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Human action recognition is an important recent challenging task. Projecting depth images onto three depth motion maps
(DMMs) and extracting deep convolutional neural network (DCNN) features are discriminant descriptor features to characterize
the spatiotemporal information of a specific action from a sequence of depth images. In this paper, a unified improved collaborative
representation framework is proposed in which the probability that a test sample belongs to the collaborative subspace of all classes
can be well defined and calculated. The improved collaborative representation classifier (ICRC) based on [,-regularized for human
action recognition is presented to maximize the likelihood that a test sample belongs to each class, then theoretical investigation
into ICRC shows that it obtains a final classification by computing the likelihood for each class. Coupled with the DMMs and
DCNN features, experiments on depth image-based action recognition, including MSRAction3D and MSRGesture3D datasets,
demonstrate that the proposed approach successfully using a distance-based representation classifier achieves superior performance
over the state-of-the-art methods, including SRC, CRC, and SVM.

1. Introduction

Human action recognition has been studied in the computer
vision community for decades, due to its applications in video
surveillance [1], human computer interaction [2], and motion
analysis [3]. Prior to the Microsoft Kinect, the conventional
research focused on human action recognition from RGB, but
Kinect sensors provide an affordable technology to capture
RGB and depth (D) images in real time, which can offer
better geometric cues and less sensitivity to illumination
changes for action recognition. In [1], a bag of 3D points
and graphical model are obtained to characterize spatial
and temporal information from depth images. In [3], three
depth motion maps (DMMs) are projected to capture body
shape and motion, which is a discriminant feature to describe
the spatiotemporal information of a specific action from a
sequence of depth images. Seen from the literature review,
although depth based methods appear to be compelling

toward a practical application, even if there are a few of
deep-learned features for depth based action recognition, the
performance is still far from satisfactory due to the large
variations of the motion. In this paper, we focus on leveraging
one kind of the structure of representative model to improve
performance in multiclass classification with handcrafted
DMMs descriptor. In [4], three channel deep convolutional
neural networks are trained to extract features of depth
map sequences after projecting weighted DMMs on three
orthogonal planes at several temporal scales. It was verified
that the method using DCNN features can achieve almost
the same state-of-the-art results on the MSRAction3D and
MSRGesture3D dataset. DCNNs have been demonstrated
as an effective kind of models for performing state-of-the-
art results in the tasks of image recognition, segmentation,
detection, and retrieval. With the success of DCNN, we also
take it as feature extraction and apply it in our classifier
model.
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As for representative models, many achievements based
on space representation include image restoration [5], com-
pressive sensing [6, 7], morphological component analysis
[8], and super-resolution [9,10]. As the advances of classifiers
based on representation, several pattern recognition prob-
lems in the field of computer vision can be effectively solved
by sparse coding or sparse representation methods in recent
decades. In particular, the linear models can be represented
as y = Aa [11], where y, «, and A represent the data, a sparse
vector, and a given matrix with the overcomplete sample set,
respectively. Because of the great success of sparse coding
algorithms on image processing, the sparse representation
based classifiers, such as sparse representation classification
(SRC) and collaborative representation classification (CRC),
have gained more attention nowadays.

The basic idea of SRC/CRC is to code the test sample
over a set of samples with sparsity constraints, which can
be calculated by /,-minimization. In [12], Wright proposed
a basic SRC model for classification by the discriminative
nature of sparse representation, which is based on the theory
that newly signals are recognized as the linear combinations
of previously observed ones. Based on SRC, Yang and Zhang
proposed a Gabor occlusion dictionary based SRC, which can
significantly reduce the computational cost [13]. In [14], the
authors combined sparse representation with linear pyramid
matching for image classification. Rather than using the
entire training set, Zhang and Li [15] proposed learned
dictionary using SRC. In [16], [,-graph is constructed by
a sparse representation subspace over the other samples.
Yang et al. [14] also proposed a method to preserve the /;-
graph for image classification by using a subspace to solve
misalignment problems in image classification task. Besides,
SRC is used for robust illumination [17], image-plane trans-
formation [18], and so on. However, Zhang argued that the
good performance of SRC should be largely attributed to the
collaborative representation of a test sample by training sam-
ples across all classes and proposed more effective CRC. In
summary, SRC/CRC simply uses the reconstruction error or
residual by each class-specific subspace to determine the class
label, and many modified models and solution algorithms
to SRC/CRC are also proposed for visual recognition tasks,
including Augmented Lagrange Multiplier, Proximal Gradi-
ent, Gradient Projection, Iterative Shrinkage-Thresholding,
and Homotopy [19]. Recently, some researchers [20, 21] have
pointed out the purpose of /,-regularized based sparsity in
pattern classification. On the contrary, using [,-regularized
based representation for classification can do a similar job to
I, -regularized but the computational cost will reduce a lot.

