
Research Article
A Design Space Exploration Framework for ANN-Based Fault
Detection in Hardware Systems

Andreas G. Savva, Theocharis Theocharides, and Chrysostomos Nicopoulos

University of Cyprus, Nicosia, Cyprus

Correspondence should be addressed to Andreas G. Savva; andsavv 1981@yahoo.com

Received 28 July 2017; Accepted 29 October 2017; Published 3 December 2017

Academic Editor: Ping Feng Pai

Copyright © 2017 Andreas G. Savva et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This work presents a design exploration framework for developing a high level Artificial Neural Network (ANN) for fault detection
in hardware systems. ANNs can be used for fault detection purposes since they have excellent characteristics such as generalization
capability, robustness, and fault tolerance. Designing an ANN in order to be used for fault detection purposes includes different
parameters.Through thiswork, those parameters are presented and analyzed based on simulations.Moreover, after the development
of the ANN, in order to evaluate it, a case study scenario based on Networks on Chip is used for detection of interrouter link faults.
Simulation results with various synthetic traffic models show that the proposed work can detect up to 96–99% of interrouter link
faults with a delay less than 60 cycles. Added to this, the size of the ANN is kept relatively small and they can be implemented in
hardware easily. Synthesis results indicate an estimated amount of 0.0523mWpower consumption per neuron for the implemented
ANN when computing a complete cycle.

1. Introduction

This work provides analysis and evaluation of the procedure
of creating an exploration framework with the use of ANNs
for high level fault detection in hardware systems. While
implementing a detection framework, there are many issues
to deal with, which have inspired researcher’s attention.
Determining the ANN network structure, the number of
neurons in hidden/output layers, and the procedure of the
ANN training are some of those issues. The aim of this work
is to identify and analyze all the main steps needed for this
purpose.

Through this work, all the necessary steps for designing
such a mechanism are analyzed, explained, and evaluated.
The developed ANN is adaptable in many different hardware
systems. Based on their ability to dynamically be trained
to different case scenarios, ANNs can offer high detection
capabilities with minimal additional overheads [1]. An ANN
mechanism for fault detection is developed in order to intelli-
gently detect future faults.TheANN is trainedwith utilization
data collected from different simulations in which randomly
faults were injected (topology based training). Added to this,

individual small ANNs are assigned to be responsible for dif-
ferent hardware partitions, providing scalability. The size of
the ANNs is kept relatively small and the ANN complexity is
minimized, and themonitoring of the entire hardware system
is done in parallel and independently by each ANN. More-
over, ANNs can easily be designed and implemented in hard-
ware and their size for this work remains relatively small.

The major problem which affects the reliability in hard-
ware systems/networks is the presence of different types of
faults. These faults change the expected behavior of a hard-
ware system and can be temporary or permanent. Temporary
faults occur most of the times because of the cross-talks and
noise. Permanent faults occur due to manufacturing defects.

Fault detection in hardware systems remains one of the
top challenges and the development of an intelligent fault
detection scheme is needed. For the purposes of evaluating
the ANNs used for fault detection in this work, a case study
scenario based on NoCs is used. In future on-chip genera-
tions, there will be a huge increase in faults [2, 3]. According
to ITRS, in the near future, the manufacturing defect rate
will reach approximately up to 1000 defects/m2 [3]. Intercon-
nection faults can potentially create disconnected networks

Hindawi
Journal of Electrical and Computer Engineering
Volume 2017, Article ID 9361493, 12 pages
https://doi.org/10.1155/2017/9361493

https://doi.org/10.1155/2017/9361493

2 Journal of Electrical and Computer Engineering

and as a result network will not be able to function properly.
Studies show that complex error detection schemes may
require high energy dissipation and huge area overheads,
which have direct impact on the performance of the systems
introducing also extra latencies [4, 5].

The fault detection of the NoCs systems can be done
based on the testing of the routers, interconnects, and the
processing elements. Many efforts have been made in order
to detect faults in hardware systems and NoCs which include
different fault testing/detection strategies [6–8].Most of them
present low level prediction mechanisms.

This work focuses on the analysis of the development
of an exploration framework for high level fault detection
with the use of ANNs. Emphasis is placed on the topological
analysis of ANN networks and on the different parameters
needed for the design of the ANN.

For the currentwork, andwith the use of aNoC case study
scenario, simulation results in 2Dmesh topologies show good
detection results (up to 96–99% correct interrouter link fault
detection under the use of synthetic traffic models), with
very low additional accepted delays and costs. The additional
hardware overhead from the use of ANNs is very small.These
results show that ANNs can be successfully used for fault
detection in different hardware systems.

This work is organized as follows. Section 2 discusses the
related work. Section 3 introduces and analyzes the design
of the framework based on different parameters. Section 4
presents the case study simulated framework with the result
analysis and Section 5 gives conclusions for future research.

2. Background and Related Work

2.1. ANNandPrediction RelatedWork. TheANNs are consid-
ered to have excellent characteristics such as generalization
capability, robustness, and fault tolerance [1]. The neural
networks are able to handle large input data sets and based on
appropriate learning, they are able to find complex nonlinear
relationships among the data in order to make accurate
predictions. Significant efforts have been made in order to
develop a prediction framework for different cases based on
ANNs [9–12]. Based on these, ANNs offer high prediction
capabilities. ANNs also have been successfully applied in
various real life scenarios which include learning systems
[13], neuroscience [14], and engineering [15]. Through these,
it is believed that ANNs are a powerful tool which has the
ability to make predictions based on complex relations of the
input and output data. Motivated by these findings, this work
proposes a framework which uses ANNs for interrouter link
fault detection. Integrated hardware-based ANNs are used,
and, based on the appropriate ANN training and the received
link utilization data in discrete interval times, intelligently
detect which router might present fault. ANN size remains
relatively small and can be efficiently designed in hardware.

