
Research Article
Hardware Efficient Architecture with Variable Block Size for
Motion Estimation

Nehal N. Shah,1 Harikrishna Singapuri,2 and Upena D. Dalal2

1Sarvajanik College of Engineering and Technology, Surat, India
2S V National Institute of Technology, Surat, India

Correspondence should be addressed to Nehal N. Shah; nehal.shah@scet.ac.in

Received 27 July 2016; Revised 2 November 2016; Accepted 27 November 2016

Academic Editor: Jar Ferr Yang

Copyright © 2016 Nehal N. Shah et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Video coding standards such as MPEG-x and H.26x incorporate variable block size motion estimation (VBSME) which is highly
time consuming and extremely complex from hardware implementation perspective due to huge computation. In this paper, we
have discussed basic aspects of video coding and studied and compared existing architectures for VBSME. Various architectures
with different pixel scanning pattern give a variety of performance results for motion vector (MV) generation, showing tradeoff
between macroblock processed per second and resource requirement for computation. Aim of this paper is to design VBSME
architecture which utilizes optimal resources to minimize chip area and offer adequate frame processing rate for real time
implementation. Speed of computation can be improved by accessing 16 pixels of base macroblock of size 4 × 4 in single clock
cycle using z scanning pattern. Widely adopted cost function for hardware implementation known as sum of absolute differences
(SAD) is used for VBSME architecture withmultiplexer based absolute difference calculator and partial summation term reduction
(PSTR) basedmultioperand adders. Device utilization of proposed implementation is only 22k gates and it can process 179HD (1920
× 1080) resolution frames in best case and 47 HD resolution frames in worst case per second. Due to such higher throughput design
is well suitable for real time implementation.

1. Introduction

Digital video processing has been applied to a large number of
consumer electronics products such as digital video recorders
(DVR), personal digital assistants (PDA), digital cameras,
and set top boxes. Motion estimation (ME), which plays
most important role in video compression, is applied to
evaluate the movement of blocks in the current frame. It
aims to remove temporal redundancies that exist in video
sequences, which results in substantial bit rate reductions.
The block matching algorithm (BMA) is widely adopted for
ME as it fits well with rectangular video frames as well as
block based transforms and provides a reasonably effective
temporal model.

In BMA, previous frame 𝑓(𝑘−1) is considered as reference
frame and frame𝑓𝑘 is called current frame.Macroblock (MB)
of size𝑀×𝑁 from current frame will look for its best match
in region havingmaximumprobability called search region in
reference frame. Usually size of search region is considered

as [−𝑝, +𝑝] in 𝑥 as well as in 𝑦 direction which results in
evaluation of (2𝑝+1)2 candidate macroblocks.The difference
between the coordinates of current macroblock from current
fame and best match candidate macroblock from reference
frame is called displacement vector or motion vector (MV).
Popular cost function in hardware implementation to identify
best match is sum of absolute differences (SAD) which is
described by

SAD (𝑢, V) =
𝑀

∑
𝑥=1

𝑁

∑
𝑦=1

𝑓𝑘 (𝑥, 𝑦) − 𝑓(𝑘−1) (𝑥 + 𝑢, 𝑦 + V)
 . (1)

Existing video coding standards offer variable block size
video motion estimation to improve quality of encoding.
Variable block size (VBS) motion compensated prediction
(MCP) provides significant rate distortion performance gain
over conventional fixed block size MCP but it involves mas-
sive computation and adds an extra burden to any ME
architecture, in the form of additional hardware complexity,

Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2016, Article ID 5091519, 11 pages
http://dx.doi.org/10.1155/2016/5091519

2 Journal of Electrical and Computer Engineering

0 0 1
0 1

2 3

0

1

0
1

0 1 0 1
2 3

Mode 5 Mode 6 Mode 7

Subblock partitions of 8 × 8 block
(8 × 4) (4 × 8) (4 × 4)

Mode 1 (16 × 16) Mode 2 (16 × 8) Mode 3 (8 × 16) Mode 4 (8 × 8)

Figure 1: Macroblock modes [1].

extra computation time, or a combination of both. In H.264
standard of compression a typical macroblock has a dimen-
sion of 16 × 16 pixels which can be segmented in the smallest
block size of dimension of 4 × 4 (base block) as shown in
Figure 1. This division is represented as macroblock mode in
Figure 1 and hence VBSs contain 16 × 16, 16 × 8, 8 × 16, 8 × 8,
8 × 4, 4 × 8, and 4 × 4 size blocks which results in 41 possible
combinations of variable size. Due to block size ranging from
64 × 64 to 4 × 4 in recently developed HEVC standard, there
are multifarious combinations of variable size.

