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The extraction and tracking of targets in an image shot by visual sensors have been studied extensively. The technology of image
segmentation plays an important role in such tracking systems. This paper presents a new approach to color image segmentation
based on fuzzy color extractor (FCE). Different from many existing methods, the proposed approach provides a new classification
of pixels in a source color image which usually classifies an individual pixel into several subimages by fuzzy sets. This approach
shows two unique features: the spatial proximity and color similarity, and it mainly consists of two algorithms: CreateSubImage
and MergeSubImage. We apply the FCE to segment colors of the test images from the database at UC Berkeley in the RGB, HSV,
and YUV, the three different color spaces. The comparative studies show that the FCE applied in the RGB space is superior to the
HSV and YUV spaces. Finally, we compare the segmentation effect with Canny edge detection and Log edge detection algorithms.
The results show that the FCE-based approach performs best in the color image segmentation.

1. Introduction

Image segmentation is a fundamental issue in image pro-
cessing and computer vision as it is a preliminary process
in many applications that need to segment an image into
meaningful regions. Applications of segmenting gray-level
images are very limited so studies on color image segmenta-
tion become interesting because color images provide much
more information than gray-level ones. A number of image
segmentation techniques have been proposed in past decades
[1–3]. A physical model in [4] is proposed for color image
understanding. A widely used technique for color image
segmentation is based on the idea of region growing. A
color segmentation algorithm combining region growing and
region merging processes is discussed in [5].The fuzzy grow-
ing and expanding approach presented in [6] uses histogram
tables for fine segmentation. A method for segmentation of
color texture region using the defined class maps is presented

in [7]. An approach to contrast analysis using fuzzy region
growing is documented in [8]. Color image segmentation
using seeded region growing is presented in [9–11]. Most
pixel clustering algorithms work in the RGB color space in
which the pixels are represented by red, green, and blue
components. Clustering methods [12, 13], for example, 𝑐-
means fuzzy classification [14], are often considered as an
unsupervised classification of pixels as a prior knowledge of
the image. Both supervised and unsupervised segmentation
of textured color images are presented in [15, 16]. The level
setting approaches to process a color image for segmentation
are discussed in [17, 18]. All of the proposed techniques above
provide a crisp segmentation of images, where each pixel is
classified into a unique subset. This classification may not
reflect an understanding of images by humans very well,
as the work [1] stated “the image segmentation problem is
basically one of psychophysical perception, and therefore not
susceptible to a purely analytical solution.” Probably, one of
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Figure 1: Color distribution in the RGB and HSV color spaces.

the difficulties in color image segmentation is how to define
color conception, since an understanding of colors in an
image varies by different observers.

Considering uncertainty and ambiguity in many real
applications, this paper presents an approach to color image
segmentation based on a fuzzy color extractor (FCE). Its
preliminary version appears in [19]. The FCE is directly
extended from the fuzzy gray-level extractor, which was
applied to recognize landmarks on roads for autonomous
vehicle navigation in [20–22]; that is, the fuzzy rules for
extracting a road from a gray-level image are as follows:

If the gray level of a pixel is close to the gray-level of
the road,
Then one can make it black, or
Else one can make it to white.

If these aremodified to the rules for extracting an object from
a color image, then

if the color components of a pixel closely matches the
color components of an object,
then one can extract this pixel as a Matched pixel of
the object, or
else one can extract this pixel as an Unmatched pixel.

The FCE viewed as a mapping operator of measuring
colors is able to extract colors that are similar to a color
pattern (seed). If a pixel is extracted it is defined as a
Matched pixel; otherwise it is defined as an Unmatched
pixel. In doing this, we develop procedures IniSeedList
and UpdateSeedList for automatic selection of seeds. Our
approachmainly consists of two algorithms: CreateSubImage
and MergeSubImage. The CreateSubImage algorithm always
extracts the seed as the first Matched pixel into a subimage
and continually uses the FCE to check neighbors of each
Matched pixel to grow the subimage.The subimage is created
when neighbors’ colors of all Matched pixels are “not close
to” the seed’s color.TheCreateSubImage algorithm iteratively
invokes UpdateSeedList to select new seeds to create next
subimages until all the pixels in the image are processed.
Different from all of the color segmentation techniques

discussed above, the CreateSubImage algorithm most likely
classifies an individual pixel into several subimages by fuzzy
sets. As a result, two created subimages may share a common
area, which can be considered as a color similarity metric for
merging the subimages. The MergeSubImage algorithm first
removes insignificant subimages from the set of subimages
and merges significant subimages in order to extract mean-
ingful segmented images.The insignificant subimages usually
have a “too small” or a “too large” ratio of their area sizes
over the source image. A “too small” insignificant subimage is
mainly caused by a tiny fragment or a noise pixel in the source
image, while a “too large” insignificant image is created by
a “bad” seed. Then, the algorithm merges two subimages
together according to their color similarity described by
the size of their common pixels. We tested the proposed
approach using exemplar color images from the database at
UCBerkeley [23] in three different color spaces and discussed
its effectiveness and robustness by comparing segmentation
effect with two edge detection algorithms, namely, Canny
edge detection and Log edge detection.

2. Three Color Spaces

In many color-based computer vision applications, it is very
important to segment colors in an image, but it is very
difficult due to the fact that colors are ambiguous in uncertain
environments. In this study, we apply the FCE to segment
colors in the image represented in the RGB, HSV, and YUV
spaces.

2.1. RGB Color Space. RGB is the most traditional color
space and is widely used in image segmentation because of
its simplicity and fast processing [24, 25]. Colors consist of
red (R), green (G), and blue (B) components, as shown in
Figure 1(a).

2.2. HSV Color Space. HSV is another color space widely
used for image processing, where a color is decomposed into
hue (H), saturation (S), and value (V). The distribution of
color in the HSV color space is shown in Figure 1(b). The
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color components in the RGB space can be transformed into
the HSV space by

max = max (R,G,B) ,
min = min (R,G,B) ,
V = max

S = (max − min)
max

× 255,

H =

{{{{{{{
{{{{{{{
{

(G − B)
(max − min) × 60 R = max

120 + (B − R)
(max − min) × 60 G = max

240 + (R − G)
(max − min) × 60 B = max

H = H + 360, if H < 0,
H = H × 255 ÷ 360.

