
Research Article
The 2D Spectral Intrinsic Decomposition Method Applied to
Image Analysis

Samba Sidibe, Oumar Niang, Abdoulaye Thioune,
Abdoul-Dalibou Abdou, and Ndeye Fatou Ngom
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We propose a new method for autoadaptive image decomposition and recomposition based on the two-dimensional version of
the Spectral Intrinsic Decomposition (SID). We introduce a faster diffusivity function for the computation of the mean envelope
operator which provides the components of the SID algorithm for any signal. The 2D version of SID algorithm is implemented
and applied to some very known images test. We extracted relevant components and obtained promising results in images analysis
applications.

1. Introduction

The need of components extraction and reconstruction in
signal and image processing in time frequency analysis is
very strong formany fields of application.Notoriousmethods
that have been proposed include Fourier technics, wavelet
decomposition, and Empirical Mode Decomposition. While
Fourier transform is localized in frequency, wavelets are
localized in both time and frequency; EMD is autoadaptive.
EMD decomposes a signal in AM-FM components called
IntrinsicMode Functions (IMF) and a residue.This nonlinear
and nonstationary decomposition works on 1D signals [1]
and 2D signals such as images [2, 3]. The EMD algorithm is
based on a procedure called sifting process which iteratively
uses the upper and lower envelopes to extract IMFs. To
create a mathematical model to compute envelopes directly,
an envelope operator has been proposed in [4] and from
this operator a new decomposition method called Spectral
Intrinsic Decomposition, SID, was proposed in [5].

The SID method allows decomposing any signal into a
superposition of Spectral Proper Mode Functions (SPMFs)
[5]. This method has been presented in a 1D version and
depends on an operator interpolating the characteristics
points of the signal to be decomposed. In this paper, the two-
dimensional version of the Spectral Intrinsic Decomposition

for images analysis is introduced. An algorithm for a faster
spectral decomposition is proposed and illustratedwith some
images. We first recall the SID principle in one dimension
and propose a faster method to determine the signal char-
acteristics points in Section 2. Than an algorithm of the two-
dimensional SID is presented in Section 3. Applications on
grayscale images are depicted in Section 3.1.

2. The Spectral Intrinsic Decomposition Method

The Spectral Intrinsic Decomposition Method decomposes
any signal into a combination of eigenvectors of a Partial Dif-
ferential Equation (PDE) interpolation operator as presented
in [5, 6].

2.1. The PDEs System Interpolator. For a given signal 𝑠0,
the upper (𝑠+) and lower (𝑠−) envelope are the asymptotic
solution of the following PDEs system:

𝜕𝑠± (𝑥, 𝑡)
𝜕𝑡
= −𝑔± (𝑥, 𝑡) (𝛼𝜕2𝑠± (𝑥, 𝑡)𝜕2𝑥 + (1 − 𝛼) 𝜕4𝑠± (𝑥, 𝑡)𝜕4𝑥 ) ,

𝑠± (𝑥, 0) = 𝑠0.
(1)
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𝛼 is the tension parameter which ranges from0 to 1.𝑔+ and𝑔−
are diffusivity functions for upper and lower envelope which
are equal to zero at characteristic points of 𝑠0 and range from
zero to one. 𝑔± based on Maximum Curvature Points (MCP)
can be computed as follows:

𝑔± (𝑥)
= 1
9 [

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sgn(
𝜕3𝑠0 (𝑥)𝜕3𝑥 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ± sgn(𝜕2𝑠0 (𝑥)𝜕2𝑥 ) + 1]

2

, (2)

where sgn denotes the sign function.
Equation (1) is resolved numerically in its discrete implicit

unconditionally stable scheme as follows:

𝑆𝑘+1 = 𝑆𝑘 + Δ𝑡𝐴𝑆𝑘+1, 𝑆0 = 𝑆0, (3)

where Δ𝑡 is the time step, 𝑆𝑘+1 = 𝑠(𝑥, 𝑘Δ𝑡) is signal
value at step 𝑘 + 1, and 𝐴 is a matrix formed with finite
difference approximation coefficients of second- and fourth-
order differential operators (resp., 𝐷2 and 𝐷4), as 𝐴 =𝐺(𝛼𝐷2 − (1 − 𝛼)𝐷4), with 𝐺 being the diagonal matrix
constructed with discrete version of stopping function values𝑔(𝑥), exactly, 𝐺(𝑖, 𝑖) = 𝑔(𝑖).