To generate SAD value for all 41 possible combinations of
16 × 16 macroblock, 256 pixels are processed for current mac-
roblock as well as for each candidate macroblock. There are
several overlapping candidate macroblocks depending on the
size of search area memory. Before SAD computation, read-
ing pixels of macroblocks from different memory is most
significant task. To serve the purpose, raster scan [4], mean-
der scan [5], z scan [3], or spiral scan patterns are used.
Based on pixel readingmechanism, architecture will perform
absolute difference and accumulation of difference, and
finally comparator will identify which block size is best sui-
ted for particular macroblock among various candidate
macroblocks. In this paper Section 2 surveys existing VBSME
architectures and their scanning patterns. Architecture based
on z pattern is presented in Section 3. Section 4 describes sim-
ulation and synthesis results and comparison with existing
architecture which is followed by conclusion.

2. Macroblock Scanning Pattern
and VBSME Architectures

There has been large development done by researchers in
the field of variable size block matching. VBSME with 41
possible combinations of variable size is highly time con-
suming and quite complex from hardware implementation
perspective due to huge computation. In this section existing
architectures for VBSME are discussed. Full search VBSME
architectures [2–9] are able to perform a full motion search
on various size of macroblocks.

VBSME unit initially reads current macroblock from
current frame and candidate macroblocks from reference

frame, divided into 3 stages. The very 1st stage is used to
compute absolute difference between corresponding element
of current macroblock data and reference macroblock data.
The second stage is to calculate intermediate results to
generate 41 different SAD values. The data is partially stored
in buffer and also forwarded to third stage which is used to
generate all SAD values which are useful for the generation
ofMVs. Various architectures with different scanning pattern
gives a variety of performance results formotion vector (MV)
generation showing tradeoff between macroblock processed
per second and resource requirement for computation. To
generate SAD value for all possible combinations of mac-
roblocks all pixels are read using traditional raster scan
pattern for 16 × 16 macroblock as shown in Figure 2 for arc-
hitectures presented in [2, 4, 6, 7]. On the other hand, arc-
hitectures presented in [5, 9] use meander scan and archi-
tecture presented in [3] uses z scan pattern as shown in
Figure 3. Based on pixel reading mechanism architecture will
perform absolute difference and accumulation of difference
and finally comparator will identify which block size is best
suited for particular macroblock among various candidate
macroblocks.

16 × 16 macroblock can be segmented into 16 small blocks
of size 4 × 4 as indicated in Figure 4 where various small blo-
cks are labels with b0 to b15. In horizontal raster scan pattern
of Figure 2(a), first row of blocks b0, b1, b2, and b3 are
read while in vertical raster scan pattern of Figure 2(b) first
column of blocks b0, b4, b8, and b12 are read. However both
types of scan, horizontal and vertical, provide same results
in context of resource utilization as well as number of clock
cycles required for reading pixels. In VBSME architectures
1, 4, or 16 pixels are read simultaneously and processed in
processing elements (PEs) to generate SAD combinations.
For parallel processing of pixels architectures prefer multiple
PEs which can be 4, 16, 64, or even 256. Most of architectures
use 16 × 16 search range which is extended to 32 × 32 in
few of the architectures. The VBSME architecture presented
in [2] is based on 16 PEs. The current macroblock data is
arranged in a raster scan sequence and search region data
is arranged in a dual raster scan sequence. 16 SAD values
are being computed, each with block size 4 × 4. The stored
SAD values are then reused to compute SAD values for
other block sizes. This is done by shuffling and combining
the computed subblock SAD values appropriately to derive
SAD for each of the other larger block sizes. This avoids
the need to compute each of these from scratch and allow
up to 41 SAD values to be processed in a single processor.
Architectures presented in [2–4] read single pixel at a time
and can process only one pixel of current macroblock and
candidate macroblock using particular PE in single clock
cycle and hence consume 282 clock, 271 clock, and 262
clock cycles, respectively, to generate 41 SAD combinations.
Architecture presented in [4] uses 18 × 1 multiplexers as well
as latches and eliminates the intermediate buffer requirement
need compared to architecture presented in [2]. PEs are
arranged in 4 × 4 array in architecture explained in [3] and
it uses single pixel z scan for reading pixel from reference
and current frame.The pixel values are fed through shift regi-
sters to 16 PEs which are arranged in 4 × 4 array. Concept

Journal of Electrical and Computer Engineering 3

(a) (b)

Figure 2: Scanning order for 16 × 16 macroblock. (a) horizontal raster scan [2]. (b) vertical raster scan.

