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The paper describes the key concepts of a word spotting system for Russian based on large vocabulary continuous speech
recognition. Key algorithms and system settings are described, including the pronunciation variation algorithm, and the
experimental results on the real-life telecom data are provided. The description of system architecture and the user interface
is provided. The system is based on CMU Sphinx open-source speech recognition platform and on the linguistic models and
algorithms developed by Speech Drive LLC. The effective combination of baseline statistic methods, real-world training data, and

the intensive use of linguistic knowledge led to a quality result applicable to industrial use.

1. Introduction

The need to understand business trends, ensure public secu-
rity, and improve the quality of customer service has caused a
sustainable development of speech analytics systems which
transform speech data into a measurable and searchable
index of words, phrases, and paralinguistic markers. Keyword
spotting technology makes a substantial part of such systems.
Modern keyword spotting engines usually rely on either of
three approaches, namely, phonetic lattice search [1, 2], word-
based models [3, 4], and large vocabulary speech recognition
[5]. While each of the approaches has got its pros and cons
[6] the latter starts to be prominent due to public availability
of baseline algorithms, cheaper hardware to run intensive
calculations required in LVCSR and, most importantly, high-
quality results.

Most recently a number of innovative approaches to
spoken term detection were offered such as various recogni-
tion system combination and score normalization, reporting
20% increase in spoken term detection quality (measured
as ATWV) [7, 8]. Deep neural networks application in

LVCSR is starting to achieve wide adoption [9]. Thanks to
the JARPA Babel program aimed at building systems that
can be rapidly applied to any human language in order to
provide effective search capability for analysts to efficiently
process massive amounts of real-world recorded speech [10]
in recent years wide research has been held to develop
technologies for spoken term detection systems for low-
resource languages. For example, [11] describes an approach
for keyword spotting in Cantonese based on large vocabulary
speech recognition and shows positive results of applying
neural networks to recognition lattice rescoring. Reference
[12] provides an extensive description of modern methods
used to build a keyword spotting system for 10 low-resource
languages with primary focus on Assamese, Bengali, Haitian
Creole, Lao, and Zulu. Deep neural network acoustic models
are used both as feature extractor for a GMM-based HMM
system and to compute state posteriors and convert them into
scaled likelihoods by normalizing by the state priors. Data
augmentation via using multilingual bottleneck features is
offered (the topic is also covered in [13]). Finally language
independent and unsupervised acoustic models are trained



for languages with no training data. An average MTWV
reported for these languages ranges from 0.22 for Zulu to
0.67 for Haitian Creole. In [14] the use of recurrent neural
networks for example-based word spotting in real time for
English is described. Compared to more widespread text-
based systems, this approach makes use of spoken examples
of a keyword to build up a word-based model and then do
the search within speech data. As an alternative to hybrid
ANN-HMM approaches authors in [15] offer a pure NN
based keyword search system for conversational telephone
speech in Vietnamese and Lao. For Vietnamese the “pure”
NN system provides ATWV comparable with that reported
for a baseline hybrid system while working significantly faster
(real-time factor 3.4 opposed to 5.3 for a hybrid system).

As high-quality language modeling is an indispensable
part of any modern keyword spotting system, a lot of effort is
now aimed at improving LMs. One of the most recent trends
is to use web data in training. The advent of the Internet
has provided rich amount of data to be easily available for
speech recognition community [16]. This is of particular
interest for low-resource languages and among most recent
improvements [17] suggests an approach to effectively deal
with the challenge of normalizing and filtering the web data
for keyword spotting. Two methods are offered, one using
perplexity ranking and the other using out-of-vocabulary
words detection. This resulted in more than 2% absolute
improvement in ATWYV across 5 low-resourced languages.
Reference [18] covers the aspect of augmenting baseline LMs
with carefully chosen web data, showing that blogs and
movie subtitles are more relevant for language modeling of
conversational telephone speech and help to obtain large
reductions in out-of-vocabulary keywords.