So the explicit form leads to the following numerical
resolution:

𝑆𝑘+1 = (𝐼 − Δ𝑡𝐴)−1 𝑆𝑘, 𝑆0 = 𝑠0, 𝑘 ≥ 0 (4)

with 𝐼 being the identity matrix. Finally (1) can be decom-
posed into a linear system from implicit numerical scheme
(4) by

𝑆(𝑘+1) = 𝐿−1𝑆𝑘, 𝑆0 = 𝑠0, 𝑘 ≥ 0. (5)

𝐿 is given by 𝐿 = 𝐼 − Δ𝑡𝐴.
The operator matrix, 𝐿, has real-valued eigenvalues that

are always greater than or equal to 1.Then, eigenvalues, 𝜆𝑛, of𝐿−1 are always smaller than or equal to 1 (0 < 𝜆𝑛 ≤ 1); see
[4].

2.2. On the Asymptotic Solution. Iterative scheme (5) can be
rewritten in terms of initial solution 𝑠0 as

𝑆𝑘 = (𝐿−1)𝑘 𝑠0, 𝑘 ≥ 1. (6)

After convergence (see [7]), the asymptotic solution, 𝑆∞, is
given by

𝑆∞ = (𝐿−1)∞ 𝑠0. (7)

Let 𝑉 be a matrix of 𝐿−1’s sequence of eigenvectors (𝑉𝑛)
andD a diagonalmatrix having 𝐿−1’s sequence of eigenvalues(𝜆𝑛), at the diagonal. So we have the following decomposition𝐿−1 = 𝑉D𝑉−1. It is easy to see that

(𝐿−1)𝑘 = (𝑉D𝑉−1)𝑘 = 𝑉𝐷𝑘𝑉−1. (8)

So, the asymptotic solution in (7) is given by

𝑆∞ = (𝑉D∞𝑉−1) 𝑆0. (9)

The asymptotic eigenvalue matrix D∞ is a diagonal
matrix with eigenvalues 𝜆∞𝑛 = 1 only at loci where matrix𝐺 is zeroed, and 𝜆∞𝑛 = 0, where 𝑔[𝑛] > 0. Finally, the
asymptotic solution of the PDE interpolator system is a
linear combination of fixed vector point of upper and lower
envelope operators.

2.3. A Faster Stopping Function for Discrete Signal. For image
processing we will consider region boundaries as characteris-
tic points.The characteristic points of the upper envelope will
be the local maximums and the limits of the regions where
the value of the gray level of the pixel is equal to or greater
than the gray level of all the pixels in their neighborhood
represented, for example, by a rectangular window.

We define the diffusion function 𝑔−𝑀 for lower envelope
to be equal to 1 everywhere except in characteristic points of
the lower envelope where it will be equal to 0.

Similarly the characteristic points of the lower envelope
are local minimums and region boundaries where the pixel
value is equal to or less than the gray level of all pixels in their
neighbors. We define the diffusion function 𝑔+𝑀 for upper
envelope to be equal to 1 everywhere except in characteristics
points of the upper envelope where it will be equal to 0.

The diffusivity function called stopping function 𝑔±𝑀
is calculated by using morphological dilation and erosion
operations [8].

Let 𝑏 = [−1, 0, 1] be a structured element; the grayscale
dilation of 𝑠 by 𝑏 at 𝑥 is given by

[𝑠 ⊕ 𝑏] (𝑥) = max
𝑎∈𝑏

{𝑠 (𝑥 + 𝑎)} . (10)

The grayscale erosion of 𝑠 by 𝑏 at 𝑥 is given by

[𝑠 ⊖ 𝑏] (𝑥) = min
𝑎∈𝑏

{𝑠 (𝑥 + 𝑎)} . (11)

𝑠 ⊕ 𝑏 is equal to 𝑠 at local maxima and when 𝑠 is locally
constant; 𝑠 ⊖ 𝑏 is equal to 𝑠 at local minima and when 𝑠 is
locally constant.𝑔+𝑀 is zeroed at points which are invariant tomorphologi-
cal dilation and variant tomorphological erosion; 𝑔+𝑀 is equal
to 1 for any other point.

Similarly, 𝑔−𝑀 is zeroed at points which are invariant to
morphological erosion and variant tomorphological dilation;𝑔−𝑀 is equal to 1 for any other point.

Let
𝐴 = {𝑥 | [𝑠 ⊕ 𝑏] (𝑥) = 𝑠 (𝑥)} ,
𝐵 = {𝑥 | [𝑠 ⊖ 𝑏] (𝑥) = 𝑠 (𝑥)} . (12)

We have

𝑔+𝑀 (𝑥) = {{{
0, if 𝑥 ∈ 𝐴 \ 𝐵,
1, otherwise,

𝑔−𝑀 (𝑥) = {{{
0, if 𝑥 ∈ 𝐵 \ 𝐴,
1, otherwise

(13)
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Table 1

Image Width Height Time for 𝑔± Time for 𝑔±𝑀
Figure 4(a) 300 300 0,4684466 0.320695
Figure 3(a) 400 266 0,826974833 0,2877035
Figure 2(a) 400 272 0,807968 0,284108
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Figure 1: The effectiveness of envelope computation using 𝑔𝑀
instead of 𝑔.