There are many approaches to develop ANN models
for real life problems which state the importance of ANNs.
ANNs have been used as branch prediction mechanisms in
computer architecture, as forecasting mechanisms in price
prediction of Share-Market [12]. According to Shamishi et al.
[16], it is explained howMATLAB tools can be used inwriting

scripts, which will help the development of ANN models
in order to predict global solar radiation in United Arab
Emirates. Added to this, Jahirul et al. [9, 11] provide advances
of ANN applications on different situations.They present the
methodology and the biomedical applications of ANNs as
well as applications of ANNs in industry and engineering.

A lot of work has been done in the research area for fault
prediction in high level systems with the use of ANNs. An
ANN is a mathematical model which simulates the structure
and functionalities of biological neural networks [1]. The
functionality of an ANN can be represented in three basic
steps. At the first step, the inputs of the ANN are weighted.
This means that the inputs are multiplied with appropriate
weights. During the second step, the summation of all the
weighted inputs is calculated. At the end, this summation of
the previously weighted inputs passes through the activation
function. The neuron output is then propagated to the
neurons of the next layer which perform the same operation
with the newly set of inputs and their own weights. This is
repeated for all the layers of an ANN [17].

Next subsection presents some of the previous work done
for fault detection in Networks on Chip since in the future
ANNs can be used for this purpose.

2.2. Fault Detection in NoCs Related Work. Sanaye et al. [18]
present a new approach based on ANN’s implementation for
fault detection/phase selection for transmission lines. Neural
networks in this work are used in a protective pattern clas-
sifier algorithm. The proposed algorithm implements fault
detection, classification, and fault phase selection for trans-
mission lines. The authors in [19] have recently presented a
newmethod for detection of high impedance faults in electri-
cal distributed systems with the use of ANNs. The proposed
neural network was trained and tested based on simulation
data from different system conditions and implemented on a
digital signal processor board.

Moreover, the authors in [20] propose NoCAlert, an
online fault detection mechanism which is based on the idea
of invariance checking.Through the invariance checking, the
outputs of the control logic modules of the NoC are checked
for wrong outputs based on the current inputs (microchecker
models in hardware). In [21], the authors propose uDIREC,
a unified framework for permanent fault diagnosis based on
the use of a deadlock free routing algorithm which helps the
working links in the NoC to be maximally utilized in case of
fault. uDIRECfinds reliable routeswhich use the links that are
still working in the NoC. Added to this, in [22], the authors
propose Hermes, a fault tolerant routing algorithm for NoCs
which is deadlock free. Hermes balances the traffic in order
to achieve higher performance for fault free paths and at the
same time provides preconfigured paths in case of faults.

The work in [17] presents an intelligent power manage-
ment policy for Networks on Chip where links are turned
off and switched back on, based on ANNs predictions. The
ANNs use the link utilizations as feedback from the system
and based on these, they select candidate links for turning off
in an effort to achieve power savings in NoCs.

All the aforementioned works present the ANN models
for prediction purposes. This work uses ANNs for detection

Journal of Electrical and Computer Engineering 3

Table 1: Decision steps needed to be taken for the exploration framework for the ANNs.

ANN decision step Note
1 Topology exploration Develop in the framework a base network topology. Collect training data for the ANN.
2 ANN scalability Experiment with different partitions to choose which one is better.

3 Parameters of the ANN: training Find based on experiments efficient parameters for the development and training of the
ANN.

4 Fault detection
Study different scenarios for fault detection (study two scenarios: first, the detection is
made just to show which partition will present fault; second, the detection shows which

router in the partition will present fault).

Table 2: Decision steps for the framework.

Framework decision step Note
1 Simulation/evaluation Experiment with different sampling periods to find which one gives better results
2 Delay model Find all the extra delay parameters which will be added in the simulator

purposes and presents how different parameters are used in
designing an ANN-based fault detection framework. Added
to this, it takes into consideration all the necessary constraints
like extra hardware overheads, accuracy, speed, and latency.
Motivated from previous works and the ideas in [17], this
work creates as a case study scenario an intelligent framework
for interrouter link fault detection in NoCs and explains how
integrated small-sized hardware-based ANNs can be used for
this purpose.

3. Framework Methodology

3.1. Framework Development. Many different decision steps
must be taken in order to choose the optimal parameters
for developing correctly the exploration framework. Table 1
shows the decision steps needed for the general framework
from the ANN perspective, while Table 2 presents the deci-
sion steps needed for the simulator. ANNs can be used in any
hardware system. In order to evaluate the ANNs, a NoC is
used as a case study. Starting a decision step is needed for
the partition of the network into smaller regions. Individual
small-sized ANNs can be assigned to monitor each partition.
Following that, decision steps for the architecture of the
ANNsmust be taken (neurons in input-hidden-output layers,
the training of these ANNs) as well as decision steps for dif-
ferent simulation parameters like the sampling period, which
is another very important parameter since it is needed for
the delay model of the simulator.