Motivated by the work of modifications of CRC, in
this paper, we mainly present the improved collaborative
representation classifier (ICRC) based on I,-regularized for
human action recognition. Based on three DMMs’ descrip-
tor feature, the ICRC approach is to jointly maximize the
likelihood that a test sample belongs to each of the multiple
classes, then the final classification is performed by com-
puting the likelihood for each class. The experiments on
human action classification tasks, including MSRAction3D
and MSRGesture3D datasets, are demonstrated and analyzed
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on the superior performance of this algorithm over the state-
of-the-art methods, including SRC, CRC, and SVM. The rest
of the paper is organized as follows. In Section 2, we introduce
related feature descriptors using DMM. Section 3 details the
action classifier based on ICRC, and Section 4 shows the
experimental results of our approach on relevant datasets.
The conclusion and acknowledgment are drawn in Section 5
and Acknowledgments section.

2. Feature Descriptors

2.1. Using Depth Motion Maps. In this section, we explain
the extracted feature descriptor using depth motion maps
(DMMs) from depth images, which is generated by selecting
and stacking motion energy of depth maps projected onto
three orthogonal Cartesian planes, aligning with front (f),
side (s), and top (t) views (i.e., pf, p’, and pt, resp.). As for
each projected map, its motion energy is computed by thresh-
olding the difference between consecutive maps. The binary
map of motion energy provides a strong clue of the action
category being performed and indicates motion regions or
where movement happens in each temporal interval. We
suggest that all frames should be deployed to calculate motion
information instead of selecting frames. Considering both the
discriminability and robustness of feature descriptors, we use
the /,-norm of the absolute difference of a frame to define
the salient information on depth sequences. Because /;-norm
is invariant to the length of a depth sequence, and /,-norm
contains more salient information than other norms (e.g., 1),
we have
N[ st _ s
DMM'/*) = Z 'Pi+1)/s’ -ps @
i=1

where v is the frame interval, i represents the frame index,
and N is the total number of frames in a depth sequence. In
the case that the sum operation in (1) is only used given a
threshold satisfied, the scale of v affects little the local pattern
histogram on the DMMs.

2.2. Using Deep Convolutional Neural Networks. In this sec-
tion, we introduce three deep convolutional neural networks
(DCNNE) to train the features on three projected planes of
DMMs and perform fusion of three nets by combining the
softmax in fully connected layer. The layer configuration of
our three CNNs is schematically shown in Figure 1, in which
there are five convolutional layers and three fully connected
layers in each net. The detail of our implementation is
illustrated in Section 4.1.2.

3. Action Classifier Based on ICRC

Based on depth motion maps, to incorporate the feature
descriptors into a powerful classifier, an improved collabora-
tive representation classifier (ICRC) is presented for human
action recognition.

3.1.  l,-Regularized Collaborative Representation Classifier.
The basic idea of SRC is to get a test sample by sparsely choos-
inga small number of atoms from an overcomplete dictionary
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F1GURE 1: Three DCNNSs architecture for a depth action sequence to
extract features.

that contain all training samples [12]. Denoted by A ; € R,
the set of training samples form class j, and suppose we have
C class of subjects. S0 A = [A |, A,,..., Ac] € R™" involves
many samples from all classes,and A; (j = 1,2,...,C) is the
individual class of training samples, 7 is the total number of
training samples, and d is the dimension of training samples.
A query sample y € R can be presented by y = A«, where
¥, «, and A represent the data, a sparse vector, and a given
matrix with the overcomplete training samples, respectively.

To be specific, in the mechanism of collaborative repre-
sentation classifier (CRC), each data point in the collaborative
subspace can be represented as a linear combination of
samples in A, where &« = [, 0,,...,0c] is an n x 1
representation vector associated with training sample and
a; (j = 12,...,C) is the subvector corresponding to
Aj. Generally, it is formulized as a /;-norm minimization
problem with a convex objective and solved by

mogn {||y—Aoc||§ +9||oc||1},
()
st. y=Aq

where 0 is a positive scalar to balance the sparsity term and
the residual. The residual can be computed as

e =y -4l )

where «; is the coefficient vector corresponding to class j.
And then the output of the identity of y can be obtained by
the lowest residual as

class (y) = argmin {ej}. (4)
j
For more details of SRC/CRC, one can refer to [12].