(1)

Usually, the RGB values are between 0 and 255, so
the HSV values are also between 0 and 255 through the
transformation by (1).

2.3. YUV Color Space. YUV is the color space which is used
in an analog color TV system, which translates color image
components obtained in the RGB space into the luminance Y
and the colors B -Y (U) and R - Y (V) by

Y = 0.299R + 0.587G + 0.114B,
U = (−0.1687R − 0.3313G + 0.500B) + 128,
V = (0.500R − 0.4187G − 0.0813B) + 128.

(2)

The YUV values are between 0 and 255 through the
transformation by (2). The advantage of using the YUV color
space for color segmentation is that the luminance Y is
separated from the colors U and V.

3. Fuzzy Color Extractor

The fuzzy color extractor proposed here enables us to deal
with such uncertainty. We will only discuss how to use the
FCE-based algorithm defined in the RGB color space to
segment color images, because the algorithm can directly
process the color images in the HSV and YUV spaces, which
are converted from the RGB space. Figure 1(a) shows the
RGB space, where colors are represented by their red, green,
and blue components in an orthogonal Cartesian space. The
upper-left corner in the image is the origin.The color of each
pixel 𝑝(𝑛,𝑚) denoted by 𝑝(𝑛,𝑚)RGB is processed to separate
its red, green, and blue components (𝑝(𝑛,𝑚)R, 𝑝(𝑛,𝑚)G,
𝑝(𝑛,𝑚)B). The FCE extracts a cluster of colors based on a
defined color pattern (seed) denoted by seedRGB, seedRGB
and is either directly defined by its RGB components (seedR,
seedG, seedB) or determined by a pixel in the image. The

color components’ differences between a pixel𝑝(𝑛,𝑚)RGB and
seedRGB are calculated as follows:

dif (𝑛,𝑚)R = 𝑝 (𝑛,𝑚)R − seedR,
dif (𝑛,𝑚)G = 𝑝 (𝑛,𝑚)G − seedG,
dif (𝑛,𝑚)B = 𝑝 (𝑛,𝑚)B − seedB,

0 ≤ 𝑚 < 𝑀, 0 ≤ 𝑛 < 𝑁.

(3)

𝑀 and𝑁 represent the size of an array which holds an image.
The corresponding fuzzy rules can be obtained as follows:

If dif(𝑛,𝑚)R and dif(𝑛,𝑚 )G and dif(𝑛,𝑚)B are 𝑍𝑒𝑟𝑜,
Then 𝑝(𝑛,𝑚) is 𝑀𝑎𝑡𝑐ℎ𝑒𝑑.
If dif(𝑛,𝑚)R or dif(𝑛,𝑚)G or dif(𝑛,𝑚)B is 𝑁𝑒𝑔𝑎𝑡𝑖V𝑒
or 𝑃𝑜𝑠𝑖𝑡𝑖V𝑒,
Then 𝑝(𝑛,𝑚) is 𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑.

Both the rules indicate that 𝑝(𝑛,𝑚) belongs to the object
to be extracted, if the Euclidean distances between𝑝(𝑛,𝑚)RGB
and seedRGB along the three axes in RGB coordinate system
are small enough; otherwise, 𝑝(𝑛,𝑚) does not belong to the
object.

Figure 2(a) shows the membership functions (𝜇N(𝑥),
𝜇Z(𝑥), 𝜇P(𝑥)) for the input fuzzy variables (Negative, Zero,
Positive) defined by

𝜇N (𝑥) =
{{{{
{{{{
{

1 −255 ≤ 𝑥 < −𝛼2
𝑥 + 𝛼1
𝛼1 − 𝛼2

−𝛼2 ≤ 𝑥 < −𝛼1
0 −𝛼1 ≤ 𝑥 ≤ 255,

𝜇Z (𝑥) =

{{{{{{{{{{{
{{{{{{{{{{{
{

0 −255 ≤ 𝑥 < −𝛼2
𝑥 + 𝛼2
𝛼2 − 𝛼1

−𝛼2 ≤ 𝑥 < −𝛼1
1 −𝛼1 ≤ 𝑥 ≤ 𝛼1
𝑥 − 𝛼1
𝛼2 − 𝛼1

𝛼1 ≤ 𝑥 < 𝛼2
0 𝛼2 ≤ 𝑥 ≤ 255,

𝜇P (𝑥) =
{{{{
{{{{
{

0 −255 ≤ 𝑥 < −𝛼1
𝑥 + 𝛼2
𝛼2 − 𝛼1

𝛼1 ≤ 𝑥 < 𝛼2
1 𝛼2 ≤ 𝑥 ≤ 255,

(4)

and Figure 2(b) shows the membership functions (𝜇M(𝑥),
𝜇U(𝑥)) for the output fuzzy variables (Matched, Unmatched)
defined by

𝜇M (𝑥) =
{
{
{

𝜌M − 𝑥
𝜌M

0 ≤ 𝑥 < 𝜌M
0 𝜌M ≤ 𝑥 ≤ 255,

𝜇U (𝑥) =
{{
{{
{

0 0 ≤ 𝑥 < 𝜌U
𝑥 − 𝜌U

255 − 𝜌U
𝜌U ≤ 𝑥 ≤ 255,

(5)



4 Journal of Electrical and Computer Engineering

Negative Zero Positive

−1−2 1 2−255 2550

1

0

(a) Membership functions for color differences

Matched

Unmatched
u

0

1

m

MU0 255

(b) Membership functions for defuzzification

Figure 2: Definition of membership functions for the FCE.

(a) 𝐼FLOWER (b) {𝐼RED, 𝐼GREEN, 𝐼BLUE}

(c) 𝐼BACKGROUND (d) 𝐼PETAL

Figure 3: Extraction of colors in 𝐼FLOWER image by FCE.

where 𝜌M + 𝜌U = 255. Based on dif(𝑛,𝑚)R, dif(𝑛,𝑚)G, and
dif(𝑛,𝑚)B, the fuzzy rules produce theweight𝜔𝑚 forMatched
and the weight 𝜔𝑢 for Unmatched by

𝜔𝑚 = min {𝜇Z (R) , 𝜇Z (G) , 𝜇Z (B)} ,

𝜔𝑢 = max {𝜇N (R) , 𝜇N (G) , 𝜇N (B) , 𝜇P (R) , 𝜇P (G) ,

𝜇P (B)} .