(a) (b)

Figure 3: Scanning order for 16 × 16 macroblock. (a) Horizontal z scan [3]. (b) Vertical z scan.

b0 b1

b4 b5

b8 b9

b12 b13

b2 b3

b6 b7

b10 b11

b14 b15

Base blocks

Single pixel

Figure 4: 16 × 16 macroblock segmented into 16—4 × 4 submac-
roblock [2].

is replicated several times to compute multiple candidate
macroblocks in given search window. By using scanning
pattern of [4] and reading 4 pixels at a time clock cycles

required to generate 41 combinations reduce to 70 which is
approximately 4 times lesser as indicated in [7]. Same author
has also presented the extended version of architecture for 16-
pixel processing in which the number of clock cycles required
to generate the same 41 combinations is reduced to 20 which
is lesser by factor 16. Architecture proposed in [5] deals with
16 pixels at each clock cycle with 16 computing units. Each
computing unit has 16 PEs. Thus total 256 PEs are used for
generation of SAD values for 16 × 16 macroblock size. It uses
meander like scan pattern for search area. After surveying
various architectures, with variety of scanning patterns we
can summarize that at least 20 clock cycles are needed to
compute 41 SAD combinations.

3. Proposed Architecture

3.1. Pixel Reading Pattern. In this section VBSME architec-
ture is presentedwith aimof generating 41 SAD combinations
of variable size macroblock in optimal clock cycles with
reduced resource utilization. Instead of using conventional
raster scan pattern, proposed architecture uses z scan pattern,

4 Journal of Electrical and Computer Engineering

Current
memory

Address
and reset

unit

Reference
memory

PE-0 PE-1

Shuffling
unit

PE-N· · ·

· · ·

Figure 5: Proposed hardware implementation of VBSME.

RMB 0 RMB 1

PE0 PE1 PEN

RMB N

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

· · ·

Figure 6: Location of RMBs in search area.

to read 16 pixels at a time frommemory as shown in Figure 4.
Due to such pattern smallest block of size 4 × 4 can be read
at a time. Once base block is available in very next cycle
SAD for that block is computed. Hence in two clock cycles
blocks b0 and b1 are available and first 4 × 8 combination can
be computed. Such scanning pattern will eliminate need of
storing pixel values of intermediate row or column.

3.2. Architecture Description. Figure 5 shows multiple pro-
cessing elements (PEs) of proposed VBSME architecture.
Each PE computes 41 SAD combinations of current mac-
roblock and corresponding candidate macroblock from ref-
erence memory called reference memory block (RMB). For
window size of 𝑝 there will be (2𝑝 + 1)2 candidate RMBs that
need to be processed. By choosing𝑁 = (2𝑝+ 1), architecture
can calculate SAD of current macroblock and (2𝑝 + 1) RMBs
together and by repeating process (2𝑝 + 1) times SAD values

for all candidate macroblocks are available. Figure 6 shows
location of RMBs for various processing unit and Table 1
shows the data scheduling for the proposed architecture with
17 PEs.

As shown in Table 1, in very 1st cycle submacroblock b0
is read from both reference and current memory and fed
to the processing element PE0. At the same time all other
PEs also get same submacroblock from current memory but
1 column shifted submacroblock from reference memory.
Due to proposed scanning pattern sixteen pixels are scanned
together and their SAD values will be available in next clock
cycle. Buffer is needed to store SAD value of this smallest size
4 × 4 submacroblock.

The processing element used in Figure 5 is represented
in detail in Figure 7. The architecture is divided into mul-
tiple stages, namely, absolute difference calculation (ADC),
addition of absolute difference, and generation of 41 SAD
combinations. To compute absolute difference, multiplexer

Journal of Electrical and Computer Engineering 5

Ta
bl
e
1:
Pi
xe
ld

at
as

ch
ed
ul
in
g
fo
rV

BS
M
E
ar
ch
ite
ct
ur
e.

