘) on
the linear space generated by the
measurements before time ·

􏽥x(∘|·) � x(∘)− 􏽢x(∘|·): Estimation error.
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