(6)

Figure 2(b) shows the produced areas in the output domain,
while 𝜔𝑚 and 𝜔𝑢 cut 𝜇M(𝑥) and 𝜇U(𝑥). A crisp output value,
Δ𝜌F, is calculated by the centroid defuzzification method:

Δ𝜌F =
∫𝜇out (𝑥) 𝑥𝑑𝑥
∫ 𝜇out (𝑥) 𝑑𝑥

, (7)

where 𝜇out(𝑥) represents the envelope function of the areas
cut by𝜔𝑚 and𝜔𝑢 in fuzzy output domain. IfΔ𝜌F < 𝜎, 𝑝(𝑛,𝑚)

is extracted, 𝑝(𝑛,𝑚) is not extracted, where 𝜎 is a threshold.
The FCE can be understood as a mapping operator between
Euclidean distances {dif(𝑛,𝑚)R, dif(𝑛,𝑚)G, dif(𝑛,𝑚)B} in the
RGB space and a difference Δ𝜌F in the intensity space under
a fuzzy metric.

The example in Figure 3 shows how to create some
subimages with interesting colors from the source image
𝐼FLOWER by the FCE. First, we define three seeds: seedRED
= (255, 0, 0), seedGREEN = (0, 255, 0), and seedBLUE = (0,
0, 255) to create three subimages {𝐼RED, 𝐼GREEN, 𝐼BLUE} that
hold the words “red,” “green,” and “blue” from the source
image 𝐼FLOWER, as shown in Figure 3(b). Also, we select a seed
𝑝(0, 0)RGB = (6, 6, 8) at the origin to remove the background
from the source image 𝐼FLOWER as shown in Figure 3(c).
Figure 3(d) shows 𝐼PETAL = 𝐼FLOWER−(𝐼RED∪𝐼GREEN∪𝐼BLUE∪
𝐼BACKGROUND) that holds the color components of the flower
petal.
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Table 1: Definitions of the eight subspaces shown in Figure 1(a).

Vertex 𝑖 Subspace Red-axis Green-axis Blue-axis
V1RGB (0, 0, 0) ] black [0, 127] [0, 127] [0, 127]
V2RGB (0, 0, 255) ] blue [0, 127] [0, 127] [128, 255]
V3RGB (0, 255, 0) ] green [0, 127] [128, 255] [0, 127]
V4RGB (0, 255, 255) ] cyan [0, 127] [128, 255] [128, 255]
V5RGB (255, 0, 0) ] red [128, 255] [0, 127] [0, 127]
V6RGB (255, 0, 255) ] pink [128, 255] [0, 127] [128, 255]
V7RGB (255, 255, 0) ] yellow [128, 255] [128, 255] [0, 127]
V8RGB (255, 255, 255) ] white [128, 255] [128, 255] [128, 255]

IniSeedList (𝐼IMG)
for 𝑖 ← 1 to 8 do

pixel num𝑖 ← 0;
for 𝑛 ← 1 to 𝑁 do

for 𝑚 ← 1 to 𝑀 do
Calculate 𝑑𝑖(𝑛,𝑚) in (8);
𝑑𝑘(𝑛,𝑚) ← min{𝑑𝑖(𝑛, 𝑚)};
pixel num𝑘 ← pixel num𝑘 + 1;

Find seed cand(𝑖) in each subspace;
// with the shortest distance to its vertex 𝑖.

Push seed cand(𝑖) into SeedList;
Sort seed cand(𝑖);

// according to pixel number classified in the subspaces.
return SeedList;

Pseudocode 1

4. Creating Subimages Using FCE

This section discusses the CreateSubImage algorithm for
creating a set of subimages from a color image using the FCE
in the RGB space. A critical step in this algorithm is to select
seeds for the FCE. For this purpose, we evenly divide the
RGB space into the eight subspaces {] black, ] red, ] green,
] blue, ] yellow, ] pink, ] cyan, ] white}, which are defined
by the well-defined colors: {black, red, green, blue, yellow,
pink, cyan, white}, at their corresponding vertices of the RGB
space, as shown in Figure 1(a). Table 1 lists their definitions;
for example, ] black is defined by a cubic [0, 127] × [0, 127] ×
[0, 127] on the red-axis, green-axis, and blue-axis.

We calculate the distances of each pixel’s RGB compo-
nents to the eight well-defined colors by

𝑑𝑖 (𝑛,𝑚) = ∑[𝑝 (𝑛,𝑚)RGB − V𝑖RGB]
2 𝑖 = 1, 2, . . . , 8, (8)

where 𝑛 and 𝑚 are the index of a pixel in the image,
𝑝(𝑛,𝑚)RGB is the color components of the pixel located at
(𝑛,𝑚), V𝑖RGB is the color components of vertex 𝑖 in the RGB
space, and 𝑑𝑖(𝑛,𝑚) is the distance between the pixel’s color
and vertex 𝑖.

We developed two procedures, IniSeedList and Update-
SeedList, to initialize a seed list and to update it. For an
input image, IniSeedList classifies each pixel into one of
the eight subspaces according to its minimum distance to

vertex 𝑖 that is a well-defined color in the RGB space.
In each subspace, IniSeedList selects such a pixel as a
seed candidate, seed cand(𝑖), that has the shortest distance
to its vertex 𝑖. Then, IniSeedList inserts seed cand(𝑖) into
the seed list in order of the number of pixels classified
in the subspaces and returns it. UpdateSeedList checks if
seed cand(𝑖) is popped out or is extracted by the FCE. If
so, UpdateSeedList updates seed cand(𝑖) in its corresponding
subspace. The pseudocode of the IniSeedList procedures
is shown in Pseudocode 1 and the pseudocode of the Update-
SeedList is shown in Pseudocode 2.

