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Deep learning technique has made a tremendous impact on medical image processing and analysis. Typically, the procedure of
medical image processing and analysis via deep learning technique includes image segmentation, image enhancement, and
classification or regression. A challenge for supervised deep learning frequently mentioned is the lack of annotated training data.
In this paper, we aim to address the problems of training transferred deep neural networks with limited amount of annotated data.
We proposed a versatile framework for medical image processing and analysis via deep active learning technique. (e framework
includes (1) applying deep active learning approach to segment specific regions of interest (RoIs) from rawmedical image by using
annotated data as few as possible; (2) generative adversarial Network is employed to enhance contrast, sharpness, and brightness
of segmented RoIs; (3) Paced Transfer Learning (PTL) strategy which means fine-tuning layers in deep neural networks from top
to bottom step by step to performmedical image classification or regression tasks. In addition, in order to understand the necessity
of deep-learning-basedmedical image processing tasks and provide clues for clinical usage, class active map (CAM) is employed in
our framework to visualize the feature maps. To illustrate the effectiveness of the proposed framework, we apply our framework to
the bone age assessment (BAA) task using RSNA dataset and achieve the state-of-the-art performance. Experimental results
indicate that the proposed framework can be effectively applied to medical image analysis task.

1. Introduction

Recently, deep learning has achieved significant success in
medical image processing and analysis. Tasks such as clas-
sification, where eachmedical image is assigned to a category
label, are now almost exclusively done with deep learning
technique.

A problem often cited when applying deep learning
methods to medical image analysis is the lack of annotated
training data, even if larger unlabeled data sets are more
widely available [1, 2]. Manual labeling for medical images is
expensive, time-consuming, and requires experienced
doctors. (erefore, reducing the amount of labeled data is
crucial for deep-learning-based medical image processing
tasks and training a deep neural network with limited labeled
data is challenging.

In general, a common framework applied on medical
image classification or regression via deep learning tech-
nique contains image segmentation, image enhancement,
and prediction, such as bone age assessment [3–5], pneu-
monia detection on chest X-rays [6], mammographic mass
classification [7], diabetic retinopathy classification [8],
brain tumor analysis [9], etc. All the existing works in the
field of medical image processing and analysis are focused on
one aspect such as segmentation, detection, and classifica-
tion with an exception of [10] in which four experiments of
different processing and analysis tasks in different modes are
performed and the methodology of transfer learning is
summarized. In this paper, we further extend the meth-
odology and develop it into a framework for medical images
processing. (e proposed framework aims to address the
mentioned problems and includes three key points:
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(1) To alleviate human annotation burden, we employ a
technique called deep active learning (AL) to actively
select unlabeled samples with informative in-
formation for human to label in each training
iteration.

(2) Since the medical image samples often vary con-
siderably in intensity, contrast, and brightness, it is
necessary to enhance the image quality and nor-
malize the images for training the models of clas-
sification or regression. We use deep auto encoder
network with adversarial training to tackle this
problem.

(3) To positively utilize the knowledge of the source
model and fine-tune parameters in medical image
processing task, we propose Paced Transfer Learning
(PTL) to fine-tune the deep convolutional neural
network (CNN) according to designated rules.

(e proposed versatile framework can be easily applied
to different medical image classifications or regression tasks
with limited annotation data and further improves the
model performance. To further illustrate the effectiveness of
the proposed framework, we applied the framework on bone
age assessment (BAA) task.We assess the performance using
the proposed method on the public dataset from 2017 pe-
diatric bone age challenge organized by the Radiological
Society of North America (RNSA) [11]. (e overview of our
proposed framework with application to BAA task is shown
in Figure 1.(e demonstrated method achieves the accuracy
with mean average error (MAE) of 5.991 and 6.263 months
for male and female cohorts, which achieves the state-of-the-
art performance.

2. Methodology

(e main contributions of this paper are as follows:

(1) We propose a method of deep AL and apply it to
medical image semantic segmentation task. By using
deep AL with Query By Committee (QBC) [12]
strategy, we can significantly relievemanual annotation
burden while the model accuracy being guaranteed.