Cl
oc
k
cy
cle

PE
0

PE
1

⋅⋅
⋅

PE
15

PE
16

0
𝐶(

0:
3,
0:
3)
,𝑅
(0
:3
,0
:3
)

𝐶(
0:
3,
0:
3)
,𝑅
(0
:3
,1
:4
)

⋅⋅
⋅

𝐶(
0:
3,
0:
3)
,𝑅
(0
:3
,1
5:
18
)

𝐶(
0:
3,
0:
3)
,𝑅
(0
:3
,1
6:
19
)

1
𝐶(

0:
3,
4:
7)
,𝑅
(0
:3
,4
:7
)

𝐶(
0:
3,
4:
7)
,𝑅

(0
:3
,5
:8
)

⋅⋅
⋅

𝐶(
0:
3,
4:
7)
,𝑅
(0
:3
,1
9:
22
)

𝐶(
0:
3,
4:
7)
,𝑅
(0
:3
,2
0:
23
)

. . .
. . .

. . .
. . .

. . .
. . .

14
𝐶(

12
:15

,8
:11
),
𝑅(
12
:15

,8
:11
)

𝐶(
12
:15

,8
:11
),
𝑅(
12
:15

,9
:12

)
⋅⋅
⋅

𝐶(
12
:15

,8
:11
),
𝑅(
12
:15

,2
3:
26
)

𝐶(
12
:15

,8
:11
),
𝑅(
12
:15

,2
4:
27
)

15
𝐶(

12
:15

,1
2:
15
),
𝑅(
12
:15

,1
2:
15
)

𝐶(
12
:15

,1
2:
15
),
𝑅(
12
:15

,1
3:
16
)

⋅⋅
⋅

𝐶(
12
:15

,1
2:
15
),
𝑅(
12
:15

,2
7:
30
)

𝐶(
12
:15

,1
2:
15
),
𝑅(
12
:15

,2
8:
31
)

16
𝐶(

0:
3,
0:
3)
,𝑅
(1
:4
,0
:3
)

𝐶(
0:
3,
0:
3)
,𝑅
(1
:4
,1
:4
)

⋅⋅
⋅

𝐶(
0:
3,
0:
3)
,𝑅
(1
:4
,1
5:
18
)

𝐶(
0:
3,
0:
3)
,𝑅
(1
:4
, 1
6:
19
)

. . .
. . .

. . .
. . .

. . .
. . .

30
𝐶(

12
:15

,8
:11
),
𝑅(
13
:16

,8
:11
)

𝐶(
12
:15

,8
:11
),
𝑅(
13
:16

,9
:12

)
⋅⋅
⋅

𝐶(
12
:15

,8
:11
),
𝑅(
13
:16

,2
3:
26
)

𝐶(
12
:15

,8
:11
),
𝑅(
13
:16

,2
4:
27
)

31
𝐶(

12
:15

,1
2:
15
),
𝑅(
13
:16

,1
2:
15
)

𝐶(
12
:15

,1
2:
15
),
𝑅(
13
:16

,1
3:
16
)

⋅⋅
⋅

𝐶(
12
:15

,1
2:
15
),
𝑅(
13
:16

,2
7:
30
)

𝐶(
12
:15

,1
2:
15
),
𝑅(
13
:16

,2
8:
31
)

6 Journal of Electrical and Computer Engineering

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Absolute
difference
calculation

Buffer elements

R0 C0 R1 C1 R2 C2 R15 C15

· · ·

+

b 0 b 1 b 2 b 1
5

· · ·

SAD 4 × 8_4

SAD 4 × 8_3

SAD 4 × 8_2

SAD 4 × 8_1

SAD 8 × 8_1

SAD 8 × 16_1 SAD 8 × 16_2

SAD 8 × 8_2
SAD 8 × 8_3

SAD 8 × 8_4

SAD 4 × 8_8

SAD 4 × 8_7

SAD 4 × 8_6

SAD 4 × 8_5 SAD 8 × 4_5
SAD 8 × 4_6

SAD 8 × 4_7

SAD 8 × 4_8

SAD 8 × 4_1

SAD 8 × 4_2

SAD 8 × 4_3

SAD 8 × 4_4

| − || − || − || − |

SAD 16 × 8_1 SAD 16 × 8_2

SAD 16 × 16

Figure 7: Detailed PE structure.

Journal of Electrical and Computer Engineering 7

based ADC presented in [10] and, for addition of operands,
adder presented in [11] are used. 16 reference macroblock
pixels and 16 current macroblock pixels are fed to the ADC
unit and result is forwarded to adder block. Adder block sums
up all the difference values and stores them to the respective
intermediate buffer labelled as b0 to b15. 1 × 16 demultiplexer
is used to select respective buffer to compute 4 × 8, 8 × 4, 8
× 16, 16 × 8, and 16 × 16 combination further using multilevel
addition. Summation of macroblock sizes less than 16 × 16
is kept on respective data buses for further computation and
finally 41 combinations for VBSME are ready.