In order to design an efficient framework based on ANNs
for detection purposes, the ANN architecture and the simu-
lation framework have to be analyzed. This work is focused
firstly on the simulator for the collection of training data for
theANNs and also for the simulation results (detection versus
delay) at the end. In addition, the ANN topology and archi-
tecture are analyzed, paying more attention on the design
of the ANN, the training phase, and the detection delay.

Many experiments are made for the completion of the
steps of this work. Those are presented in the next sections.
At first, starting from the nxm network, this work chooses
a good partition, based on experiments. The architecture
of the ANN is studied and a developed ANN is assigned

for each created partition. Based on more experiments and
appropriate ANN training, decisions about the number of
hidden neurons as well as output neurons are taken. Based on
these decisions, the ANNs are implemented for the purposes
of detecting interrouter link faults. Next, experiments are
needed for the simulator in order to optimally decide different
important parameters such as the sampling period.Moreover,
a new delay model is added to the simulator which shows the
total delay of the detection for comparison purposes.

3.2. Topology Exploration: ANN Scalability. NoC is a packet-
switched network which connects all the functional units on
the chip providing communication infrastructure in order
to configure many-core systems on chip and is going to be
used as a case study scenario in order to evaluate the whole
framework.

gpNoCsim simulator (General Purpose Simulator for
Network-on-ChipArchitectures) is used in order to create the
network on-chip topology.

gpNoCsim is an open-source, component based simula-
tion framework for Networks-on-Chip architectures that is
developed in Java language. This framework is built upon
the object oriented modular design of the NoC architecture
components [23].

We assumed an 8 × 8 mesh topology consisting of 64
routers. Simulations will run for this topology in order to
collect training data for the ANNs. Every 𝑥 cycles, new train-
ing data will be sent to the ANNs for training.

For scalability purposes, partition of theNoC into smaller
regions is needed and an ANN is assigned to be responsible
for each region. This partition will help to keep the ANN
sizes relatively small, reusable, and easy to implement in
hardware. The ANN mechanism can be considered as a
different independent network, on top of the NoC topology.
Different NoC partitions can be implemented and analyzed
in order to choose which one is appropriate for the fault
detection framework. NoC topology andANNs are presented
and analyzed in detail in Section 4.

3.3. ANN Mechanism Overview and Training. The ANN
mechanism can be considered as an independent processing

4 Journal of Electrical and Computer Engineering

ANN receives
utilizations from
NoC partition

Receiving is
completed?

ANN detects faults
based on training
stage

Monitor utilizations

No

Next interval

Figure 1: Overview of the ANN detection process.

element in the NoC (PE). Each base ANN mechanism is
responsible for a specific network partition.TheANNmecha-
nism monitors all the link utilization values in the region for
which it is responsible, and these values are then processed by
the ANN in order to make the detection.

Every 𝑥 cycles, new link utilization values are coming to
the ANNs for training. The ANN then, based on the training
phase, intelligently detectswhich routerswill be erroneous for
each random fault injection. An overview of the procedure
that an ANN mechanism follows in order to detect which
routers will be malfunctioning is presented in Figure 1.

Next sections present in detail the development of the
framework based on the previouslymentioned steps. For each
decision step, an 8 × 8 NoC case study is going to be sim-
ulated with various traffic patterns in order to evaluate each
decision’s output.

4. Framework Evaluation Case Study

4.1. Scalability: ANN Partitioning. For scalability purposes,
partitioning the case study NoC into smaller regions (e.g., an
8 × 8NoC into four 4 × 4 regions or four 4 × 5 regions or 5 × 4
regions) is needed and an ANN is assigned to be responsible
for each region.This partitionwill help to keep the ANN sizes
relatively small and easy to implement in hardware.TheANN
mechanism can be considered as a different independent
network, on the top of the topology.

In order to decide which region size is the best, different
partitions are created and compared. Different simulations
for the different partitions are created and the resulting
ReceiverOperatingCharacteristics (ROC) curves are studied.
Based on those plots, an appropriateANN topology is chosen.
Figure 2 shows thedifferentANNpartitions studied (4× 4, 5×
4, 4 × 5).

Figure 3 presents the resulting ROC curves for 4 × 4, 4 ×
5, and 5 × 4 topologies in the case of router fault detection.
Different ROC curves were created with the use of different
traffic patterns. Partition 4 × 5 is more efficient since it pro-
duces better resultingROCcurves for different trafficpatterns
compared with 4 × 4 and 5 × 4 partitions (partition 4 × 5
ROC curves present slightly better results compared with the
results of the 5 × 4 partition.This is more obvious near the 0.9
value of the true positive rate in both ROC graphs). Based on
the above, we chose to work with 4 × 5 partitions, for the case
of detecting which router in the region will present fault.

4.2. ANN Development for Fault Detection. Each ANN fol-
lows a fully connected perceptron model. The activation
function used is hyperbolic tangent, which is symmetric and
asymptotic.Thismakes it easy to implement in hardware [17].
The neuron computes the weighted sum of the utilization
inputs and then through the activation function the neuron
output is produced.

The ANN is trained, based on different traffic models
(Random, Tornado, Transpose, and Neighbor [17]), using an
offline and back-propagation ANN training algorithm [1].
For the purposes of this article, the MATLAB ANN toolbox
is also used along with the different traffic patterns.