(2) We propose a novel medical image prepossessing
engine that consists of a GAN to enhance the quality
of images and normalize grayscale-based medical
images.

(3) We propose PTL strategy to fine-tune the off-the-
shell deep CNN for specific tasks and ensure the
model achieving impressive performance compared
with the conventional method in deep transfer
learning.

2.1. Medical Image Segmentation. Extracting specific RoI
from raw medical image can significantly reduce searching
space and relieve computation burden. In addition, sub-
tracting irrelevant noise in medical image can improve
model performance in the prediction stage. However, it is
not easy to establish a nonlinear mapping from raw medical

images to specific RoIs because of the variation of contrast,
sharpness, and brightness in medical images.

Even though deep-learning-based image segmentation
tasks achieve remarkable performance, a large number of
annotated images are necessary. In practice, labeling work is
time consuming and may need expert knowledge. (e goal
of active learning is to learn a classifier in a setting where
data come unlabeled and any labels must be explicitly
requested and paid for.(e hope is that an accurate classifier
can be found by buying just a few labels [13]. Under this
circumstance, in order to segment specific RoIs from raw
medical images, we propose deep active learning approach to
alleviate annotation burden while guaranteeing model ac-
curacy using as few labeled data as possible.

For better understanding of our image segmentation
approach, it is necessary to explain the essential function of
deep neural networks which is the most updated classifi-
cation network and will be transferred to our domain of
medical image and our task. Densely connected convolu-
tional networks (DenseNets) [14] have shown compelling
accuracy and brilliant convergence behaviors on several
large-scale image recognition tasks. Meanwhile, skip con-
nections from the down sampling to the up sampling path
are usually adopted to recover spatially detailed information
by reusing features maps [15]. In order to leverage the
powerful capability of deep DenseNet and tackle the object
efficiently and effectively, transition up and transition down
blocks proposed in [16, 17] are employed as fully connected
DenseNet (FC-DenseNet) to perform image semantic seg-
mentation. (e structure of FC-DenseNet which is adopted
into our application is depicted in Figure 2.

We use three transition down blocks and three transition
up blocks. (e middle layer in whole network contains 192
feature maps, and we flatten this feature map to represent
high-level feature of input X-ray image, as the purple block
shown in Figure 2.

In the research field of image semantic segmentation, a
pixelwise loss function is usually used to penalize the dis-
tance between the ground truth and the predicted proba-
bility map. Often, the pixelwise loss function is defined by a
cross entropy as follows:

Lpixel_wise � 􏽘
i
−yi log 􏽢yi( 􏼁− 1−yi( 􏼁log 1− 􏽢yi( 􏼁, (1)

where yi is a binary value of the corresponding pixel i and 􏽢yi
is a predicted probability for the pixel.

DICE coefficient is another useful metric to evaluate the
quality of segmentation, since it considers the overlapping
between segmented result and ground truth. What is more
important, in medical image segmentation, the border
continuity can be improved for models with DICE loss [18].
(e DICE coefficient is defined as follows:

DICE � 2
(|g(􏽢y)∩y|)

(|g(􏽢y)| +|y|)
, (2)

where y is a segmented mask of the corresponding image
and g(􏽢y) is the postprocessed binary hand mask on pre-
dicted probability map with OTSU algorithm [19].
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High DICE coe�cient contributes to powerful perfor-
mance of the deep neural network and accurate segmen-
tation result. In order to optimize neural networks by DICE
coe�cient, we choose LDICE � 1−DICE as a penalty func-
tion and minimize it. Finally, our loss function is

Lloss � Lpixel_wise + LDICE,

�∑
i
−yi log ŷi( )− 1−yi( )log 1− ŷi( ))(

+ 1− 2
|g(ŷ)∩y|
|g(ŷ)| +|y|( ),

(3)

which is equivalent to

∑
i
−yi log ŷi( )− 1−yi( )log 1− ŷi( ) + −2

|g(ŷ)∩y|
|g(ŷ)| +|y|( ).