At the end of 16 clock cycles according to schedule of
Table 1 all 4 × 4 submacroblocks are read and their individual
SAD values are available as shown in Table 2. At very next,
that is, on 17th clock, the remaining 25 combinations are
computed. Thus all 41 SAD values are available in total 17
clock cycles in all PEs. Immediately RMBs are shifted to
next rows and computation of (2𝑝 + 1) combinations of that
particular row is started.

Once all SAD values are available in (2𝑝 + 1) PEs,
comparators identify best possible combination for (2𝑝 +
1) RMBs which is stored and compared with next row of
RMBs. After evaluation of all (2𝑝 + 1)2 RMBs, best match
macroblock is identified which is followed by motion vector
computation. Then, next macroblock from current frame is
evaluated. Latency between two consecutive macroblocks of
current frame depends on time required to read search area.
Due to 128-bit data bus 16 pixels are read from reference
frame concurrently, which takes 48 clock cycles for very
first macroblock and 64 clock cycles for the rest of the
macroblocks if single search area memory is used. In this
work three search area memories are incorporated which are
used in round robin fashion.When𝑝 = 8 is chosen, then 50%
search areas for two consecutivemacroblocks are overlapped;
hence at the time of filling one memory, pixels are filled in
next memory also. Due to this arrangement, at the time of
motion vector computation for any macroblock, search area
memory is prepared for next macroblock; hence there is no
latency between successive macroblocks.

3.3. Synthesis Results of Proposed VBSME Architecture. Pro-
posed VBSME hardware architecture is implemented and
tested in terms of various evaluation metrics. Architectures
have been implemented using VHDL and synthesized using
Xilinx FPGA family Spartan3 and Virtex5 with chip XC3s400
and XC5vlx50, respectively. Current memory size is chosen
as 16 × 16 pixels due to macroblock size of 16 × 16 while
reference memory size is 32 × 32 pixels by considering search
window parameter 𝑝 as 8. Table 3 shows macrostatistics
for proposed implementation. Architecture is optimized for
adder subtractors and other resources hence demonstrating
very low gate count of only 22k. Synthesis delay of design
is only 2.543 ns offering maximum frequency of 393.16MHz.
At maximum frequency it can process 179 HD (1920 × 1080)
frames in one second. Post place and route delay is 9.72 ns
which is considered as worst case delay in which 47 HD (1920
× 1080) frames can be processed per second at frequency of
102MHz.

Table 2: SAD output schedule for VBSME architecture.

Clock Block Size
1 0 4 × 4
2 1 4 × 4

3 0, 1 4 × 8
2 4 × 4

4 3 4 × 4

5 2, 3 4 × 8
4 4 × 4

6 0, 4 8 × 4
5 4 × 4

7

6 4 × 4
1, 5 8 × 4
4, 5 4 × 8

0, 1, 4, 5 8 × 8

8 7 4 × 4
2, 6 8 × 4

9

8 4 × 4
3, 7 8 × 4
6, 7 8 × 4

2, 3, 6, 7 8 × 8
0, 1, 2, 3, 4, 5, 6, 7 8 × 16

10 9 4 × 4

11 10 4 × 4
8, 9 4 × 8

12 11 4 × 4

13 12 4 × 4
10, 11 4 × 8

14 13 4 × 4
8, 12 8 × 4

15

14 4 × 4
9, 13 8 × 4
12, 13 4 × 8

8, 9, 12, 13 8 × 8
0, 1, 4, 5, 8, 9, 12, 13 16 × 8

16 15 4 × 4
10, 14 8 × 4

17

11, 15 8 × 4
14, 15 4 × 8

10, 11, 14, 15 8 × 8
8, 9, 10, 11, 12, 13, 14, 15 8 × 16
2, 3, 6, 7, 10, 11, 14, 15 16 × 8
Full macroblock 16 × 16

Table 4 indicates the comparison between the existing
VLSI implementation of VBSME and proposed implementa-
tion. Similar comparison between the existing FPGA imple-
mentation ofVBSMEandproposed implementation is shown
in Table 5. Most of architectures are implemented with vari-
able block sizes from 16× 16 to 4× 4 presented in [14] which is
limited to block size between 16 × 16 and 8 × 8. Architectures
presented in [7, 16] are demonstrated for search range 16 × 16;

8 Journal of Electrical and Computer Engineering

Table 3: Macrostatistics for VBSME architecture.