𝑔𝑀 functions are faster than 𝑔 to compute and give
satisfying results for the computation of envelope operators
for real images (Table 1).

Figure 1 shows an example of calculating the envelope
using 𝑔𝑀, 𝑔+𝑀 for upper envelope and 𝑔−𝑀 for lower envelope.

2.4. The Spectral Intrinsic Decomposition. In the following,𝐸 denotes either the upper or lower envelope operator. The
upper and lower envelope of the signal are calculated with the
eigenvectors associated with eigenvalue 𝜆 = 1. Hence, 𝑆∞ in
formula (9) is a linear combination of all 1-eigenvectors of the
envelope operator Eweighted by the signal amplitude. Instead
of focusing only on the envelope calculus, we now consider all
the set of eigenvalues of the envelope operator 𝐸.

The Spectral Intrinsic Decomposition procedure is
defined as the calculus of all the SPMFs for a given signal.𝐸 = 𝐿−1. The same procedure can be performed with
the lower envelope. The eigendecomposition of 𝐸 gives[𝑉𝐸, 𝐿𝐸] = eig(𝐸), where 𝑉𝐸 = [𝑉1, . . . , 𝑉size(𝑠0)] and 𝐿𝐸 =[𝐿1, . . . , 𝐿 size(𝑠0)] (with the possibility of zeros to complete the
size of the vector) are, respectively, the set of eigenvectors and
the set of eigenvalues of 𝐸. The coefficient reconstruction of𝑠0 is given by𝐶 = 𝐿𝐸𝑉−1𝐸 𝑠⊥0 , with 𝑠⊥0 being the transpose of 𝑠0.

(1)𝑀← transforme image to data
(2) NL← number of lines of𝑀
(3) NC← number of columns of𝑀
(4)𝑀𝑅 ← NL by NC zeroed matrix
(5) for 𝑖 ← 1, NL do
(6) 𝑠𝑖 ← line 𝑖 of𝑀
(7) compute 𝑔+𝑖 from 𝑠𝑖
(8) compute 𝐸𝑖
(9) decompose 𝐸𝑖, [𝑉𝐸𝑖 , 𝐿𝐸𝑖 ] ← eig(𝐸)
(10) compute 𝐶𝑖, 𝐶𝑖 = 𝐿𝐸𝑖𝑉−1𝐸𝑖 𝑠󸀠𝑖
(11) for 𝑗 ← 1, NC do
(12) 𝑀𝑅(𝑖, 𝑗) ← 𝑉𝑖(𝑗) ∗ 𝐶𝑖(𝑗)
(13) end for
(14) end for
(15) recompose image from𝑀𝑅

Algorithm 1: Pseudocode for decomposition and recomposition.

Hence 𝑠0 is computed by the formula 𝑠0 = 𝑉𝐶 (Algorithm 2).
The Spectral Intrinsic Decomposition of 𝑠0 is given as follows:

𝑠0 =
𝑁∑
𝑘=1

𝑉𝑘𝐶𝑘, 𝑁 = size (𝑠0) . (14)

This decomposition is intrinsic and depends only on the
position of the characteristic points of 𝑠0 that define the
diffusivity function in the interpolation operator. We notice
that the SID with lower envelope works like the SID with the
upper envelope and has the same reconstruction ability.

2.5. Advantage and Disadvantage of SID. The SID is adaptive
and depends on the position of the characteristics points of
the signal. It is autoadaptive and works for nonlinear and
nonstationary signal. SID can decompose an IMF and can be
used to separate mixing mode [9] in EMD.

However, the main disadvantage of the proposed SID
algorithm is the computation time when the size of signal is
a large. This is due to matrix inversion in the algorithm.Thus
a faster algorithm is proposed in the next section.

3. The 2D Spectral Intrinsic
Decomposition Algorithm

In this section we present, in Algorithm 1, the 2D SID
procedure and implement it for images decomposition-
recomposition.

3.1.The Algorithm of Image Decomposition and Recomposition
by SID. Let us consider an image as represented by a matrix𝑀 (Line (1)). Each row 𝑖 of thematrixM (Line (5)) can be seen
as a one-dimensional signal 𝑠𝑖.Thus, we can apply the spectral
decomposition of 𝑠𝑖 (Lines (6) to (10)) as described in [4].