(4)

2.2. �e Application of Deep Active Learning. ­e main
hypothesis in the AL framework is that the learner can
choose speci�c data which contain the most abundant in-
formation for oracle annotation. Recently, a lot of image
segmentation methods using AL strategies have been pro-
posed. In the vast majority of cases, active learners use
uncertainty sampling strategies [20] to select unlabeled data
which contain signi�cant information to be labeled by oracle
[21–24]. ­e key point of uncertainty sampling strategy is to
measure the uncertainty of data. To address this problem, the
existing algorithms often use the concepts of least con�dent
[20], data diversity [23], cross entropy [22], etc.

In contrast, our task is to select images through QBC
strategy, because QBC can take advantage of more than one
model. In QBC, each member in the committee is trained on
the same dataset. ­e next query is chosen according to the

principle of maximal disagreement. In the research �eld of
image semantic segmentation, a member in committee
represents an image segmentation neural network. Formally,
a committee is de�ned as C � θ1, θ2, . . . , θC{ } and |C| in-
dicates the number of committee members.

In practice, it is necessary to intellectually select data at
the training stage in AL framework. ­is time, we use
uncertainty sampling to select the most informative query
instance with which the committee disagrees most. In the
image segmentation task, we need to de�ne the uncertainty
of data, i.e., the disagreement level of the data. Since we
trained a set of members in committee, each member learns
the high-level feature of input image, as shown in the purple
vector in Figure 2, and the disagreement level can be de�ned
as sine dissimilarity:

dissimij �

����������������������

1−
vectori · vectorj
vectori| × |vectorj
∣∣∣∣∣

∣∣∣∣∣
 

2
2

√√

, (5)

where the vectori represents the high-level feature vector
extracted by member θi in committee C. ­e dissimilarity
between each member can be formulated as matrix:

dissim �

0 dissim12

dissim21 0
· · ·

dissim1C

dissim2C

⋮ ⋱ ⋮

dissimC1 dissimC2 · · · 0




. (6)

With equations (5) and (6), we can deduce that the
dissimilarity of a single image as following:

dissimimg � ∑
i>j>0

dissimij. (7)

­e data with highest dissimilarity indicate the most
disagreement level in the committee, and the data contain

Dense block
Transition down
Transition up

Concatenation
Skip connection
Convolution

DB TDC DB C TD DB C

DB

TD

TUDB CTUCDB TU DB C

Conv

Conv
Extracted feature

Flatten

Figure 2: ­e architecture of re�ned FC-DenseNet.
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Figure 1: Overview of the proposed medical image processing framework with the application of BAA.
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the most significant information for model training. Oracle
needs to give the annotation of such data as ground truth
and then add the labeled data for next training epoch.

In summary, the proposed deep AL algorithm for
medical image segmentation is depicted in Algorithm 1.

(e proposed deep AL framework on the application of
BAA is shown in Figure 3.

2.3. Image Enhancing via Generative Adversarial Network.
Medical image data often vary considerably in intensity,
contrast, and brightness; it is necessary to enhance the image
quality and normalize the images to the classification and
regression model training. To some extent, image en-
hancement can be defined as an image translation task where
an output enhanced image is generated from an input
original segmented image.

Generative adversarial network (GAN) is a generative
model that creates outputs as realistic as the gold standard
[25]. Usually, a GAN consists of two networks, a discrim-
inator and a generator. (e former tries to distinguish
whether the image is from gold standard or outputs gen-
erated by generator, while the latter tries to generate outputs
as realistic as the discriminator cannot differentiate it from
the gold standard.

In our framework, we define the generator G be a map
from a segmented medical image x to an enhanced image y,
formally, G : x⟶ y. (e network structure of G is defined
as a U-Net. (e discriminator D maps a pair of x, y􏼈 􏼉 to
binary classification 0, 1{ }, where 0 and 1 indicate whether y
is gold standard or generated by G. (e network structure of
D includes three CNN layers and one FC layer. (e re-
lationship between G and D on the application of BAA is
shown in Figure 4.

Because the image segmentation task can be defined as
an image generation task, we adopt equation (4) as the loss
function of G. (en, the objective function of GAN for
medical image enhancement task can be formulated as

LGAN(G, D) � Ex,y∼pdata(x,y)
[log(D(x, y))]

+ Ex∼pdata(x)
[1− log(D(x, G(x)))].