Russian research in the domain of speech recognition falls
in line with global scientific trends. It is noteworthy however
that most frequently the research is conducted to meet a
more general target of creating LVCSR systems per se with
no specific focus on spoken term detection. The most well-
known systems include Yandex SpeechKit [19] used to recog-
nize spoken search queries via web and mobile applications,
real-time speech recognition system by Speech Technology
Center [20] used for transcribing speech in the broadcasting
news, LVCSR system developed by SPIIRAS [21, 22] used for
recognizing speech in multimodal environments, and speech
recognition system by scientific institute Specvuzavtomatika
[23] based on deep neural networks.

Current paper presents the results of the ongoing research
underlying the commercial software for speech analytics.
The software design follows the concept of a minimum
viable product, which motivates incremental complication
of the technology while the product evolves. Such approach
motivated us to rely on generally available open-source
toolkits and a number of readily available knowledge-based
methods developed under our previous studies.

Sections 2 and 3 outline the overall setup of apply-
ing LVCSR technology to keyword spotting for Russian
telephone conversational speech, including the key system
parameters and the description of experiments run to assess
the quality and performance of the system. Special focus
is given to linguistic components used at the training and
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spotting stage. Section 4 describes the off-the-shelf speech
analytics system developed using the ideas and results dis-
cussed in this paper.

2. Key System Parameters

The system described in the paper is intended to be used
to perform keyword search in telephone conversational
speech. The system is provided both as SDK to be integrated
with speech recording systems and as a stand-alone MS
Windows application. The system is created on top of CMU
Sphinx [24]; this framework has been chosen due to its
simplicity and licensing model which allows for freely using
the code in commercial applications. Following the idea
of minimum viable product we mostly use the standard
settings across all system modules. 13 MFCCs with their
derivatives and acceleration are used in the acoustic front-
end; triphone continuous density acoustic models are trained
on around 200 hours of telephone-quality Russian speech
(8kHz, 8bit, Mono) recorded by 200 native speakers. 5-
state. HMMs are used with diagonal covariation matrix,
and CART (classification and regression trees) algorithm
is used to cluster acoustic models into 9000 senones, each
senone being described by 10 to 30 Gaussians. Texts in
the training database for language models are transcribed
automatically with a morphological and contextual linguistic
processor [25]. A set of transcription variation rules are
applied. Unigram and bigram language models are trained on
hundreds of thousands of modern Russian e-books generally
available on the Internet. Decoder makes use of a standard
CMU Sphinx token-passing algorithm with pruning methods
widely employed in the system setup including maximum
beam width, word insertion penalty, and acoustic likelihood
penalty.

The core novelty of the system is granted by extensive use
of linguistic knowledge on both the training and spoken term
detection steps. The system uses a linguistic processor with
built-in information on Russian morphology which helps to
generate high-quality transcriptions for any word form and
thus train more viable acoustic models. The same processor
is used to generate various forms of words which ensures
better spoken term detection on the spotting step. A rule-
based transcription variation algorithm is applied to generate
alternative phoneme sequences. Ultimately on the language
modeling step the texts are automatically prefiltered by the
type of text to let only dialogues stay in the training corpus.

3. Algorithms, Associated Problems,
and Solution

3.1 Acoustic Front-End. While throughout the system stan-
dard MFCCs are used, an additional effort was required to
make the front-end work for keyword spotting in a real-world
application. First, audio files to be analyzed are chunked
into 10-second long chunks in order to split the decoding
process over multiple CPUs. An overlap of 1 second is used
to guarantee that a keyword is not truncated between two
subsequent speech segments. Further on, a parsing algorithm
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FIGURE 1: Linguistic processor.

is applied to combine partial decoding results into a single file
in order to avoid redundant false alarms. The future plan is to
use VAD to divide the audio stream into phrases which would
better suit the LVCSR-based approach used in this paper;
however, our current VAD implementation has shown worse
results, hence the use of chunks of equal length.

3.2. Acoustic Modeling, Grapheme-to-Phoneme Conversion,
and a Transcription Variation Algorithm. The system dis-
cussed in the paper is intended to be used in real-world
telephone environment under low sound quality conditions.
To cover this requirement the acoustic model is trained on
real-world data encountering the telephone channel quality
speech in Russian telephone networks. Continuous density
HMMs are used, resulting in a representative set of 9000
senones each described with a GMM with 10-30 components.