Adders/subtractors 1343
12-bit adder 255
13-bit adder 136
14-bit adder 68
15-bit adder 34
16-bit adder 17
4-bit subtractor 17
8-bit adder 816

Comparators 2
6-bit comparator equal 1
6-bit comparator greater 1

Counters 21
4-bit up counter 17
5-bit up counter 2
6-bit up counter 2

Registers 76
16-bit register 16
8-bit register 60
12-bit latches 272

therefore they can evaluate only one candidate macroblock.
The rest of architectures are testedwith search range 32× 32 or
33 × 33. Most of VLSI implementations are 180 nm or 130 nm
technology while FPGA implementations are using Virtex
series. Implementation parameters like search area, pixel
scanning pattern, data bus width to read pixels, and number
of PEs are diverse for various designs; hence to evaluate their
performance number of macroblocks processed per second
and frame processing rates are an important criterion.

The architecture proposed in this design works on 16
pixels’ scanning which results in higher throughput com-
pared to not only 1-pixel scan and 4-pixel scan architecture
but also existing 16-pixel scan architectures. In comparison
with 16-pixel raster scan architecture of Warrington et al. [7]
proposed architecture can process 3 times more HD frames
even in worst case and offers 7 times lesser gate count while
compared to 16-pixel meander scan architecture of Wei et al.
[5] it can process more than 2 times HD frames with 16
times less processing elements. Gate count of López et al.
[6] architecture is comparable with proposed architecture
but it offers frame rate of only 60 fps for CIF resolution
which in actuality is very less. Gate count of [15] is lesser
compared to proposed design but frame processing rate is
not given and therefore is not adequate for comparison.
Architecture presented by Olivares [12] can process 21.42
HD (1920 × 1080) resolution frames with 256 PEs; still this
frame rate is not sufficient for real time implementation.
From comparison among FPGA implementation of VBSME
architectures also we can observe that number of LUTs
used by proposed design is higher but at same time design
offers higher frame processing rate. From overall comparison
with various 16 pixels’ scan architectures we can derive that
proposed architecture outperforms in terms of throughput.

For the advance comparison of architecture, in addition
to frame processing rate, hardware efficiency 𝐸𝐻 [5] is used
which is defined as the ratio of data throughput rate TP
over hardware cost in terms of resource utilization or gate
count. TP is defined by the number ofmacroblocks processed
by architecture per second. Equation (2) indicates hardware
efficiency and its unit is macroblocks per second per gate. To
evaluate the architecture efficiency in terms of power, 𝐸𝑃 can
be defined as ratio of TP over the power as shown in (3). Unit
of𝐸𝑃 ismacroblocks per second permW.With higher𝐸𝐻 and
𝐸𝑃, architecture is more efficient.

𝐸𝐻 =
TP
𝐺
= Number of macroblock/sec

𝐺
, (2)

𝐸𝑃 =
TP

Power
= Number of macroblock/sec

Power
. (3)

As per (2) and (3) hardware and power efficiency are
computed for existing and proposedVBSME implementation
and shown in Table 6. Hardware efficiency of proposed
architecture in comparison with existing architectures is
more than 5 times enhanced in worst case while it is more
than 19 times superior in best case. In terms of power
efficiency, proposed implementation produces similar results
as implementation presented by Fatemi et al. [13]. Other
than that power efficiency of proposed architecture is better
than other architectures in best case. In comparison of some
of the architectures, proposed design uses somewhat more
gates but throughput of proposed design is higher compared
to all existing architectures. Overall comparison indicates
that proposed VBSME architecture is hardware efficient and
power efficient.

4. Conclusion

In this paper, architecture for full search variable block size
motion estimation is described. Architecture makes calcu-
lation for all 41 combinations of variable block size motion
vector considering 289 candidate macroblocks in search area
of 32 × 32. Architecture described in this paper uses 16-pixel
z scan pattern to access pixels of current macroblock and 17
candidate macroblocks and can compute all 41 combinations
of 16 × 16 macroblock in only 16 clock cycles. Process is
repeated 17 times using 17 processing elements, hence in 272
clock cycles all the combinations of all candidatemacroblocks
are available based on which best match and motion vector is
computed. Device utilization of proposed implementation is
only 22k and it can process 179 HD (1920 × 1080) resolution
frames in best case and 47 HD resolution frames in worst
case per second. Implementation results show that proposed
VBSME architecture outperforms in area utilization com-
pared to existing 1-pixel scan, 4-pixel scan, and 16-pixel scan
architectures due to 16-pixel z scanning pattern. VBSME
architecture demonstrates 19 times better hardware efficiency
in comparison with other VBSME implementations. Power
efficiency of proposed VBSME architecture is either better
or comparable with existing implementations. Architecture
can be configured with more PEs to suffice need of extended

Journal of Electrical and Computer Engineering 9

Ta
bl
e
4:
C
om

pa
ris

on
am

on
g
V
LS
Ii
m
pl
em

en
ta
tio

ns
of

V
BS

M
E
ar
ch
ite
ct
ur
es
.