(8)

Note that, in conditional GAN [26], G takes a random
noise to generate images, while in our task, G takes seg-
mented medical images to generate enhanced images. (en,
the optimization problem can be defined as

G
∗

� argmin
G

􏼔max
D

Ex,y∼pdata(x,y)
[log(D(x, y))]

+ Ex∼pdata(x)
[1− log(D(x, G(x)))]􏼕.

(9)

For D, the goal is to correctly distinguish whether the
image is a generated or a gold standard; the optimization
objective for D is

D
∗

� argmax
D

Ex,y∼pdata(x,y)
[log(D(x, y))]

+ Ex∼pdata(x)
[1− log(D(x, G(x)))].

(10)

2.4. Paced Transfer Learning for Medical Image Classification
or Regression. It is demonstrated in [10] that training a deep
CNN from scratch is difficult because it requires a large
amount of labeled training data. Fortunately, a promising
alternative is to fine-tune a pretrained CNN which could
outperform a CNN trained from scratch. In our common
sense, the lower layers of a CNN learn low-level image
features, such as shape, edge, etc., while the higher layers
learn high-level features, which are more important to
specific application.

In general, the neural network for transfer learning
contains one off-the-shell CNN followed by several fully
connected (FC) layers. (e weights in the off-the-shell CNN
are initialized by the pretrained weights in source field;
however, the parameters in FC layers are sampled from a
normal distribution with a zero mean and small standard
deviation. It is illustrated in [10] that the stochastically
initialized weights often cause large noise, and when we
optimize CNN through gradient decent styled optimization
algorithm, the fine-grained parameters will jump out of the
global optimal solution and may lead to an undesirable local
minimum. In this situation, if we fine-tune all the layers at
the initial stage, the well-trained weights may be overwritten.
What is more severely, the solution may not go back to the
optimal solution because we only have a limited amount of
medical image data for model training.

To address this problem, we proposed the Paced Transfer
Learning (PTL). PTL means that fine-tuning layers in deep
neural network from top to bottom step by step. At the initial
stage, we only fine-tune the random initialized FC layers in
the top of neural networks. (en, as the loss decreases to a
stable state, we further fine-tune the second top layers. With
several fine-tuning steps, all layers in the deep neural net-
work are fine-tuned together until the model converges.

To illustrate how PTL works, here we use Xception and
apply it to the task of BAA to explain the detail of the fine-
tune process. Due to the size of feature maps, naturally,
Xception can be split into three blocks: Entry flow block,
middle flow block, and exit flow block, as depicted in Fig-
ure 5. By using the proposed PTL, we sequentially fine-tune
parameters in each block from top to bottom. At the first
step, we only train the parameters in FC layers while fixing
other parameters. As the loss converges to a stable state, we
fine-tune the parameters in the blue rectangle. Before
training one of the blocks, the fine-tuned parameters in
previous blocks have to be finished training for specific task.
(erefore, PTL prevents from overwriting the fine-tuned
parameters and makes it possible to achieve a positive re-
finement of the adopted off-the-shell CNN.

2.5. Instruct Clinical Practice via Class Activation Map.
Despite CNN achieves impressive performance, it is nec-
essary to investigate the essential function of CNN and
provide explanations to clinical practice. (e higher-level
layers of CNN, such as the FC layer in the top of CNN,
represent very effective generic features for image recog-
nition task. As is demonstrated in [15], a class activationmap
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(CAM) for a particular category indicates the discriminative
image regions used by the CNN to identify that category. In
the proposed network, the FC layer in the top of CNN
followed with a global average pooling (GAP) layer. ­e
essential function of the GAP layer is outputting the spatial
average of the feature map of each unit at the last CNN layer,
and FC layer uses the weighted sum operation to generate
the �nal output. Hence, the GAP layer and FC layer re¡ect
which part of feature map is crucial for the �nal output.

CAM maps the predicted class score back to the previous
CNN layer to generate the RoI which is crucial for model
training.