Because of the computational time consuming in ;-
regularized minimization, (1) is approximated as

min {y - Al + AL},
(5)
st. y=A«,

where y € R? is representative by « and A if the [,-norm
of « is smaller. In (5), L is the Tikhonov regularization [27]
to calculate the coefficient vector, and A is the regularization
parameter. || L«|, is the [,-regularization term to add a certain
amount of sparsity to «, which is weaker than [,-norm
minimization. The diagonal matrix L and the coefficient
vector « are calculated as follows [21]:

ly=mly -0

0 y-hl,
o = Py,

where P = (ATA + AL"L)™' AT is independent of y and pre-
calculated. With (3) and (4), the data y is assigned different
identities based on a.

3.2. The Proposed ICRC Method. Based on the training sam-
ple set, we propose an improved collaborative representation
classifier based on [,-regularized term, which assigns the data
points with different probabilities based on « by adding a
term Z]C l[Aa—A ja; |I§ that attempts to find a point A ;«; close
to the common point y inside each subspace of class j. The
first two terms ||y — Aocll% + )LIlLocII% still form a I,-regularized
collaborative representation term, which encourages to find a
point A« close to y in the collaborative subspace. Therefore,
(5) is rewritten as

C
min by - Al e 2iaf+ L3 o A
J

st. y=Aa

Obviously, the parameters A and y balance three terms, which
can be set from the training data. Accordingly, a new solution
of representative vector « is obtained from (7).

In the condition of y = 0, (7) will degenerate to CRC
with the first two terms, and ||y — Aocll% + /\||L0c||§ will play
an important role in determining . When y > 0, these two
terms ||y — Aocllg + /\IILocllg will be the same for all classes, and
thus the term ZJC |Ax — A o jlli will be dominant to further
fine-tune a; by A; yielding to a precise a. That is, the last
newly added term is introduced to further adjust «; by A,
resulting in a more stable solution to representative vector «.

We can omit the first two same terms for all classes,
make the classifier rule by the last term, and formulize it as
a probability exponent:

class (y) = arg ;nax {exp (— "Aoc - A]-(x]-”i)} - @®)

The proposed [, -regularized method for human action recog-
nition is presented to maximize the likelihood that a test
sample belongs to each class, then the experiments in the
following section show that it obtains a final classification by
checking which class has the maximum likelihood. So far, the
abovementioned classifier model in (7) and (8) is named as
the improved collaboration representation classifier (ICRC).
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FIGURE 2: Three DMMs of a depth action sequence “ASL Z” from
the front (f) view, side (s) view, and top () view, respectively.

4. Experimental Results

Based on depth motion maps, to incorporate the feature
descriptors into a powerful classifier, an ICRC is presented for
human action recognition. To verify the effectiveness of the
proposed ICRC algorithm on action recognition applications
using DMM descriptors of depth sequences, we carry out
experiments on challenging depth based action datasets
MSRAction3D [1] and MSRGesture3D [1] for human action
recognition.

4.1. Feature Descriptors

4.1.1. DMMs. The MSRAction3D [1] dataset is composed of
depth images sequence captured by the Microsoft Kinect-
V1 camera. It includes 20 actions performed by 10 subjects
facing the camera. Each subject performed each action 2 or
3 times. There are 20 action types: high arm wave, horizontal
arm wave, hammer, hand catch, forward punch, high throw,
draw X, draw tick, draw circle, hand clap, two-hand wave,
side boxing, bend, forward kick, side kick, jogging, tennis
swing, tennis serve, golf swing, and pick up and throw. The
size of each depth image is 240 x 320 pixels. The background
information has been removed in the depth data.

The MSRGesture3D [1] dataset is for continuous online
human action recognition from a Kinect device. It consists of
12 gestures defined by American Sign Language (ASL). Each
person performs each gesture 2 or 3 times. There are 333 depth
sequences. For action recognition on the MSRAction3D and
MSRGesture3D dataset, we use the feature computed from
the DMMs, and each depth action sequence generates three
DMMs corresponding to three projection views. The DMM:s
of high arm wave class from the MSRAction dataset are
shown in Figure 2, and the DMMs of ASL Z class from the
MSRGesture3D dataset are shown in Figure 3.

4.1.2. DCNNs. Furthermore, our implementation of DCNN
features is based on the publicly available MatConvNet tool-
box [28] using one Nvidia Titan X card. The network weights
are learned by mini-batch stochastic gradient descent. Similar
to [4], the momentum is set to 0.9 and weight decay is set
to 0.0005, and all hidden weight layers use the rectification
activation function. At each iteration, 256 samples in each
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FIGURE 3: Three DMMs of a depth action sequence “Swipe left” from
the front (f) view, side (s) view, and top (t) view, respectively.

batch are constructed and resized to 256 x 256, then 224 x
224 patches are randomly cropped from the center of the
selected image to artificial data augmentation. The dropout
regularization ratio is 0.5 in the nets. Besides, the initial
learning rate is set to 0.01 with pretrained model on ILSVRC-
2012 to fine-tune our model, and the learning rate decreases
every 20 epochs. Finally, we concatenate three 4096 dimen-
sional feature vectors in 7th fully connected layer to input the
subsequent classifier.