V
BS

M
E
ar
ch
ite
ct
ur
e

Se
ar
ch

ra
ng
e

#
of

PE
s

#
of

pi
xe
ls

#
of

clo
ck

cy
cle

s
to

ge
ne
ra
te
41

SA
D

#
of

clo
ck

cy
cle

s
to

ge
ne
ra
te
M
V

Fr
eq
ue
nc
y
(M

H
z)

Fr
am

ep
ro
ce
ss
in
g
ra
te
(f
ps
)

Te
ch
no

lo
gy

G
at
ec

ou
nt

Ya
p
an
d
M
cC

an
ny

[4
]

32
×
32

16
1

28
1

44
96

10
0

52
@
CI

F
13
0n

m
10
8k

Ya
p
an
d
M
cC

an
ny

[2
]

32
×
32

16
1

26
2

40
96

29
4

18
1@

CI
F

13
0n

m
61
k

W
ei
et
al
.[
5]

33
×
33

25
6

16
40

11
29

18
0

40
9
@
CI

F
18
0n

m
16
0k

+
3.
32
8k

B
SR

A
M

45
@
72
0p

Ló
pe
ze

ta
l.
[6
]

31
×
31

16
16

—
—

10
0

60
@
CI

F
25
0n

m
21
.3
k

W
ar
rin

gt
on

et
al
.[
7]

16
×
16

16
16

20
—

15
5

90
@
SD

18
0n

m
15
5k

Ki
m

an
d
Pa
rk

[3
]

32
×
32

16
1

26
2

16
38
4

41
6

25
6
@
CI

F
18
0n

m
39
.2
k

Ru
iz
an
d
M
ic
he
ll
[9
]

32
×
32

64
4

65
12
07

30
0

30
@
10
80
p

18
0n

m
32
.3
k
+
59

kB
SR

A
M

O
liv
ar
es

[1
2]

32
×
32

25
6

16
—

49
13

38
0.
1

21
.4
2
@
10
80
p

13
0n

m
54
k
+
2.
76

kB
SR

A
M

Fa
te
m
ie
ta
l.
[1
3]

32
×
32

25
6

4
90

51
20

20
7

30
@
SD

18
0n

m
31
.5
k

Tu
ng

et
al
.[
14
]

—
16

16
18

—
54
6.
4

—
18
0n

m
14
9.2

k
Pa
ra
nd

eh
-A
fs
ha
re

ta
l.
[1
5]

—
4

4
64

—
28
5

—
13
0n

m
18
k

Pr
op

os
ed

32
×
32

17
16

17
27
2

39
3.1

6
17
9
@
10
80
p

13
0n

m
22
k

10 Journal of Electrical and Computer Engineering

Table 5: Comparison among FPGA implementations of VBSME architectures.

VBSME
architecture

Search
range # of PEs # of pixels

of clock
cycles to

generate 41
SAD

of clock
cycles to

generate MV

Frequency
(MHz)

Frame
processing rate

(fps)
FPGA LUTs

Olivares [12] 32 × 32 256 16 — 4913 380.1 21.42 @1080p Virtex 5 3768
Elhamzi et al. [16] 16 × 16 16 16 — 4096 436 13 @1080p Virtex 6 1281
Parandeh-Afshar
et al. [15] — 4 4 64 — 285 — Virtex 2 1431

Proposed 32 × 32 17 16 17 272 393.16 179 @1080p Virtex 5 9486

Table 6: Comparison of hardware and power efficiency for VBSME architectures.

Architecture Frame processing
rate (fps) Gate count (k) Power (mW) TP in kMB/sec 𝐸𝐻 in

MB/sec/gate 𝐸𝑃 in MB/sec/mW

Yap and McCanny [2] 181 @CIF 61 570mW 71.676 1.175 125.75

Wei et al. [5] 409 @CIF
45 @720p 163.32 423mW 162 0.992 383

López et al. [6] 60 @CIF 21.3 — 23.76 1.11 —
Warrington et al. [7] 90 @SD 155 68mW/70 kMB/s 324 2.09 1029.41
Kim and Park [3] 256 @CIF 39 — 101.38 2.6 —
Ruiz and Michell [9] 30 @1080p 91.3 115mW 243 2.66 2113.04
Olivares [12] 21.4 @1080p 56.76k 314mW 173.5 3.06 552.55
Fatemi et al. [13] 30 @SD 31.5 40.07mW 108 3.43 2695.3
Parandeh-Afshar et al.
[15] — 18k 7.7mW 9.615 0.53 1248.70

Proposed 179 @1080p 22k 540mW 1449.9 65.9 2685

search area.With adequate frame processing rate architecture
is well suited for real time implementation.