Table 2 shows an example of a seed list generated by
IniSeedList from the color image, 𝐼BIRD. Columns 1 and 2
in Table 2 indicate the defined subspaces and the number
of the classified pixels in the subspaces, column 3 shows the
order of seed cand(𝑖) in the list, and columns 4 and 5 list
the RGB color components and locations of seed cand(𝑖) in
𝐼IMG, respectively. The top seed in Table 2 is seed cand(1) =
(244, 251, 243) with location (269, 271) from the subspace
] white holding 100,369 pixels. After the algorithm pops out
this seed for creating 𝐼M(𝑖), UpdateSeedList produces a new
seed candidate in the subspace ] white from 𝐼U(1) and inserts
it on the top of the list. The new seed cand(1) = (240, 251,
247) is located at (283, 267) in 𝐼U(1) and is also from the
subspace ] white with 105,045 pixels. Please note that the
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Table 2: The seed list generated from the color image, 𝐼BIRD.

Subspace Number of pixels seed cand(𝑖) order seed cand(𝑖) colors seed cand(𝑖) locations (𝑛,𝑚)
] white 100369 1 (244, 251, 243) (269, 271)
] black 19393 2 (0, 6, 0) (193, 233)
] cyan 70 3 (151, 100, 57) (216, 190)
] red 26 4 (206, 166, 107) (225, 204)
] blue 0 N/A N/A N/A
] yellow 0 N/A N/A N/A
] green 0 N/A N/A N/A
] pink 0 N/A N/A N/A

UpdateSeedList (𝐼IMG, SeedList)
subspace index (𝑖) ← 0;
for 𝑖 ← 1 to 8 do

if (seed cand(𝑖)∈𝐼IMG)
subspace index (𝑖) ← 1;

else
Remove seed cand(𝑖) from SeedList;

for 𝑖 ← 1 to 8 do
if subspace index (𝑖) = 0

Find seed cand(𝑖) in subspace 𝑖;
// with the shortest distance to its vertex 𝑖.

Push seed cand(𝑖) into SeedList;
Sort seed cand(𝑖);

// according to pixel number classified in the subspaces.
return SeedList;

Pseudocode 2

input image to IniSeedList is 𝐼IMG = 𝐼BIRD − 𝐼CENTER, instead
of 𝐼BIRD itself. 𝐼CENTER is an image extracted by seedCENTER =
(127, 127, 127) that is the center of the RGB space. It is
difficult to determine in which subspace the center color is
classified, so any seed close to the center may not be able
to differentiate colors very well, as shown in Figure 4(a). In
order to guarantee to get a “good” seed, our approach does
not select any seed falling in 𝐼CENTER. It is also possible that
there is no pixel in a subspace; that is, the seed candidates are
less than eight. For example, the seed candidates for 𝐼BIRD are
not available in the subspaces ] blue, ] yellow, ] green, and
] pink.

The pseudocode of the CreateSubImage procedures is
listed as shown in Pseudocode 3.

CreateSubImage creates a set of subimages from a color
source image. CreateSubImage invokes mainly three proce-
dures: IniSeedList, UpdateSeedList, and FuzExtractor. The
pseudocode of the FuzExtractor is shown in Pseudocode 4.

CreateSubImage has two arguments: 𝐼SRC and center,
where 𝐼SRC is a source image and center is a Boolean variable.
If center = true, 𝐼CENTER is created by seedCENTER, otherwise
𝐼CENTER is assigned by the empty image ø. FuzExtractor is
mainly implemented based on (3) and extracts a subim-
age 𝐼TEMP. The FuzExtractor procedure starts with seedRGB
to generate 𝐼MATCH with region growing. Because seedRGB

belongs to its subimage 𝐼MATCH, FuzExtractor pushes its
four neighbor pixels into a queue and checks the first-in
element, pixelFIRST, in the queue to see if it belongs to the
subimage 𝐼MATCH. If pixelFIRST belongs to 𝐼MATCH, its new
four neighbors are pushed into the queue. The FuzExtractor
procedure repeats this process until the queue is empty,
which indicates that there are no more pixels in the source
image 𝐼SRC matching the seedRGB color. After FuzExtractor
returns 𝐼MATCH, CreateSubImage assigns 𝐼MATCH to 𝐼TEMP as
described.

CreateSubImage uses two conditions to check if 𝐼TEMP is
significant or not. The first condition is to check 𝐼TEMP/𝐼SRC
that it is a ratio of 𝐼TEMP area over 𝐼SRC one. If this ratio
is too small, CreateSubImage ignores 𝐼TEMP as 𝐼TEMP holds
too few pixels extracted from the source image 𝐼SRC. 𝐼TEMP
is most likely affected by noise and is not significant for any
object in the source image. CreateSubImage also uses the
condition, (𝐼TEMP/𝐼SRC) & var (𝐼TEMP), to check 𝐼TEMP, where
var (𝐼TEMP) is a variance defined by

𝜛 = 𝐸 [(𝐼TEMP)2] ,

var (𝐼TEMP) = 𝐸 [(𝐼TEMP − 𝜛)2] .
(9)

A big 𝐼TEMP/𝐼SRC indicates a large area size of 𝐼TEMP and a big
var (𝐼TEMP) implies that 𝐼TEMP contains the color components
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(a) 𝐼CENTER (b) 𝐼TEMP

(c) 𝐼UNCLASSIED

Figure 4: (a) The image 𝐼CENTER extracted by the seed, seedCENTER = (127, 127, 127). (b) An insignificant image, 𝐼TEMP, extracted by a “bad”
seed. (c) The image 𝐼UNCLASSIED.