4.2. Experiment Setting. The same experimental setup in [1]
was adopted, and the actions in MSRAction3D dataset were
divided into three subsets as follows: ASI: horizontal wave,
hammer, forward punch, high throw, hand clap, bend, tennis
serve, and pickup throw; AS2: high wave, hand catch, draw
x, draw tick, draw circle, two-hand wave, forward kick, and
side boxing; AS3: high throw, forward kick, side kick, jogging,
tennis swing, tennis serve, golf swing, and pickup throw.
We performed three experiments with 2/3 training samples
and 1/3 testing samples in ASI, AS2, and AS3, respectively.
Thus, the performance on MSRAction3D is evaluated by
the average accuracy (Accu., unit: %) on three subsets. On
the other hand, the same experimental setting reported in
[26, 29, 30] was followed. 12 gestures were tested by leave-
one-subject-out cross-validation to evaluate the performance
of the proposed method.

4.3. Recognition Results with DMMSs and ICRC. We concate-
nate the sign, magnitude, and center features to form the
feature based on DMMs as the final feature representation.
The compared methods are similar to [29, 30]. The same
parameters reported in [26] were used here for the sizes of
SI and block. A total of 20 actions are employed and one-
half of the subjects (1, 3, 5, 7, and 9) are used for training and
the remaining subjects are used for testing. The recognition
performance of our method and existing approaches are
listed in Table 1. It is clear that our method achieves better
performance than other competing methods.

To show the outcome of our method, Figures 4 and 5
illustrate the recognition rates of each class in two datasets. It
is stated that there are 14 classes obtaining 100% recognition
rates in the MSRAction3D dataset, and the performance of 3
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TABLE 1: Recognition accuracies (unit: %) comparison on the
MSRAction3D dataset and MSRGesture3D dataset.

Accu. (%) on two datasets

Method ]

MSRAction3D MSRGesture3D

DMM-HOG [3] 85.5 89.2

Random Occupancy [22] 86.5 88.5

Actionlet Ensemble [23] 88.2 88.2

Depth Cuboid [24] 89.3 90.5

Vemulapalli [25] 89.5 877

DMM + CRC [26] 92.3 92.5

DMM + ICRC (proposed) 93.8 94.8
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FIGURE 4: Recognition rates (unit: %) of 20 classes in MSRAction3D
dataset (average results of three subsets).

classes reaches up to best in the MSRGesture3D dataset. All
experiments are carried out using MATLAB 2016b on an Intel
i7-6500U desktop with 8 GB RAM, and the average time of
video processing gets about 26 frames per second, meeting a
real-time processing demand basically.

4.4. Comparison with DCNN Features and ICRC. Further-
more, in order to evaluate our proposed classifier method,
we also extract the deep features by the abovementioned con-
ventional CNN model and then input the 12288 dimensional
vectors to the proposed ICRC for action recognition. Table 2
shows that DCNN algorithm indeed has advances as good
as in other popular tasks of image classification and object
detection, and it can improve the accuracy greatly up to 6% in
MSRACction3D and MSRGesture3D. This would also explain
the importance of effective feature to ICRC classifier.

5. Conclusion

In this paper, we propose improved collaborative represen-
tation classifier (ICRC) based on [,-regularized for human
action recognition. The DMMs and DCNN feature descrip-
tors are involved as an effective action representation. For the
action classifier, ICRCis proposed based on collaborative rep-
resentation with the additional regularization term. The new
insight focuses on a subspace constraints on the solution. The
experimental results on MSRAction3D and MSRGesture3D
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FIGURE 5: Recognition rates (unit: %) of 12 classes in MSRGesture3D
dataset.

TABLE 2: Recognition accuracies (unit: %) comparison of DMM
+ ICRC and DCNN + ICRC on the MSRAction3D dataset and
MSRGesture3D dataset.

Accu. (%) on two datasets

Method

MSRACction3D MSRGesture3D
DMM + ICRC (proposed) 93.8 94.8
DCNN + ICRC (proposed) 99.99 100.0

show that the proposed algorithm performs favorably against
the state-of-the-art methods, including SRC, CRC, and SVM.
Future work will focus on involving the deep-learned net-
work in the depth image representation and evaluating more
complex datasets such as MSR3DActivity, UTKinect-Action,
and NTU RGB+D, for the action recognition task.
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