3. Application and Results

To illustrate the e¢ectiveness and performance of the pro-
posed framework, we apply our framework to the task of
BAA on a public available dataset from RSNA Bone Age
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Figure 3: ­e overview of deep AL framework for medical image semantic segmentation on the application of BAA.
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Input:
L � x1, y1{ }, x2, y2{ }, . . . , xn, yn{ }{ }: initial labeled training data, composed of n samples;
U � x1{ }, x2{ }, . . . , xm{ }{ }: initial unlabeled training data, composed of m samples;
C � θ1, θ2, . . . , θC{ }: committee of medical image segmentation networks to be trained;
Output:
C � θ1, θ2, . . . , θC{ }: trained committee of medical image segmentation networks
Repeat:
1. Train C � θ1, θ2, . . . , θC{ } with the loss function in equation (4) on the labeled data.
2. Calculate the dissimilarity of each sample in U among every member in C and select the data with the larger dissimilarity.
3. Oracle is queried to annotate the data selected in step 2 and add the annotated sample to L.
4. Update U and L.
Until:
­e C � θ1, θ2, . . . , θC{ } is converged to a satis�ed result.

ALGORITHM 1: Proposed deep AL framework.
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Challenge [11]. Skeletal BAA is a common clinical practice
for evaluating the stage of skeletal maturation of a child
[17, 27]. An incompatibility between the chronological age
and development of bone age indicates abnormalities in
skeletal development. Radiologists could evaluate the growth
disorder, monitor the hormone therapy, and predict adult
height through BAA. To perform BAA, using our frame-
work, we need to segment hand RoI from raw X-ray ra-
diographs, enhance the quality of hand RoI, and use transfer
learning to predict bone age.

3.1. Data Overview. (e hand radiographs provided by
RSNA contain 12611 cases in training dataset. (e bone age
ranges from 1 month to 228 months as shown in Figure 6.

(e hand radiographs have diverse shape, grayscale, and
size. Some images have black bones with white background
and vice versa. Worse still, the images are randomly rotated
with different angles and the borders of hands are indistinct
in some instances. Figure 7 shows an illustrating view of raw
X-ray images.

3.2. Deep Active Learning for Hand Segmentation. In this
section, we use FC-DenseNet as hand radiographs seg-
mentation network and employ QBC strategy to actively
segment hand RoI from raw X-ray images. (e detail of the
training method is illustrated in Algorithm 1. In our ex-
periments, we set the committee size of three. We train three
FC-DenseNets with the architecture depicted in Figure 2 and
initialize the model parameters with different random seeds
so that the feature vectors are different from each other. In
each training iteration, the proposed deep AL framework
selects most informative data in unlabeled dataset and asks
human oracle for hand masks.

At the training initialization stage, we manually annotate
100 raw X-ray images. (e designed interactive program
could tell us which data are crucial for training at each
training iteration, then we give the ground truth of the X-ray
images, and add them to labeled training dataset. To de-
termine whether the model is converged, we use the trained
DenseNets to infer the unlabeled data and visually inspect
the segmentation results. Totally, we annotate 400 raw X-ray
images, and the refined FC-DenseNets with AL can precisely
segment all of data. Some images selected by AL at several
epochs are shown in Figure 8. We observed that the selected
raw images with most dissimilar features have obvious
different segmentation results. (is phenomenon suggests
the proposed AL framework with QBC strategy works ef-
fectively. And the segmentation results are shown in Fig-
ure 9. After segmenting hand masks, we cropped the hand
RoIs from full image, as shown in the last line in Figure 9.

As a comparison, we use U-Net to train hand seg-
mentation network with only 400 annotated hand RoI
without AL technique. (e segmentation results are shown
in the second row in Figure 9. It is clear that with AL training
trick, the segmentation performance is significantly im-
proved. (is indicates the proposed AL algorithm could
effectively select data for segmentation network training and
generate segmentation results with high quality.

3.3. Hand RoI Enhancement via Generative Adversarial
Network. In our experiment, we manually adjust contrast,
brightness, and sharpness of 500 hand segmentation images
and denote the preprocessed image as gold standard. (e
manual annotated images and corresponding original im-
ages constitute the training data. To prevent overfitting and
improve model performance, we augment data by flipping
image around vertical axes and randomly rotating from −30°
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to 30°. (e image enhancement results are shown in
Figure 10.