The input neurons were chosen based on the number
of the inputs to the system. For the output neurons, two
scenarios were studied for this work. In the first scenario, the
ANN is responsible for detecting which partition will present
a fault. For the second scenario, the ANN is responsible for
detecting which router in the partition will present fault. For
these partitions, in the case of detecting fault in the whole
ANN, the ANN should only have one output neuron. For
the case of detecting which router in the region will more
likely present fault, the ANN should have 20 output neurons,
one for each region router in the cases of 5 × 4, 4 × 5 NoC
partitions and 16 output neurons for the 4 × 4 NoC partition
case.

Figure 4 presents the ANN architecture used in the two
different case scenarios for this article. Figure 4(a) shows
the ANN architecture for the case of detecting the partition
which will have a faulty router. Figure 4(b) shows the ANN
architecture for the case of detecting which router in the
ANN region will present fault. The difference is presented in
the output layer. In the first case, only one output neuron is
needed which will show which ANN region might have fault.
In the second case, the number of output neurons depends on
the number of the routers included in the ANN region which
is simulated.

4.3. 4 × 5 ANN BaseModel. AnANNwhich is responsible to
monitor a 4 × 5 region receives 80 different inputs under the
assumptions that each router transmits a packet with its own
link utilization and one packet per cycle is delivered to the
ANN at each interval. Based on that, during each cycle, the
ANN will receive for each router at most four input values.
Only four pipelinedmultipliers are needed for eachANN and
the ANN remains small and flexible and independent of the
size of the NoC it monitors. The ANN hardware architecture
and the overall data flow are shown in Figure 5.

Journal of Electrical and Computer Engineering 5

ANN 1 ANN 2

ANN 3 ANN 4

ANN 1 ANN 2

ANN 3 ANN 4

ANN 1 ANN 2

ANN 3 ANN 4

ANN 3 ANN 4

ANN 1 ANN 2

ANN 3 ANN 4

ANN 1 ANN 2

Figure 2: Different ANN partitions: 4 × 4 partitions, 5 × 4 partitions, and 4 × 5 partitions.

4.4. ANN Parameters and Training. The ANN mechanism
operates in two steps: training step and detection step. In
order to train the ANNs correctly, the utilization values
collected from the NoC simulation are used. The NoC
topology is partitioned into smaller regions and a base ANN
is assigned to be responsible for each region. We assume that
the ANNs are different networks on top of the NoC topology.

The ANN receives the link utilization values from all the
router ports of the partition which it monitors. Each router

keeps a counter which is used for tracking the travelling
packets on each link. If a router fails to transmit its values
then the counter value is set to a sentinel value, indicating
that the buffers of that router are fully utilized/blocked.
The ANN then uses these utilization values for training in
order to intelligently detect which ports will present fault. A
neural network can be implemented in hardware by using
multiplier-accumulator (MAC) units and a lookup table
(LUT) as activation function [17].

6 Journal of Electrical and Computer Engineering

Avg. Tornado traffic
Avg. Random traffic
Avg. Neighbour traffic

Avg. Transpose traffic
Random

0.6 0.7 0.8 0.9 1
False positive rate

0
0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.7

0.8

0.9

1
Tr

ue
 p

os
iti

ve
 ra

te

Avg. Transpose traffic
Avg. Neighbour traffic
Avg. Tornado traffic

Avg. Random traffic
Random

Avg. Tornado traffic
Avg. Random traffic
Avg. Neighbour traffic

Avg. transpose traffic
Random

ROC - 5 × 4ROC - 4 × 5 partitions

ROC - 4 × 4

0.6 0.7 0.8 0.9 1
False positive rate

0
0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 p
os

iti
ve

 ra
te

0.6 0.7 0.8 0.9 1
False positive rate

0
0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 p
os

iti
ve

 ra
te

partitions

partitions

Figure 3: Resulting ROC curves for 4 × 4, 4 × 5, and 5 × 4 partitions.

The ANN training stage can be performed offline when
the NoC is not used and the training weights can be stored in
SRAM based LUTs for fast and online reconfiguration of the
network. The network is trained with the use of application
traffic patterns, offline, and any ANN training algorithm can
be used. In our experiments, we used synthetic traffic patterns
and theMATLABANN toolbox; theweight valueswere fed to
the simulator as inputs, where the actual detection was then
implemented and simulated.

Thenext decision step presented is the number of neurons
needed for the hidden layer. In order to minimize the fault
probability and have a well-trained neural network which
will perform well, an optimal value for the neurons of the
hidden layer must be selected. If a small number of neurons

are selected, it will lead to faults for the total framework as
the training data might not be well used for detection within
that small number of internal neurons. If a huge number of
neurons are selected for the hidden layer, then this will add
extra hardware implementation cost and faults. The number
of hidden layer neurons can be selected to be half of the
summation of the input and output data [1]. Based on these,
different numbers of internal neurons, varying around half of
the summation of the input and output neurons, are studied
and simulated.

Figure 6 shows the resulting ROC graphs for different
number of neurons in the hidden layer. Table 3 presents the
configuration parameters used for each resulting ROC graph.

Journal of Electrical and Computer Engineering 7

Input layer Hidden layer Output neuron

(a)

Input layer Hidden layer Output neurons

(b)

Figure 4: ANN architecture with the input, hidden, and output layers for detection of (a) fault in whole ANN and (b) fault in router.