Competing Interests

The authors declare that there is no conflict of interests re-
garding the publication of this paper.

References

[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
13, no. 7, pp. 560–576, 2003.

[2] S. Y. Yap and J. V. McCanny, “A VLSI architecture for variable
block size video motion estimation,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 51, no. 7, pp. 384–389,
2004.

[3] J. Kim and T. Park, “A novel VLSI architecture for full-search
variable block-size motion estimation,” IEEE Transactions on
Consumer Electronics, vol. 55, no. 2, pp. 728–733, 2009.

[4] S. Y. Yap and J. V. McCanny, “A VLSI architecture for advanced
video coding motion estimation,” in Proceedings of the IEEE
International Conference on Application-Specific Systems, Archi-
tectures, and Processors (ASAP ’03), pp. 293–301, IEEE, June
2003.

[5] C. Wei, H. Hui, T. Jiarong, L. Jinmei, and M. Hao, “A high-
performance reconfigurable VLSI architecture for VBSME in

H.264,” IEEE Transactions on Consumer Electronics, vol. 54, no.
3, pp. 1338–1345, 2008.

[6] S. López, G.M. Callicó, F. Tobajas, J. F. López, and R. Sarmiento,
“A flexible template for H.264/AVC block matching motion
estimation architectures,” IEEE Transactions on Consumer Elec-
tronics, vol. 54, no. 2, pp. 845–851, 2008.

[7] S.Warrington,W.-Y. Chan, and S. Sudharsanan, “Scalable high-
throughput variable block size motion estimation architecture,”
Microprocessors and Microsystems, vol. 33, no. 4, pp. 319–325,
2009.

[8] C.-Y. Chen, S.-Y. Chien, Y.-W. Huang, T.-C. Chen, T.-C. Wang,
and L.-G. Chen, “Analysis and architecture design of variable
block-size motion estimation for H.264/AVC,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 53, no. 3, pp.
578–593, 2006.

[9] G. A. Ruiz and J. A. Michell, “An efficient VLSI processor
chip for variable block size integer motion estimation in
H.264/AVC,” Signal Processing: Image Communication, vol. 26,
no. 6, pp. 289–303, 2011.

[10] S. Rehman, R. Young,C.Chatwin, andP. Birch, “AnFPGAbased
generic framework for high speed sum of absolute difference
implementation,” European Journal of Scientific Research, vol.
33, no. 1, pp. 6–29, 2009.

[11] N. N. Shah, K. R. Agarwal, and H. M. Singapuri, “Implemen-
tation of sum of absolute difference using optimized partial
summation term reduction,” in Proceedings of the International
Conference onAdvanced Electronic Systems (ICAES ’13), pp. 192–
196, IEEE, September 2013.

Journal of Electrical and Computer Engineering 11

[12] J. Olivares, “A low cost architecture for variable block size
motion estimation,” Journal of Signal Processing Systems, vol. 68,
no. 1, pp. 127–138, 2012.

[13] M. R. H. Fatemi, H. Ates, and R. Salleh, “Analysis and design
of low-cost bit-serial architectures for motion estimation in
H.264/AVC,” Journal of Signal Processing Systems, vol. 71, no. 2,
pp. 111–121, 2013.

[14] D. M. Tung, T. Le, and T. Dong, “A VLSI architecture for
H.264/AVC variable block size motion estimation,” Journal of
Automation and Control Engineering, vol. 3, no. 1, pp. 51–55,
2015.

[15] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Scalable and low
cost design approach for variable block size motion estimation
(VBSME),” in Proceedings of the International Symposium on
VLSI Design, Automation and Test (VLSI-DAT ’09), pp. 271–274,
April 2009.

[16] W. Elhamzi, J. Dubois, J. Miteran, andM. Atri, “An efficient low-
cost FPGA implementation of a configurablemotion estimation
for H.264 video coding,” Journal of Real-Time Image Processing,
vol. 9, no. 1, pp. 19–30, 2014.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