From Figure 10, we can observe that enhanced images
have a strong resemblance of gold standard, and it is hard to
distinguish gold standard from generated image. As a
comparison, we use contrast-limited adaptive histogram
equalization (CLAHE) to process the segmented images, as
shown in the third row in Figure 10. It is clear that the quality
of images processed by CLAHE is less stable than GAN
generated images. (is suggests the G has powerful ability to
reliably enhance all images in dataset.

3.4. Bone Age Assessment via Paced Transfer Learning. To
prevent overfitting, we adopt online data augmentation with
random rotation, random zoom, random sheer, and hori-
zontal flipping. Furthermore, we sample a same number of
data in each bone age to keep data category balance. We
implemented our models with Keras and TensorFlow, and
we trained the models on a NVIDIA-DGX-1V machine
equipped with 8 Tesla V100 GPUs. In addition, we trained
the model through RMSprop algorithm with 0.001 of the
base learning rate, and the learning rate decreased with
decay of 0.05. Each training epoch only took 3 minutes. Our
source code is available in https://github.com/awp4211/
bone-age-assessment.

To prove the proposed paced transfer learning strategy
outperforms conventional transfer learning methods, we
monotonously fine-tuned the parameters in each block in
Figure 5 while we fixed the parameters outside of the block.
Figure 11 presents the loss for different fine-tune model.

Each transfer learning model was trained with enhanced
hand radiographs which are resized to 299 × 299. In each
part of dataset, all, male, and female cohorts, our model
achieves best performance with proposed PTL technique

compared to other transfer learning settings. A further
conclusion is that even though we fine-tune a larger quantity
of parameters in whole CNN at beginning, i.e., fine-tuning
from entry block and fine-tuning all layers, model loss did
not decrease to a lower level. (is suggests fine-tuning all
layers at the initial stage might deteriorate fine-grained
parameters. On the contrary, fine-tuning a small number
of parameters is insufficient for model training. (is cir-
cumstance might occur in transfer learning on medical
image processing tasks because there exists a huge difference
between nature images and medical images. Performance of
models with different transfer learning strategies is com-
pared in Figure 12. Fine-tuning with paced transfer learning
surpasses others significantly.

From Figure 12, we concluded that paced transfer learning
can remarkably improve model performance and reduce
MAE. By observing the first three columns in Figure 12, we
conclude that, by using enhanced hand segmentation images,
our model gains a better performance. (e proposed BAA
model achieved a MAE of 7.664, 5.991, and 6.263 months on
all, male, and female cohorts, respectively. More importantly,
separating patients intomale and female cohorts could slightly
improve model performance. (e reason behind this phe-
nomenon is that male and female cohorts are judged with
different standards in clinical practice [28].

In addition, we compare our method with existing BAA
with deep learning approaches and summarize the MAE and
dataset size in Table 1. (e proposed method acquired a
better performance on a large-scale dataset which contains
12611 cases.

By observing Table 1, it is clear that our proposed model
dominates over other methods in part of MAE evaluation
and training time. Compared with two previous BAA ap-
proach through transfer learning in [4, 5], we could conclude
that the proposed PTL technique significantly transfers
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Figure 10: Image enhancement results. From top to bottom are original segmented hand image, enhanced image, and ground truth (gold
standard).
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pretrained weights to medical image process tasks and ac-
celerates the training procedure. (e proposed PTL success-
fully prevent trapping into local minimum and makes model
converge at several training steps. In addition, compared with
the two approach which trained in a relative small dataset in
[3, 29], our model successfully leveraged all information
provided in dataset and achieved a higher performance.

What is more important, due to the use of PTL
technique, our model converged within 75 epochs in each
cohort of dataset and the training time was much less. In
contrast to all previous approaches in Table 1, we use
online sampling for data augmentation to successfully
prevent overfitting and each training epoch is only takes 3
minutes.
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Figure 11: Raining loss for fine-tuning from different blocks on all, male, and female cohorts. Since that, we used early stopping technique,
and different models were trained with different epochs.
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To further illustrate the performance of the proposed
approach for BAA, we compare our methods with the leader
board available on RSNA challenge website.