Under our previous research [25] a linguistic processor
has been developed which makes use of information on
morphological characteristics of around 600000 Russian
words (see the structure on Figure 1) to transcribe words and
generate forms of words. Processor parses the text and defines
the part of speech for every word in the sentence; then the
word stress is defined, and a set of preprogrammed contextual
grapheme-to-phoneme rules is applied to derive a canonical
(“ideal”) word transcription.

The current state of the art for transcribing words in
speech recognition systems is to use statistical grapheme-
to-phoneme converters [26, 27]. The research has been
held on combining various techniques, for example, in [28]
Conditional Random Fields and Joint-Multigram Model

are used to bring an additional improvement in quality.
Studies have been done [29, 30] to introduce weighted
finite state transducers to grasp the probabilities of in-
word phonetic sequences. Altogether these studies outline
the key advantages of probabilistic approach compared to
knowledge-based methods, namely, language independency
(easily ported to a new language), ability to generalize and
provide transcriptions to new (out-of-vocabulary) words, and
the need of a smaller footprint of linguistic data (and hence
effort) to train a grapheme-to-phoneme converter.

On the other hand, the majority of the results shared
in cited studies relate to languages characterized with low
number of word forms (e.g., English and French). Meanwhile
Russian is a highly inflectional language with a word stress
depending on the exact word form in the paradigm and a
high frequency of homonymy also affecting word stress and
thus being a source for potential transcription errors [31]. This
means that one needs a much bigger hand-crafted lexicon
to train a high-quality probabilistic grapheme-to-phoneme
converter for Russian. This obstacle together with the concept
of minimum viable product described above motivated us
to set probabilistic grapheme-to-phoneme conversion as a
target for our future research and to use a readily available
high-quality knowledge-based linguistic processor instead.
Another important factor which guided this choice is the
ability to disambiguate homonymy and to generate word
forms (to be discussed later on).

The key element of the acoustic model training process
is transcription variation. Every phrase used to train the
models receives several alternative transcriptions by applying
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a set of predefined linguistic rules. Then on the training
step CMU Sphinx train module chooses the best alternative
which maximizes expectation. The experiments showed a 4%
absolute increase in keyword detection rate achieved thanks
to such implementation (please refer to Section 4 for more
details on experiments). At the moment the rules are derived
manually based on linguistic knowledge. The list of rules is
then embedded in the recognizer which is run on a training
dataset to define which rules provide for quality improvement
and should be kept in the production system. As the next step
of our research we plan to develop a sufficient corpus to train
these rules automatically.

The ultimate list of transcription variation rules chosen
on the training set contains 30 contextual phoneme-to-
phoneme and grapheme-to-phoneme mappings based on
both from the modern research on Russian spontaneous
speech [32] and from the authors’ proper experiments with
real-life data audio analysis. The main steps of the transcrip-
tion variation algorithm are outlined below (please also refer
to Figure 2):

(1) A textual annotation of the trained database is loaded.

(2) If the word is not in the lexicon (used mainly for
foreign words and named entities), automatic tran-
scriber is launched which makes use of the digitized
dictionary of the Russian language, containing 600
thousand words with morphological information and
a part-of-speech (POS) tagger. As a result of this stage
the word stress is assigned to the right syllable of every
word.

(3) Automated, or canonical, transcription is generated
by applying context-dependent letter-to-phone rules.

(4) Pronunciation variation is executed by iteratively
applying a separate set of phoneme-to-phoneme and
grapheme-to-phoneme transcription modeling rules
to the canonical transcriptions.

It is well known that knowledge-based rules, being “labo-
ratory” in origin, may happen to be inadequate when con-
fronted with real-world data. However this was our intent to
check this critical assumption on our test material. Moreover,
during the past decades, Russian phonetics has undergone
a general shift from laboratory speech to fully spontaneous
[32, 33], and the rules we use are based on vast research on
spontaneous speech traits.

The rules are divided into two main groups. The first con-
tains substitution, deletion, and insertion rules, which apply
to initial phonetic transcriptions. Here are some examples of
such rules:

(i) [@] (“schwa”), followed by a consonant, is deleted in
the unstressed position after stressed syllable.

(ii) [f] is deleted from consonant sequence [fs] + (any)
unvoiced consonant.