Each line can be recomposed to build a matrix 𝑀𝑅
(Lines (11) to (13)) and finally reconstruct the image from𝑀𝑅 (Line (15)). Image decomposition and recomposition are
described in Algorithm 1. We can also make decomposition
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(a) (b) (c)

(d) (e) (f)

Figure 2: Decomposition (a), component extraction and representation of high frequency component (𝜆 ∈ [0, 0.1]) (b), medium frequency
component (𝜆 ∈ [0.5, 0.7]) (c), high andmedium frequency component (𝜆 < 1) (d), low frequency component (𝜆 = 1) (e), and recomposition
of all components (f).

(1) [𝜆min, 𝜆max] ← eigenvalues interval to extract
(2)𝑀← transforms image to data
(3) NL← number of lines of𝑀
(4) NC← number of columns of𝑀
(5)𝑀𝑅 ← NL by NC zeroed matrix
(6) for 𝑖 ← 1, NL do
(7) 𝑆𝑖 ← line 𝑖 of𝑀
(8) compute 𝑔+𝑖 from 𝑠𝑖
(9) compute 𝐸𝑖
(10) decompose 𝐸𝑖, [𝑉𝐸𝑖 , 𝐿𝐸𝑖 ] ← eig(𝐸)
(11) 𝐿𝑅𝑖 ← 𝐿𝐸𝑖
(12) for 𝑗 ← 1, NC do
(13) if 𝐿𝑅𝑖 (𝑗) ≤ 𝜆min or 𝐿𝑅𝑖 (𝑗) ≥ 𝜆max then
(14) 𝐿𝑅𝑖 (𝑗) ← 0
(15) end if
(16) end for
(17) compute 𝐶𝑅𝑖 , 𝐶𝑅𝑖 ← 𝐿𝑅𝑖𝑉−1𝐸𝑖 𝑆󸀠𝑖
(18) for 𝑗 ← 1, NC do
(19) 𝑀𝑅(𝑖, 𝑗) ← 𝑀𝑅(𝑖, 𝑗) + 𝑉𝐸𝑖 (𝑗) ∗ 𝐶𝑅𝑖 (𝑗)
(20) end for
(21) end for

Algorithm 2: Pseudocode to extract SPMFs between two eigenval-
ues.

along columns and catch more properties of the image to be
analyzed.

The elementary components of a spectral decomposition
are themodulation of eigenvectors by their coefficients as can
be seen in (14). It is clear that these components depend on
eigenvalues of the envelope operator.

The range of smallest eigenvalues catches higher frequen-
cies contents of the reconstructed signal with the smallest
modulated amplitude.

So we can associate components which have similar
frequency and amplitude by summing the components that
have same eigenvalues; this method works well for signal
in one dimension. For images, it is possible numerically to
have missing eigenvalues in many lines. Hence, to avoid
this drawback, elementary components which have the same
eigenvalues will be associated with the same belonging to a
specific range of eigenvalues.

3.2. Application to Image Components Extraction. In the
following, 2D SID is applied to very known images test to
demonstrate the ability of this pectoral intrinsic decomposi-
tion for images analysis, particularly in components extrac-
tion. In Figures 4(a), 3(a), and 2(a), we have a representation
of high frequency components on Figures 4(b), 3(b), and 2(b);
we note that they are more sensitive to small variations of the
intensity of the image than low frequencies components in
Figures 4(c), 3(c), and 2(c).

4. Conclusion

In this paper, we have presented a newmethod for autoadap-
tive image representation called two-dimensional version of
the Spectral Intrinsic Decomposition. A new faster diffusivity
function in the computation of themean envelope operator is
also provided. In future works, we will investigate how to use
the Spectral Proper Mode Functions (SPMFs) to do signals
classification or to treat other aspects of image processing,
like edge detection, segmentation, and so on.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Decomposition (a), component extraction and representation of high frequency component (𝜆 ∈ [0, 0.1]) (b), medium frequency
component (𝜆 ∈ [0.5, 0.7]) (c), high andmedium frequency component (𝜆 < 1) (d), low frequency component (𝜆 = 1) (e), and recomposition
of all components (f).

(a) (b) (c)

(d) (e) (f)

Figure 4: Decomposition (a), component extraction and representation of high frequency component (𝜆 ∈ [0, 0.1]) (b), medium frequency
component (𝜆 ∈ [0.5, 0.7]) (c), high andmedium frequency component (𝜆 < 1) (d), low frequency component (𝜆 = 1) (e), and recomposition
of all components (f).
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