From Table 2, we can find that our results achieve rank 4
and rank 9 on male and female cohorts.

3.5. Visualizing CNN by Class Activation Map.
Representative CAM was generated for male and female
skeletal development, as shown in Figure 13.

In Figure 12, highlighted RoIs are important portions of
the image to perform final bone age estimation. Compared
with metacarpal bones, CAM focuses less attention on carpal
bones in male skeleton, implying that metacarpal bones are
important for predicting bone age for male in our method.
While for female, CAM focuses on a large range of hand
bones, including the tail of phalanges, metacarpal bones, and
carpal bones. However, carpal bones are more crucial for
determining bone ages.

4. Conclusion

In this paper, we proposed a versatile framework for
medical image processing and analysis using deep learning
technique. At the data preprocessing stage, we propose a
deep AL framework to actively select the most informative
data for annotation and segment specific RoI with FC-
DenseNet. In addition, GAN is employed to enhance
medical image quality. For the medical image regression or
classification task, we propose PTL to fine-tune an off-the-
shell CNN and perform the predication. Furthermore, we
visualize the deep CNN by using CAM and explain which
portions of image are crucial for computer-aided system
for specific medical image processing tasks. To exemplify
the effectiveness and performance of the proposed

ALL Male Female ALL Male Female
With enhancement Without enhancement

Fine-tuned layers above FC 28.168 28.271 25.982 28.731 30.388 26.180
Fine-tuned layers above exit block 12.695 10.082 11.242 16.635 14.702 12.915
Fine-tuned layers above mid block 11.213 8.339 8.115 11.511 8.146 11.835
Fine-tuned layers above entry block 9.796 7.626 8.337 9.695 9.175 8.060
Fine-tuned all layers 9.141 6.923 7.265 8.305 8.923 7.666
Paced transfer learning 7.664 5.991 6.263 8.074 7.495 7.256
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Figure 12: Comparison of models with different transfer learning strategies with respect to MAE (months).

Table 1: Comparison of different deep-learning-based methods on BAA task with respect to MAE and dataset size.

Method Feature Dataset size MAE (m) Training epoch
Zhou et al. [29] Transfer learning 1100 8.63 40
Spampinato et al. [3] BoNet (CNN) 1400 9.48 150
Lee et al. [5] Transfer learning 9325 11.16 (M)/9.84 (F) 100
Iglovikov et al. [4] Transfer learning 12611 6.30 (M)/6.10 (F) —
Proposed method PTL 12611 5.991 (M)/6.263 (F) <75

Table 2: Comparison of model performance with the participants
in RSNA competition.

Rank User MAE
1 Elmigu 5.796
2 Jeffmenin 5.830
3 Bratta 5.911
4 Alexandrecadrin 6.102
5 s8t 6.123
6 Felipe.kitamura 6.164
7 S.Koitka 6.180
8 Leonchen 6.209
9 Jcrayan 6.288
10 Elmigu 6.365
- Proposed 5.991 (M)/6.263 (F)
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framework, we test our model on BAA task on RSNA
dataset. Our model achieves a MAE of 5.991 and 6.263
months on male and female cohorts, comparable to the
state-of-the-art performance on a large-scale dataset. We
believe the proposed framework could also be applied to
other medical image recognization tasks.

5. Future Work

Although the proposed approach achieved the state-of-the-art
performance, there are also some limitations. One problem is
that we need to annotate several images with specific RoI at
the initial training stage. Due to the limited number of
training samples, the model may trap into local minimum.
And another limitation is the proposed approach could not
fully automatically enhance the quality of medical images.

(e investigation presented in this paper leaves many
open challenges and issues for future research. We concisely
discuss some of them in the following:

(1) Apply proposed framework on different modalities
of medical images, such as magnetic resonance
imaging (MRI), computed tomography (CT), and
ultrasound (US).

(2) Integrate different source of off-the-shell CNN to the
framework, i.e., transferring other off-the-shell
CNNs to medical applications.

(3) Apply AL and PTL on different types of medical
image processing tasks such as detection and
localization.
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