(iii) Affricates [c] and [tj’] are substituted by fricatives [s]

and [jj], respectively (sign j denotes that a consonant
is palatalized).

(iv) Sonorant [j] is deleted before unstressed vowel at the
beginning of words.

(v) Noise stops (e.g., [p], [t], [pj], and [t']) are deleted in
the final position after vowels due to implosive pro-
nunciation (i.e., without burst following articulators
closure).

The second group of rules makes use of both morphological
and orthographical level of linguistic representation. Hence,
this is not correction to initial transcriptions (phoneme-to-
phoneme rules) but a separate set of grapheme-to-phoneme
rules. Here are some examples:

(i) [@j@] and [uju] in unstressed inflections of adjectives
“-~ag” and “~y10” are changed to [@e] and [u], respec-
tively.

(ii) [@v@], [iv@], and [iv@] in unstressed noun inflec-
tions “—oro” and “-ero” are changed to [@@], [i@],
and [i@].
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(iii) [@t] in verb inflections “~at” is changed to [it].

For frequent words we also added another set of rules,
which generate simplified pronunciation, which is common
to informal spontaneous speech. These include [d’] and [v]
deletion in intervocalic position, [sjtj] changing to [¢/], and
so forth.

3.3. Language Models and the Choice of Relevant Content
to Train Them. Initially language models have been trained
with a few gBs of user-generated content to be found on
the Internet, including public forums, social networks, and
chats. The idea behind this was that such content would better
represent spontaneous speech and thus ensuring more sus-
tainable keyword spotting results. However the experiments
have shown that such linguistic material occurred to bear an
intrinsic drawback, because it contains enormous number of
spelling errors which led to a statistic bias and wrong lemmas
to appear in the lexicon. Hence a decision was taken to rely
on standard and error-free texts derived from a wide range
of books of different genres available on the Internet. Only
books by modern authors (1990s and later) were chosen to
reflect current traits of Russian speech. However only the
dialogues have been extracted from such books to guarantee
the “live” style of communication, which is characteristic of
real-world telephone speech. 2 gB of raw text data was used
as a result to train a unigram and bigram language models
containing 600 000 Russian lemmas. The LMs were trained
using SRILM toolkit [34] with Good-Turing discounting
algorithm applied.

Current research in the domain of language modeling is
focused on applying deep neural networks and high-level LM
rescoring [35]. In our case there is insufficient data to train
such models, which motivated us to shift to much simpler
models. As outlined in Section 3.4 we do not rely on the most
probable word sequence in the recognition result to detect
keywords; rather we want to generate as diverse and “rough”
lattice on the indexing step to guarantee high probability for
the spoken term detection. Simple bigram/unigram language
modeling fits this aim quite well.

3.4. Decoding, Word Spotting, and Automated Word Form
Generation. The main idea behind using LVCSR to find
keywords is to transform speech signal into a plain text
and then search for the word in this text. However due to
diverse types of communication context in the telephone
conversational speech it is not viable to use the top decoding
result per se. Rather, it makes sense to parse the resulting
recognition lattice to find every possible node with the
keyword. Hence speech is first indexed into recognition
lattices; the keyword search is performed on-demand at a
later stage.

To improve spotting results we make intensive use of the
linguistic processor described above. When a word is entered
as a search query its forms are automatically generated by
addressing the morphological dictionary (see Figure 1) and
a set of variants are derived for the word which are then
searched in the lattice and appear in the recognition results
list. For example, when the word “kycok” is to be searched

5
TABLE 1: Experimental results.
Parameter Value
MTWV 0.37
RTF 2.0

(Russian word for “a piece”) all the words containing this
sequence will be searched within a recognition lattice; hence
the user will be able to spot the words “kycka” and “kyckom”
and so forth. Since Russian is an inflectional language
numerous forms are available for one word. Consequently
low-order (unigram and bigram) language models used in
our system cause the recognizer to make errors in the word
endings. The simple idea described above helps to avoid
errors and achieve much better results.

4. Experimental Results

The system described hereby is intended to be used in
real-world applications to analyze telephone-quality speech.
To test it a 10-hour database including the recordings of
dialogues of around 50 speakers has been recorded using the
hardware and software of SpRecord LLC (http://www.spre-
cord.ru/). 1183 different keywords are searched within the
database. The signal-to-noise ratio falls between 5 and 15 dB,
reflecting an adverse real telephone channel environment.