Training
memory

Activation
function (LUT)

FSM
 control unit

Link utilizations

Output

+
=

+
=

+
=

+
=

Input coordination unit

MAC 1 MAC 5

Reg 1 Reg 5

Output
neuron

⋆ ⋆⋆⋆

Figure 5: ANN hardware architecture.

Table 3: ANN configurations with different number of neurons in
the hidden layer.

ANN configuration Number of neurons in
hidden layer

ANN configuration 1 17 neurons in hidden layer
ANN configuration 2 21 neurons in hidden layer
ANN configuration 3 20 neurons in hidden layer
ANN configuration 4 18 neurons in hidden layer
ANN configuration 5 19 neurons in hidden layer

Based on Figure 6, the configuration with 19 hidden layer
neurons is chosen. This is because ROC curve for 19 neurons
in hidden layer shows good results compared to the rest of the
cases.

4.5. SimulationDecisions for FaultDetection. Another impor-
tant decision that needs to be examined is the sampling

period. Sampling time is divided into different cycle intervals
and the experimental results were studied. At the end of each
interval, all routers in the partition transmit their average
utilization data.The ANN then receives the utilization values
and proceeds to the detection. If a small sampling period is
chosen, then the utilization data which will be collected will
not be sufficient for the detection. 50, 60, 80, and 100 cycle
time intervals were studied and based on the experimental
results an optimal time interval is selected. Based on the
results of Figure 7, the 80 cycles time interval is chosen
because it shows better detection results compared with the
rest of the cases.

In order to find a good sentinel value, which will be used
when a router fails to transmit its values to the ANN, different
simulations for different sentinel values are created. Table 4
presents the configuration parameters used for each resulting
ROC graph in Figure 8.

Figure 8 presents the resulting curves. The best results
comparing the ROC curves for the different sentinel values

8 Journal of Electrical and Computer Engineering

ROC: different ANN configurations

ANN configuration 1
Random
ANN configuration 2

ANN configuration 3
ANN configuration 4
ANN configuration 5

0.6 0.7 0.8 0.9 1
False positive rate

0
0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 p
os

iti
ve

 ra
te

Figure 6: ROC graphs for different neurons in hidden layer.

0

10

20

30

40

50

60

70

80

90

Random Tornado Transpose Neighbor Random Tornado Transpose Neighbor

Results percentage of
correct predictions
Results mispredictions

Results percentage of
false positives
Results delay

0

10

20

30

40

50

60

70

80

90

100

Results percentage
of correct detections
Results misdetections

Results percentage
of false positives
Results delay

0

20

40

60

80

100

120

0

10

20

30

40

50

60

70

80

90

Random Tornado Transpose Neighbor

Results percentage
of correct detections
Results misdetections

Results percentage
of false positives
Results delay

Random Tornado Transpose Neighbor

Results percentage
of correct detections
Results misdetections

Results percentage
of false positives
Results delay

80 cycles results: 100 cycles results:

50 cycles results: 60 cycles results:

Figure 7: Results for different cycle time intervals.

Journal of Electrical and Computer Engineering 9

ANN configuration 1
ANN configuration 2
ANN configuration 3

Random

0.6 0.7 0.8 0.9 1
False positive rate

0
0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 p
os

iti
ve

 ra
te

ROC: 4 × 5 partitions

Figure 8: Resulting ROC graphs for different sentinel values.

Table 4: ANN configurations for different sentinel values.

ANN configuration Number of neurons in hidden
layer/sentinel value

ANN configuration 1 19 neurons in hidden layer, sentinel
value 70

ANN configuration 2 19 neurons in hidden layer, sentinel
value 50

ANN configuration 3 19 neurons in hidden layer, sentinel
value 20

are shown in the case of 50 cycles sentinel value. Based on the
results, an efficient value to work with is 50 cycles.

4.6. Topology Exploration Setup: Adaptability in Various
Hardware Configurations. In order to evaluate the developed
ANNs, various hardware configurations can be used. For the
purposes of this work and for the NoC case study scenario,
gpNoCsim simulator is used.This simulator uses an adaptive
routing algorithm based on XY algorithm with a modi-
fied turn model with virtual channel support and 4-stage
pipelined router operation [23, 24]. It also supports 64-bit flit
width with worm-whole flow control, 2 virtual channels per
link with buffer depth of 5 flits per virtual channel, and
different traffic models.

Simulation experiments were ran over 8 × 8 NoC topolo-
gies, case study scenario, where partitions into four regions of
4 × 5 routers are created. Each ANN-based model is respon-
sible for one of these regions. Simulations are done over
200,000 cycles with warm-up period of 100,000 cycles. Time
is divided into 80 cycles (sample period), as already explained,
and at the end of each sampling period, all the routers
of the partition send their average utilization data to the
ANN which is responsible for each NoC partition. Faults are

injected randomly (random cycle time and in random loca-
tions). The ANN then receives the average utilization values
(one packet from each router with the average utilization
port values of this router). The ANN then proceeds to the
detection of fault ports.

One simulation runs at a single traffic pattern, with a
single traffic injection rate and one network state consists of
223 different simulations (for all the injection faults in all the
223 links, single fault injection is assumed).