CreateSubImage (𝐼SRC, center)
𝑖 ← 0; 𝐼M(𝑖

+1
) ← ø; 𝐼U(𝑖) ← 𝐼SRC;

If (center = true)
𝐼CENTER ← FuzExtractor (𝐼SRC, seedCENTER);

else 𝐼CENTER ← ø;
𝐼IMG ← 𝐼U(𝑖) − 𝐼CENTER;
SeedList ← IniSeedList (𝐼IMG);
while (SeedList ̸= ø) do

seedRGB ← The first element in SeedList;
𝐼TEMP ← FuzExtractor (𝐼SRC, seedRGB);
if 𝐼TEMP/𝐼SRC > 𝜀

if (𝐼TEMP/𝐼SRC < 𝛾1& var (𝐼TEMP) < 𝛾2)
𝐼M(𝑖

+1
) ← 𝐼TEMP;

𝐼U(𝑖
+1
) ← 𝐼SRC – (𝐼M(𝑖

+1
) ∪ 𝐼M(𝑖

−1
) ⋅ ⋅ ⋅ 𝐼M(1));

𝐼IMG ← 𝐼U(𝑖
+1
) − 𝐼CENTER;

SeedList ← IniSeedList (𝐼IMG);
𝑖 ← 𝑖 + 1;

end
return {𝐼M(𝑖

+1
)};

Pseudocode 3

with a wide range distribution, as shown in Figure 4(b).
Such a subimage is also considered as insignificant. If 𝐼TEMP
is significant, CreateSubImage assigns 𝐼TEMP to a 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
subimage 𝐼M(𝑖

+1
) and creates an 𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝐼U(𝑖

+1
), where

𝐼M(𝑖
+1
) holds the color components matching the color of

seedRGB and 𝐼U(𝑖
+1
) holds unextracted pixels in the source

image. CreateSubImage iteratively processes 𝐼U(𝑖) until 𝐼U(𝑖) =
ø; that is, each pixel in the image is processed.

There may exist tiny holes in the subimage 𝐼M(𝑖). Because
these tiny fragments may be insignificant for object pattern
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FuzExtractor (𝐼SRC, seedRGB)
Move seedRGB into 𝐼MATCH;
Push four neighbor pixels of seedRGB into queue;
while (queue ̸= ø) do

pixelFIRST ← the top element in queue;
Calculate Δ𝜌F using (3);
if (Δ𝜌F < 𝜎)

Move pixelFIRST into 𝐼MATCH;
Push unduplicated neighbors of pixelFIRST into queue;

end
return 𝐼MATCH;

Pseudocode 4

MergeSubImage ({𝐼M(𝑖)})
𝐾 ← 𝐼;
for 𝑖 ← 1 to 𝐼 do

for 𝑙 ← 𝑖 − 1 to 𝐼 do
if (𝐼M(𝑖) ∩ 𝐼M(𝑙))/𝐼M(𝑖) > 𝜏;

𝐼M(𝑙) ← 𝐼M(𝑖) ∪ 𝐼M(𝑙);
Remove 𝐼M(𝑖) from the list;
𝐾 ← 𝐾 − 1;
break;

for 𝑘 ← 1 to 𝐾 do
𝐼OBJ(𝑘) ← 𝐼M(𝑘);
𝐼SEG ← 𝐼OBJ(𝑘) ∪ 𝐼OBJ(𝑘−1) ⋅ ⋅ ⋅ 𝐼OBJ(1);

return 𝐼SEG;

Pseudocode 5

features, the algorithm removes them by filling up such tiny
holes with their original pixels. Usually, these tiny fragments
are caused by a small RGB distance of two pixels that have
the same RGB values and are located in the same row or in
the same column, so the algorithm checks such a distance if
it is less than a threshold, 𝛿 = 7. If so, the algorithm fills the
tiny holes when creating the subimage, 𝐼M(𝑖). The algorithm
generates a seed from the 𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 subimage 𝐼U(𝑖) but
always creates a subimage 𝐼M(𝑖) from the source image 𝐼SRC
so it is very probable that the algorithm extracts an individual
pixel intomultiple subimages.We use a list tomaintain {𝐼M(𝑖)}
according to a sending order of their sizes. Table 3 shows an
example of the proposed algorithm that creates 20 subimages
from the source image 𝐼BIRD in Figure 5(a). Column 1 in
Table 3 contains 𝐼M(𝑖) ID, columns 2 and 3 list the locations
and the color components of the seeds for extracting the
subimages 𝐼M(𝑖) using the FCE, column 4 shows the number
of pixels extracted into the subimages 𝐼M(𝑖), and column 5
records the variance of 𝐼M(𝑖).

5. Merging Subimages

The proposed algorithm merges significant subimages into
a set of meaningful segmented objects by the procedure

Table 3: Subimages created from 𝐼BIRD.

ID Locations RGB colors Pixels Variance
(1) (269, 271) (244, 251, 243) 14308 148
(2) (283, 267) (240, 251, 247) 9674 114
(3) (267, 243) (230, 252, 239) 64924 150
(4) (193, 233) (0, 6, 0) 15643 917
(5) (358, 174) (228, 246, 232) 10492 157
(6) (276, 280) (229, 232, 221) 15307 240
(7) (292, 302) (209, 222, 213) 10894 372
(8) (58, 141) (197, 216, 212) 13815 590
(9) (292, 296) (1, 12, 4) 3003 1419
(10) (290, 302) (11, 14, 5) 3529 1602
(11) (464, 285) (7, 22, 25) 3941 1591
(12) (275, 252) (17, 30, 13) 17645 1311
(13) (320, 261) (20, 38, 26) 4831 1961
(14) (68, 138) (54, 39, 16) 26009 2416
(15) (216, 190) (151, 100, 57) 2916 2394
(16) (357, 158) (50, 53, 46) 26769 2703
(17) (293, 294) (185, 198, 189) 11018 534
(18) (352, 171) (206, 191, 162) 67427 375
(19) (49, 238) (89, 72, 42) 28510 3311
(20) (1, 320) (58, 86, 108) 26845 4777

MergeSubImage. The pseudocode of the MergeSubImage
procedure is shown in Pseudocode 5.

The inputs to the procedure MergeSubImage are the
subimages {𝐼M(𝑖)}, and the output fromMergeSubImage is the
segmented image 𝐼SEG. Figures 5(a)-5(b) show a color image,
𝐼BIRD, and the segmented image in the RGB space, 𝐼SEG, which
is a union of 6 objects, 𝐼OBJ

(𝑖), 𝑖 = 1, . . . , 6, shown in Figures
5(f)–5(k). Figure 5(e) shows the manually made benchmark,
𝐼BECHMARK.