Maximum Term-Weighted Value (MTWYV) is a predicted
metric corresponding to the best TWV for all values of the
decision threshold; 8 (see formula (1)) and real-time factor
(RTF) metrics (formula (2)) are used to evaluate system
performance; the former metric reflects the quality of word
spotting, and the latter reflects its speed. RTF parameter is
calculated on 1 CPU unit of 3 gHz. The results are shown in
Table 1.

TWV (0) = 1 — [Py (0) + B+ Py (0)] . )

0 is the threshold used to determine a hit or a miss, and f3 is
the weight that accounts for the presumed prior probability
of a term and the relative costs of misses and false alarms are
equal to 0.999 in our study.

proc

T
RTF = -2, )

set

Tproc is the time spent on processing the file, and T, is the
duration of the test set.

In order to understand whether these results correspond
to the current state of the art we compared them to the result
of another scientific group for spoken term detection in tele-
phone conversational of another underresourced language
(Cantonese) [11]. What we saw is that our results in terms
of keyword search quality fall in between those reported
for Cantonese when GMMs are used in the acoustic model
and are slightly worse when deep neural networks are used
(MTWYV 0.335 and 0.441, resp.). As for the real-time factor
our results outperform those reported in [14], which may be
attributed to a relatively small number of Gaussians we use
per senone.
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5. System Architecture and User Interface

5.1. Principal Components. The algorithms described in Sec-
tion 2 were used in creating “ANALYZE” software—an
industrial speech analytics system. Figure 3 outlines the
key system components: word spotting server, terminal, and
data repository. Word spotting server processes speech data
and saves index with positions of searched keywords into
the database. The terminal is used to schedule or launch
immediate search queries and to view the search results. The
search is performed in two steps: first, the lattice with speech
recognition results is generated for each wave file; second, the
keyword is found via a substring search within this lattice. The
data repository contains both speech files and corresponding
indices.

5.2. User Interface. The key problems of human-machine
interaction within speech analytics systems, including accu-
rate treatment of the keyword spotting results, and the role

of in the optimization of workflows in modern organizations
are reflected in [36-39]. Figure 4 outlines the user interface
of the ANALYZE software which has been developed based
on use-cases validated with the end-users. Usability and use-
case integrity were tested in the real-world environment.
All settings are available in 1-2 clicks; real-time reporting is
shown on the screen; navigation panel provides access to all
needed functions. Table 1 with search results provides easy
filtering and listening modes. Figure 3 presents the main
board of the system’s user interface.

An essential benefit of the software is the ability to work
in real-time mode on the workstations with limited resources,
which makes it worthy for small organizations with a fraction
of telephone lines in use.

6. Conclusion and Further Plans

A keyword spotting system for Russian based on LVCSR
has been described in this paper. General availability of
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open-source software made it easy to be implemented and
linguistic modules helped to improve the system quality,
while representative training and test data ensured the appli-
cability of the system to real-world problems.

The ongoing research is aimed at further tuning the
acoustic and language models, trying probabilistic frame-
works for grapheme-to-phoneme conversion, data-driven
transcription variation, introducing noise compensation and
pause detection into the front-end and at creating specific
confidence measures to minimize false alarms which are
caused by frequent words in the language model.

In building our automated keyword spotting system
based on large vocabulary continuous speech recognition we
relied on the results of the scientific community, namely, the
open-source software CMU Sphinx for acoustic modeling
and decoding and SRILM for language modeling. At the same
time the system has several technological advantages: the use
of linguistic knowledge in training and decoding, namely, a
morphological parser of texts and transcription variation to
generate word transcriptions, transcription variation rules,
and automated generation of word forms on the spotting
step; real-world industrial data used to train acoustic models;
accurate language modeling achieved via cautious choice of
training data; real-time operation mode on limited computer
resources.

We believe that high-quality automated keyword spotting
system based on large vocabulary continuous speech recog-
nition for online speech data analysis can be used both as a
technological platform to create effective integrated systems
for monitoring and as a ready-to-use solution to monitor
global information space.
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