Traffic injection rate is varied from 0.1 to 0.3 flits/node/
cycle in steps of 0.05 flits/node/cycle from low to high. Added
to this, 4 different traffic patterns are studied in three different
scenarios of fault injections (at cycles: 0, 32000, and 64000).
Three injection rates, multiplied by three injection times,
multiplied by four traffic patterns, multiplied by 223 links,
equals 8028 different fault injection simulations. Simulation
results are presented in the next section.

4.7. Framework Evaluation. The number of corrected detec-
tion instances is measured as well as the number of fault
positives (undetected faults) and the number of full negatives
(unexpected faults) for different traffic patterns. Moreover,
the time needed for the ANNs to produce the detection is
measured. In order to succeed in this, a delay model was
added in the simulator. This delay model takes into con-
sideration the time needed to finish the sampling, the time
needed for the sample to reach theANN, and the time needed
for the ANN to make the detection.

Time needed to finish the sampling is calculated based
on the time the fault was injected and the time needed for the
sampling completion. For example, if the fault was injected at
time of 20 cycles, then 60 cycles are needed for the sampling
completion (if the sampling period is 80 cycles). Time needed
to reach the ANN is the number of hops needed for the
sample to reach the ANN. For the time needed by the ANN
to make the detection each neuron requires three cycles (one
for themultiply operation, one for the accumulation, and one
for the LTU activation function).

Figure 9 summarizes the comparison when targeting the
case study scenario of an 8 × 8 mesh NoC. For all the traffic
patterns, the number of undetected/unexpected faults, in
comparison to the correct detection, is very low (less than
4). Neighbor and Tornado traffic patterns show better results
concerning the percentage of correct detection (98-99%
and 97–99%, resp.) and less delay (55 and 58 cycles, resp.)
compared to Transpose and Random traffic patterns (96-
97%). Added to this, simulations show that the misdetection
for the cases of Neighbor, Tornado, and Transpose traffic
patterns are very low (less than 2). Random traffic pattern
presents more miss detection but this is acceptable compared
with the high percentage of correct detection.

4.8. ANN Costs and Power Consumption. For a 64-input
ANN, a hyperbolic tangent activation function, and a single
threshold subtractor (i.e., to perform a 64-input complete
neuron operation to a single output from the activation
function) the hardware costs are as follows.

Using Verilog and synthesized Synopsys Design Vision,
targeting a 65 nm commercial CMOS library, at targeted

10 Journal of Electrical and Computer Engineering

0

20

40

60

80

100

120

In
j R

at
e =

 0
.1

,
fa

ul
t i

nj
Cy

cle
 =

 0
,

Ra
nd

om

In
j R

at
e =

 0
.1

,
fa

ul
t i

nj
Cy

cle
 =

 0
,

To
rn

ad
o

In
j R

at
e =

 0
.1

,
fa

ul
t i

nj
Cy

cle
 =

 0
,

Tr
an

sp
os

e

In
j R

at
e =

 0
.1

,
fa

ul
t i

nj
Cy

cle
 =

 0
,

N
ei

gh
bo

r

In
j R

at
e =

 0
.1

,
fa

ul
t i

nj
Cy

cle
 =

 3
2K

,
Ra

nd
om

In
j R

at
e=

0.
1,

fa
ul

t i
nj

Cy
cle

 =
 3

2K
,

To
rn

ad
o

In
j R

at
e =

 0
.1

,
fa

ul
t i

nj
Cy

cle
 =

 3
2K

,
Tr

an
sp

os
e

In
j R

at
e =

 0
.1

,
fa

ul
t i

nj
Cy

cle
 =

 3
2K

,
N

ei
gh

bo
r

In
j R

at
e =

 0
.1

,
fa

ul
t i

nj
Cy

cle
 =

 6
4K

,
Ra

nd
om

In
j R

at
e =

 0
.1

,
fa

ul
t i

nj
Cy

cle
 =

 6
4K

,
To

rn
ad

o
In

j R
at

e =
 0

.1
,

fa
ul

t i
nj

Cy
cle

 =
 6

4K
,

Tr
an

sp
os

e
In

j R
at

e =
 0

.1
,

fa
ul

t i
nj

Cy
cle

 =
 6

4K
,

N
ei

gh
bo

r

Average percentage of correct predictions
Average mispredictions
Average percentage of false positives

0

20

40

60

80

100

120

In
j R

at
e =

 0
.2

,
fa

ul
t i

nj
Cy

cle
 =

 0
,

Ra
nd

om

In
j R

at
e =

 0
.2

,
fa

ul
t i

nj
Cy

cle
 =

 0
,

To
rn

ad
o

In
j R

at
e =

 0
.2

,
fa

ul
t i

nj
Cy

cle
 =

 0
,

Tr
an

sp
os

e

In
j R

at
e =

 0
.2

,
fa

ul
t i

nj
Cy

cle
 =

 0
,

N
ei

gh
bo

r

In
j R

at
e =

 0
.2

,
fa

ul
t i

nj
Cy

cle
 =

 3
2K

,
Ra

nd
om

In
j R

at
e =

 0
.2

,
fa

ul
t i

nj
Cy

cle
 =

 3
2K

,
To

rn
ad

o

In
j R

at
e =

 0
.2

,
fa

ul
t i

nj
Cy

cle
 =

 3
2K

,
Tr

an
sp

os
e

In
j R

at
e =

 0
.2

,
fa

ul
t i

nj
Cy

cle
 =

 3
2K

,
N

ei
gh

bo
r

In
j R

at
e =

 0
.2

,
fa

ul
t i

nj
Cy

cle
 =

 6
4K

,
Ra

nd
om

In
j R

at
e =

 0
.2

,
fa

ul
t i

nj
Cy

cle
 =

 6
4K

,
To

rn
ad

o
In

j R
at

e =
 0

.2
,

fa
ul

t i
nj

Cy
cle

 =
 6

4K
,

Tr
an

sp
os

e

In
j R

at
e =

 0
.2

,
fa

ul
t i

nj
Cy

cle
 =

 6
4K

,
N

ei
gh

bo
r

Average percentage of correct predictions
Average mispredictions
Average percentage of false positives