MergeSubImage merges the subimages according to the
overlap sizes of their color components to construct some
objects in the source image. In the process of the Merge-
SubImage, the FCE usually classifies an individual pixel into
multiple subimages. It causes these subimages to share a
common color area in the RGB space, and even probably a
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(a) 𝐼BIRD (b) 𝐼SEG (c) 𝐼󸀠SEG

(d) 𝐼󸀠󸀠SEG (e) 𝐼BECHMARK (f) 𝐼OBJ
(1)

(g) 𝐼OBJ
(2) (h) 𝐼OBJ

(3) (i) 𝐼OBJ
(4)

(j) 𝐼OBJ
(5) (k) 𝐼OBJ

(6)

Figure 5: Source image, 𝐼BIRD; segmented images in the RGB, HSV, and YUV space, 𝐼SEG, 𝐼󸀠SEG, and 𝐼󸀠󸀠SEG; manually made benchmark,
𝐼BECHMARK; and partitioned objects in the RGB space, 𝐼OBJ(𝑖).

subimage may fully cover another subimage. The common
area of two subimages implies two features: spatial proximity
and color similarity, because the two subimages connect
together and have a partitionwith the same color if they share
the common area. Therefore, our algorithm uses this unique
characteristic to merge subimages. MergeSubImage uses the
union (𝐼M(𝑖) ∩ 𝐼M(𝑙))/𝐼M(𝑖) to check the common area size of
two subimages 𝐼M(𝑖) and 𝐼M(𝑙) in the RGB space. A bigger
value of (𝐼M(𝑖) ∩ 𝐼M(𝑙))/𝐼M(𝑖) means that 𝐼M(𝑖) and 𝐼M(𝑙) share
a larger common area; that is, their color components are
more similar. A data structure for maintaining the subimages
{𝐼M(𝑖)} is a list that sorts {𝐼M(𝑖)} in a sending order of their
sizes. Technical implementation of merging {𝐼M(𝑖)} is shown
in Figure 6. The merging process starts with the last element

𝐼M(𝑖) with 𝑖 = 𝐼, located at the list tail, which is the
subimage with the smallest area size, and checks 𝐼M(𝑙) with
each subimage {𝐼M(𝑙), 𝑙 = 𝑖 − 1, . . . , 1} via (𝐼M(𝑖) ∩ 𝐼M(𝑙))/𝐼M(𝑖).
If (𝐼M(𝑖) ∩ 𝐼M(𝑙))/𝐼M(𝑖) > 𝜏, the algorithm merges 𝐼M(𝑖) and
𝐼M(𝑙) together, removes 𝐼M(𝑖) from the list, and replaces 𝐼M(𝑖)
with 𝐼M(𝑖) ∪ 𝐼M(𝑙), where 𝐼M(𝑙) size is bigger than 𝐼M(𝑖) one.
After processing all the subimages in the list, the list holds the
partitioned objects {𝐼OBJ

(𝑖)} from the input source image 𝐼SRC.
MergeSubImage returns the partitioned objects {𝐼OBJ

(𝑘)} as
well as its union, 𝐼OBJ

(𝑘)∪𝐼OBJ
(𝑘−1) ⋅ ⋅ ⋅ 𝐼OBJ

(1), as the segmented
image 𝐼SEG.

Table 4 lists the extracted subimages from the source
image 𝐼BIRD in Figure 5(a). MergeSub- Image merges these
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I(1)－
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I(I−1)－

I(I)－

I(I)－
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· · ·

· · ·
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(I(I−1)－ ∩ I(I)－ )/I(I)－ ≥ 

Figure 6: Process for merging subimages 𝐼M(𝑖) and 𝐼M(𝑙).

Table 4: 𝐼OBJ(𝑖) merged by subimages created from 𝐼BIRD.

Segmented objects Sub-images
𝐼OBJ(1) 𝐼M(11)
𝐼OBJ(2) 𝐼M(2), 𝐼M(19), 𝐼M(22)
𝐼OBJ(3) 𝐼M(22)
𝐼OBJ(4) 𝐼M(22), 𝐼M(22)

𝐼OBJ(5)
𝐼M(22), 𝐼M(22), 𝐼M(22), 𝐼M(22), 𝐼M(22), 𝐼M(22),
𝐼M(22), 𝐼M(22), 𝐼M(22), 𝐼M(22), 𝐼M(22)

𝐼OBJ(6) 𝐼M(22), 𝐼M(22)

20 subimages into 6 partitioned objects {𝐼OBJ
(𝑖)} in Figures

5(f)–5(k). Table 4 also shows information on which and how
many subimages are merged into which object. For example,
the partitioned object 𝐼OBJ

(1) shown in Figure 5(f) comes from
a single subimage 𝐼M(11), while the partitioned object 𝐼OBJ

(5)

in Figure 5(j) is produced by merging 11 subimages {𝐼M(9),
𝐼M(22), 𝐼M(23), 𝐼M(27), 𝐼M(29), 𝐼M(32), 𝐼M(34), 𝐼M(36), 𝐼M(38), 𝐼M(41),
𝐼M(43)}. Figure 5(b) shows the segmented image 𝐼SEG by a
union operation of 𝐼OBJ

(6) ∪ 𝐼OBJ
(5) ⋅ ⋅ ⋅ 𝐼OBJ

(1).