0

20

40

60

80

100

120

In
j R

at
e =

 0
.3

,
fa

ul
t i

nj
Cy

cle
 =

 0
,

Ra
nd

om
In

j R
at

e =
 0

.3
,

fa
ul

t i
nj

Cy
cle

 =
 0

,
To

rn
ad

o
In

j R
at

e =
 0

.3
,

fa
ul

t i
nj

Cy
cle

 =
 0

,
Tr

an
sp

os
e

In
j R

at
e =

 0
.3

,
fa

ul
t i

nj
Cy

cle
 =

 0
,

N
ei

gh
bo

r
In

j R
at

e =
 0

.3
,

fa
ul

t i
nj

Cy
cle

 =
 3

2K
,

Ra
nd

om
In

j R
at

e=
0.

3,
fa

ul
t i

nj
Cy

cle
 =

 3
2K

,
To

rn
ad

o

In
j R

at
e =

 0
.3

,
fa

ul
t i

nj
Cy

cle
 =

 3
2K

,
Tr

an
sp

os
e

In
j R

at
e =

 0
.3

,
fa

ul
t i

nj
Cy

cle
 =

 3
2K

,
N

ei
gh

bo
r

In
j R

at
e =

 0
.3

,
fa

ul
t i

nj
Cy

cle
 =

 6
4K

,
Ra

nd
om

In
j R

at
e =

 0
.3

,
fa

ul
t i

nj
Cy

cle
 =

 6
4K

,
To

rn
ad

o
In

j R
at

e =
 0

.3
,

fa
ul

t i
nj

Cy
cle

 =
 6

4K
,

Tr
an

sp
os

e
In

j R
at

e =
 0

.3
,

fa
ul

t i
nj

Cy
cle

 =
 6

4K
,

N
ei

gh
bo

r

Average percentage of correct predictions
Average mispredictions
Average percentage of false positives

Figure 9: Detection results for four different traffic patterns (Random, Tornado, Transpose, andNeighbor) with three different injection rates
(0.1–0.3) and three different fault injection cycles (0, 32 K, and 64K).

Journal of Electrical and Computer Engineering 11

frequency of 500MHz, at 1 V power supply voltage, using 20-
input neurons, synthesis results indicate an estimated amount
of 10,000 gates for a 20-input neuron (performing 5 parallel
multiplications and accumulations per cycle).

Assuming 50% switching activity probability, the syn-
thesized ANN described above consumes an estimated
0.00275mWwhen computing one cycle of 20 inputs (one full
router utilization packet). A total of 16 cycles is needed for
multiply accumulate, 1 cycle for thresholding, and 1 cycle
for activation function lookup. Assuming that the ANN can
start receiving data in Cycle 1, and with a steady flow of one
utilization packet from each router (with 5 values enclosed),
then the inputs need 19 cycles in order to reach the next layer
of neurons. So, 19 cycles ∗ 0.00275mW= 0.0523mW in total,
in order to reach the next layer of neurons.The next stage will
of course use less power, but the same hardware can be reused
so there will be no need to compensate for extra area.

5. Conclusions

This work presents a design exploration framework for fault
detection in hardware systems with the use of high level
ANNs. It analyzes, explains, and evaluates all the necessary
steps taken in designing such a mechanism. In order to
evaluate the ANNs, a NoC case study is used. Based on their
ability to dynamically be trained, ANNs can be used for the
detection of interrouter link faults in NoCs. Based on the
experiments, two important things need to be analyzed and
studied, the ANN topology/design and the network. For the
ANN topology/design, a lot of experiments are developed in
order to choose the appropriate ANN architecture and inter-
nal ANN parameters such as neurons in the input/hidden/
output layers. From the above analyzed experiments, based
on simulated results, 4 × 5 ANNs with 19 neurons in hidden
layer and four output neurons were chosen for this work.
Based on experiments on 8 × 8 NoC networks, different sim-
ulator parameters were explored and the average router ports
utilization valueswere developed for theANN training phase.
Added to this, an efficient delay model was implemented in
the simulator for comparison purposes.

The ANN utilizes very low hardware resources and can
be integrated in larger hardware systems easily. Simulation
results show good detection results up to 96–99% under
synthetic traffic models. Thus, it can be concluded that by
designing correctly the ANNs can be very beneficial for
detecting faults in networks, especially in large and complex
systems such as NoCs.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural net-
works: a tutorial,” IEEE Computational Science & Engineering,
vol. 29, no. 3, pp. 31–44, 1996.