6. Discussions and Conclusions

In this section, we present our selection of the membership
functions’ parameters of the FCE defined in (4)–(7) and set-
tings of the CreateSubImage andMergeSubImage procedures
used for our tests. We empirically selected the parameters of
the membership functions as 𝛼1 = 60, 𝛼2 = 200, 𝜌M = 20,
𝜌M + 𝜌U = 255, and 𝜎 = 90. A smaller 𝛼1 may more precisely
segment color components in an input image but produces
more extracted subimages. A slight change of 𝛼2 does not
affect the segmentation result, so it is not sensitive. 𝜌M should

be at least less than 127.5. The threshold, 𝜎, is important
for classifying pixels into a 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 subimage 𝐼M(𝑖) or an
𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 subimage 𝐼U(𝑖). We select the parameters in
CreateSubImage and MergeSubImage as 𝜀 = 0.01, 𝛾1 = 0.25,
𝛾2 = 500, and 𝜏 = 0.6. The function of 𝜀 is to remove
insignificant subimages with a “too small” area that may be
caused by noise. Both parameters 𝛾1 and 𝛾2 are defined to
remove another type of insignificant subimages, for example,
𝐼TEMP shown in Figure 4(b). This subimage is not extracted
very well due to a “bad seed,” seedRGB = (64, 28, 28). Such a
subimage is featured by its large area size and a large variance
of its color components. The large variance indicates that the
subimage holds a wide range of color distribution in the RGB
space, so this subimage should be removed. 𝜏 is the threshold
to check the overlap area over the subimage with a smaller
area. In this paper, 𝜏 = 0.6 herein means that the overlap area
is 60% of the subimage with the smaller area. The bigger 𝜏 is,
the more similar the color components of the two subimages
are. Changing 𝜏 affects the number of partitioned objects
generated by MergeSubImage. As an extreme example, 𝜏 =
1.0 means that only if the larger subimage fully overlaps
the smaller subimage, the two subimages will be merged
together.

In our implementation, the algorithm invokes the Cre-
ateSubImage procedure twice. For the first invocation, an
input image, 𝐼IMG, to IniSeedList and UpdateSeedList, is
𝐼SRC − 𝐼CENTER, where 𝐼CENTER is extracted by seedCENTER =
(127, 127, 127). Because the first call is to process a source
image 𝐼SRC, the algorithm does not select a seed close to
the RGB space center. As discussed in Section 4, the seed
seedCENTER cannot differentiate color components which are
far from the well-defined eight colors. For example, the
extracted image 𝐼CENTER shown in Figure 4(a) holds many
color components of six corn cobs. Because the algorithm
does not select any seed from 𝐼CENTER, it is very possible that
some of the pixels in the source image remain unclassified. In
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Table 5: Statistics of subimages and partitioned objects of five color
images.

ID 𝐼BIRD 𝐼CORN 𝐼LAKE 𝐼MAN 𝐼BABOON

𝐼M(𝑖) 20 41 16 22 85
𝐼OBJ(𝑖) 6 13 6 54 6

order to process the unclassified pixels, we create an image
𝐼UNCLASSIED = 𝐼SRC − ∪𝐼OBJ

(𝑖), as shown in Figure 4(c).
The algorithm calls the CreateSubImage a second time to
process 𝐼UNCLASSIED, but the input image to IniSeedList
and UpdateSeedList is 𝐼UNCLASSIED itself. The variance of
𝐼UNCLASSIED is smaller than that of its original source image
𝐼SRC as most pixels with a large range of color distribution are
classified after first calling CreateSubImage. For this reason,
we halve the parameter 𝛼1 = 30 of the membership functions
to process 𝐼UNCLASSIED. The proposed approach segments the
color image 𝐼CORN in Figure 7(a) into 12 objects. Figure 7(b)
shows the segmented image. Figures 7(f)–7(q) display the
first 12 partitioned objects. 𝐼OBJ

(3) and 𝐼OBJ
(6) in Figures 7(h)

and 7(k) are extracted from 𝐼UNCLASSIED in Figure 4(c).
In order to test the robustness of the proposed algorithm,

we applied the algorithm with the same settings defined
in the first paragraph of this section to process the five
color images {𝐼BIRD, 𝐼CORN, 𝐼LAKE, 𝐼MAN, 𝐼BABOON}, in theRGB
color space as shown in Figures 5(a), 7(a), 8(a), 9(a), and
10(a), respectively. Their corresponding segmented images
are displayed in Figures 5(b), 7(b), 8(b), 9(b), and 10(b),
respectively.The first four color images are from the database
at UC Berkeley [23]. These selected color images represent
different features and diverse scenes that might be taken
under different light conditions. The source image 𝐼BIRD in
Figure 5(a) holds a bird on a tree trunk under the sky. The
source image 𝐼CORN in Figure 7(a) holds six corns with many
small multicolor kernels and its segmented image holding
the six colorful corns. The source image 𝐼LAKE in Figure 8(a)
shows a lake and amountain under the sky at evening. Figures
9(a) and 10(a) show the color images 𝐼MAN and 𝐼BABOON.
Table 5 lists the subimages, and the partitioned objects from
the 5 color images. 85 subimages are extracted from 𝐼BABOON,
but the partitioned objects are only 6.

There is a lack of a strong mathematical model for
precisely expressing the human’s understanding of colors due
to psychophysical perception. For a given color, different
observers may perceive its color definition differently. That
is why the FCE-based approach classifying an individual
pixel into several subimages is reasonable. The proposed
approach to color image segmentation is easy to use, and it
does not apply any procedure where one needs to preprocess
source images. Removing subimages with “too small” areas is
filtering short edges and noise in a color image.The approach
automatically partitions a color image into an appropriate
number of meaningful objects or regions. The manually
made benchmarks are downloaded from the database at UC
Berkeley [23], as shown in Figures 5(e), 7(e), 8(e), 9(e), 11(e),
and 12(e), respectively. These benchmarks display desired
segmentation results represented by the images’ boundaries.

Although the proposed approach does not reach the bench-
marks’ results, it is able to partition the color images into
meaningful objects, for example, the 𝐼CORN segmentation
results as shown in Figure 7.

In this study, we also compared the performance of the
FCE-based algorithm by segmenting the same test images
{𝐼BIRD, 𝐼CORN, 𝐼LAKE, 𝐼MAN, 𝐼HORSE, 𝐼VEGGI} in the RGB, HSV,
and YUV spaces, respectively. In this case, we only trans-
formed the color image representation from the RGB space
into the HSV and YUV spaces according to (1) and (2).
The test images are selected randomly from the database at
UC Berkeley [23], as shown in Figures 5(a), 7(a), 8(a), 9(a),
11(a), and 12(a). Their corresponding segmented images in
the RGB, HSV, and YUV spaces are displayed in Figures
5(b)–5(d), 7(b)–7(d), 8(b)–8(d), 9(b)–9(d), 11(b)–11(d), and
12(b)–12(d). We find that the segmented images in the
HSV space 𝐼󸀠SEG are the most different from 𝐼BENCHMARK by
comparison. So the FCE-based algorithm defined in the HSV
space is not adopted. In some cases, the segmentation results
in the YUV space are superior to the RGB spaces, such as
the “face” of 𝐼MAN in Figure 9 and the “boxes” in 𝐼VEGGI in
Figure 12. But inmost cases, the segmented images in theRGB
space 𝐼SEG are the most similar to 𝐼BENCHMARK. It is proven
that the FCE-based algorithm defined in the RGB space is
the most robust. The possible reason for the results is the
transformation of the color image representation from the
RGB space into the HSV and YUV spaces may cause color
errors so that the segmentation is influenced.

In order to show the advantages of the new approach to
color image segmentation, we applied Canny edge detection
and Log edge detection algorithms to segment the test
images {𝐼LAKE, 𝐼MAN, 𝐼HORSE, 𝐼VEGGI}, respectively, and the
segmented images were shown in Figures 8(f)-8(g), 9(f)-9(g),
11(f)-11(g), and 12(f)-12(g).Then we compared 𝐼Canny and 𝐼Log
with the segmented images through the FCE-based approach,
namely, 𝐼SEG, 𝐼󸀠SEG, and 𝐼󸀠󸀠SEG, and meanwhile 𝐼BECHMARK can
be used as a metric to evaluate the segmentations. As shown
in Figures 8 and 9, the edges in 𝐼Canny and 𝐼Log are “too
many” or “too few” compared with 𝐼BECHMARK, which proves
that the segmentation effect with Canny edge detection and
Log edge detection is inferior to the FCE-based approach.
Although the segmentation effect with Log edge detection is
superior to the FCE-based approach applied in the HSV and
YUV spaces, it performs not well as the proposed approach
applied in the RGB color space, as shown in Figures 11 and 12.
Overall, compared with Canny edge detection and Log edge
detection, the new approach based on FCE defined in the
RGB color space presents the best performance in the color
image segmentation.

The approach is effective in tracking or following a certain
color because the FCE-based approach does not need a
precise color pattern to extract a set of colors. We apply
this algorithm to extract chemical plumes in images taken
undersea at very poor illumination conditions [26]. In this
paper, we start selecting seeds near the eight well-defined
colors, that is, at the vertices of the RGB space, and move
their selection from the vertices to the RGB center. Our
further research will investigate more effective methods for
selecting seeds because seed selection plays an important
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(a) 𝐼CORN (b) 𝐼SEG (c) 𝐼󸀠SEG

(d) 𝐼󸀠󸀠SEG (e) 𝐼BENCHMARK (f) 𝐼OBJ
(1)

(g) 𝐼OBJ
(2) (h) 𝐼OBJ

(3) (i) 𝐼OBJ
(4)

(j) 𝐼OBJ
(5) (k) 𝐼OBJ

(6) (l) 𝐼OBJ
(7)

(m) 𝐼OBJ
(8) (n) 𝐼OBJ

(9) (o) 𝐼OBJ
(10)

(p) 𝐼OBJ
(11) (q) 𝐼OBJ

(12)

Figure 7: Source image, 𝐼CORN; segmented images in the RGB, HSV, and YUV space, 𝐼SEG, 𝐼󸀠SEG; and 𝐼󸀠󸀠SEG; manually made benchmark,
𝐼BECHMARK; and partitioned objects in the RGB space, 𝐼OBJ(𝑖).
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(a) 𝐼LAKE (b) 𝐼SEG (c) 𝐼󸀠SEG (d) 𝐼󸀠󸀠SEG

(e) 𝐼BENCHMARK (f) 𝐼Canny (g) 𝐼Log

Figure 8: Source image, 𝐼LAKE; segmented images in the RGB, HSV, and YUV space, 𝐼SEG, 𝐼󸀠SEG, and 𝐼󸀠󸀠SEG; manually made benchmark,
𝐼BECHMARK; segmented images with Canny edge detection and Log edge detection, 𝐼Canny, 𝐼Log.

(a) 𝐼MAN (b) 𝐼SEG (c) 𝐼󸀠SEG (d) 𝐼󸀠󸀠SEG

(e) 𝐼BENCHMARK (f) 𝐼Canny (g) 𝐼Log

Figure 9: Source image, 𝐼MAN; segmented images in the RGB, HSV, and YUV space, 𝐼SEG, 𝐼󸀠SEG, and 𝐼󸀠󸀠SEG; manually made benchmark,
𝐼BECHMARK; segmented images with Canny edge detection and Log edge detection, 𝐼Canny, 𝐼Log.

(a) 𝐼BABOON (b) 𝐼SEG

Figure 10: Source image 𝐼BABOON and its segmented image 𝐼SEG.
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(a) 𝐼HORSE (b) 𝐼SEG (c) 𝐼󸀠SEG (d) 𝐼󸀠󸀠SEG

(e) 𝐼BENCHMARK (f) 𝐼Canny (g) 𝐼Log

Figure 11: Source image, 𝐼HORSE; segmented images in the RGB, HSV, and YUV space, 𝐼SEG, 𝐼󸀠SEG, and 𝐼󸀠󸀠SEG; manually made benchmark,
𝐼BECHMARK; segmented images with Canny edge detection and Log edge detection, 𝐼Canny, 𝐼Log.

(a) 𝐼VEGGI (b) 𝐼SEG (c) 𝐼󸀠SEG (d) 𝐼󸀠󸀠SEG

(e) 𝐼BENCHMARK (f) 𝐼Canny (g) 𝐼Log

Figure 12: Source image, 𝐼VEGGI; segmented images in the RGB, HSV, and YUV space 𝐼SEG, 𝐼󸀠SEG, and 𝐼󸀠󸀠SEG; manually made benchmark,
𝐼BECHMARK; segmented images with Canny edge detection and Log edge detection, 𝐼Canny, 𝐼Log.
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role in achieving a good segmentation performance. Another
issue we will address in our study is how to automatically
determine the parameters of fuzzy sets based on an input
color image.
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