[2] R. A. Shafik, J. Mathew, and D. K. Pradhan, “Introduction to
energy-efficient fault-tolerant systems,” Energy-Efficient Fault-
Tolerant Systems, pp. 1–10, 2014.

[3] ITRS, http://www.itrs.net/.
[4] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin, L.

Benini, and G. De Micheli, “Analysis of error recovery schemes
for networks on chips,” IEEE Design & Test of Computers, vol.
22, no. 5, pp. 434–442, 2005.

[5] C. Grecu, A. Ivanov, R. Saleh, E. S. Sogomonyan, and P. P. Pande,
“On-line fault detection and location for NoC interconnects,” in
Proceedings of the IOLTS 2006: 12th IEEE International On-Line
Testing Symposium, pp. 145–150, Italy, July 2006.

[6] P. Poluri and A. Louri, “A Soft Error Tolerant Network-on-
Chip Router Pipeline for Multi-Core Systems,” IEEE Computer
Architecture Letters, vol. 14, no. 2, pp. 107–110, 2015.

[7] J. Liu, J.Harkin, Y. Li, and L.Maguire, “Online fault detection for
NoC interconnect,” IEEE Computer Architecture Letters, 2013.

[8] C. Grecu, P. Pande, A. Ivanov, and R. Saleh, “BIST for network-
on-chip interconnect infrastructures,” in Proceedings of the 24th
IEEE VLSI Test Symposium, pp. 30–35, USA, May 2006.

[9] M. Jahirul, P. Brooks et al., “An ANN Model for Predicting
Biodiesel Kinetic Viscosity as a Function of Temperature and
Chemical Compositions,” in Proceedings of the Proc. 20th
International Congress on Modeling and Simulation, Australia,
2013.

[10] V. Pacelli, V. Bevilacqua, and M. Azzollini, “An artificial neural
network model to forecast exchange rates,” Journal of Intelligent
Learning Systems and Applications, vol. 3, no. 2, pp. 57–69, 2011.

[11] K. Suzuki,Artificial Neural Networks - Methodological Advances
and Biomedical Applications, InTech, 2011.

[12] Z. Khan, T. Alin, and A. Hussain, “Price Prediction of Share
Market using ANN,” In Proc. IJCA Journal, Studies in Informatic
and Control, vol. 7, no. 3, pp. 111–120, 1998.

[13] S. Carillo, J. Harkin, L. McDaid et al., “Advancing interconnect
density for spiking neural network hardware implementations
using traffic-aware adaptive network-on-chip routers,” Neural
Networks, vol. 33, pp. 42–57, 2012.

[14] E. Alkim, E. Gürbüz, and E. Kiliç, “A fast and adaptive auto-
mated disease diagnosis method with an innovative neural net-
work model,” Neural Networks, vol. 33, pp. 88–96, 2012.

[15] R. C. J. Minnett, A. T. Smith, W. C. Lennon, and R. Hecht-
Nielsen, “Neural network tomography: Network replication
from output surface geometry,” Neural Networks, vol. 24, no. 5,
pp. 484–492, 2011.

[16] M. Shamishi et al., “Using matlab to develop ANN methods
for predicting global solar radiation,”Engineering Education and
Research using Matlab, pp. 978-953, 2011.

[17] A.G. Savva, T.Theocharides, andV. Soteriou, “Intelligent on/off
link management for on-chip networks,” in Proceedings of the
2011 IEEEComputer SocietyAnnual SymposiumonVLSI, ISVLSI
2011, pp. 343-344, India, July 2011.

[18] M. Sanaye et al., “Transmission Line Fault Detection and Phase
Selection using ANN,” in Proceedings of the International Con-
ference on Power Systems Transients, IPST, 2003.

[19] H. Zadeh, “An ANN-based high impedance fault detection
scheme: design and implementation,” International Journal of
Emerging Electric Power Systems, vol. 4, no. 2, 2005.

[20] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides,
“NoCAlert: An on-line and real-time fault detection mecha-
nism for network-on-chip architectures,” in Proceedings of the
2012 IEEE/ACM 45th International Symposium on Microarchi-
tecture, MICRO 2012, pp. 60–71, Canada, December 2012.

http://www.itrs.net/

12 Journal of Electrical and Computer Engineering

[21] R. Parikh and V. Bertacco, “uDIREC: Unified diagnosis and
reconfiguration for frugal bypass of NoC faults,” in Proceedings
of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2013, pp. 148–159, USA, December
2013.

[22] C. Iordanou, V. Soteriou, and K. Aisopos, “Hermes: Architect-
ing a top-performing fault-tolerant routing algorithm for Net-
works-on-Chips,” in Proceedings of the 32nd IEEE International
Conference on Computer Design, ICCD 2014, pp. 424–431,
Republic of Korea, October 2014.

[23] H. Hossain, M. Ahmed, A. Al-Nayeem, T. Z. Islam, and M. M.
Akbar, “gpNoCsim - A general purpose simulator for network-
on-chip,” inProceedings of the ICICT 2007: International Confer-
ence on Information and Communication Technology, pp. 254–
257, Bangladesh, March 2007.

[24] S. Jovanovic, C. Tanougast, S. Weber, and C. Bobda, “A new
deadlock-free fault-tolerant routing algorithm for noc inter-
connections,” in Proceedings of the FPL 09: 19th International
Conference on Field Programmable Logic and Applications, pp.
326–331, Czech Republic, September 2009.

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

