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Linear discriminant analysis has been widely studied in data mining and pattern recognition. However, when performing the
eigen-decomposition on the matrix pair (within-class scatter matrix and between-class scatter matrix) in some cases, one can find
that there exist some degenerated eigenvalues, thereby resulting in indistinguishability of information from the eigen-subspace
corresponding to some degenerated eigenvalue. In order to address this problem, we revisit linear discriminant analysis in this paper
and propose a stable and effective algorithm for linear discriminant analysis in terms of an optimization criterion. By discussing
the properties of the optimization criterion, we find that the eigenvectors in some eigen-subspaces may be indistinguishable if the
degenerated eigenvalue occurs. Inspired from the idea of the maximum margin criterion (MMC), we embed MMC into the eigen-
subspace corresponding to the degenerated eigenvalue to exploit discriminability of the eigenvectors in the eigen-subspace. Since
the proposed algorithm can deal with the degenerated case of eigenvalues, it not only handles the small-sample-size problem but
also enables us to select projection vectors from the null space of the between-class scatter matrix. Extensive experiments on several
face images and microarray data sets are conducted to evaluate the proposed algorithm in terms of the classification performance,

and experimental results show that our method has smaller standard deviations than other methods in most cases.

1. Introduction

Linear discriminant analysis (LDA) [1-4] plays an important
role in data analysis and has been widely used in many
fields such as data mining and pattern recognition [5]. The
main aim of LDA is to find optimal projection vectors by
simultaneously minimizing the within-class distance and
maximizing the between-class distance in the projection
space and optimal projection vectors can be achieved by
solving a generalized eigenvalue problem. In solving classical
LDA, the within-class scatter matrix is required to be nonsin-
gular in the general case. However, in many applications such
as text classification and face recognition [6], the within-class
scatter matrix is often singular since the dimension of data we
deal with is much bigger than the number of data points. This
is known as the small-sample-size (SSS) problem.

In the past several decades, various variants of LDA [7-
10] have been proposed to address the problems of high-
dimensional data and the SSS problem. It is noted that most of
LDA-based methods are divided into four categories in terms

of the combination of spaces of the within-class scatter and
between-class scatter matrices [11].

The first category of these methods is to consider the
range space of the within-class scatter matrix and the range
space of the between-class scatter matrix. The typical algo-
rithm of this category is the Fisherface [1] method where
PCA is first employed to reduce the dimension of features
to make the within-class scatter matrix be full-rank and then
the standard LDA is performed. In the direct LDA method
[12], the null space of the between-class scatter matrix is first
removed and then the projection vectors are obtained by min-
imizing the within-class scatter distance in the range space
of the between-class scatter matrix. Li et al. [13] proposed
an efficient and stable algorithm to extract the discriminant
vectors by defining the maximum margin criterion (MMC).
The main difference between Fisher’s criterion and MMC is
that the former is to maximize the Fisher quotient while the
latter is to maximize the average distance.

The second category mainly depends on exploiting the
null space of within-class scatter matrix and the range space



of the between-class scatter matrix. In terms of the null
space-based LDA, Chen et al. [14] proposed to maximize
the between-class scatter in the null space of the within-
class scatter matrix and their method is referred to as the
NLDA method. In order to reduce the computational cost of
calculating the null space of the within-class scatter matrix,
several effective methods have been proposed. Instead of
directly obtaining the null space of the within-class scatter
matrix, Cevikalp et al. [15] first obtained the range space of
the within-class scatter matrix and then defined the scatter
matrix of common vectors. Based on this, the projection vec-
tors were obtained from the scatter matrix they defined. They
also adopted difference subspaces and the Gram-Schmidt
orthogonalization procedure to obtain discriminative com-
mon vectors. Chu and Thye [16] adopted the QR factorization
on several matrices to exploit a new algorithm for the
null space-based LDA method. Sharma and Paliwal [17]
proposed an alternative null LDA method and discussed its
fast implementation. Paliwal and Sharma [18] also developed
a variant of pseudoinverse linear discriminant analysis and
this method yields better classification performance.

The third category consists of those methods that make
use of the null space of within-class scatter matrix, the range
space of between-class scatter matrix, and the range space
of within-class scatter matrix. Sharma et al. [19] applied
improved RLDA to devise a feature selection method to
extract important genes. In order to address the problem of
the regularization parameter in RLDA, Sharma and Paliwal
[20] applied a deterministic method to estimate the parame-
ter by maximizing modified Fisher’s criterion.

The fourth category is made up of those methods that
explore all the spaces of the within-class scatter matrix and
the between-class scatter matrix. Sharma and Paliwal [11]
applied a two-stage technique to regularize both the between-
class scatter and within-class scatter matrices to achieve the
discriminant information.

In addition, there are other variants of LDA that do not
belong to four categories mentioned above. Uncorrelated
local Fisher discriminant analysis in terms of manifold learn-
ing is devised for ear recognition [21]. An exponential locality
preserving projection (ELPP) is presented by introducing the
matrix exponential to address the SSS problem. A double
shrinking model [22] is constructed for manifold learning
and feature selection. Li et al. [23] analyzed linear discrim-
inant analysis in the worst case and reduced this problem
to a scalable semidefinite feasibility problem. Zollanvari and
Dougherty [24] discussed asymptotic generalization bound
of linear discriminant analysis. Lu and Renals [25] used
probabilistic linear discriminant analysis to model acoustic
data.

In this paper, we revisit the optimization criterion for
linear discriminant analysis. We find that there exists the
degenerated case for some generalized eigenvalues. In order
to deal with the degeneration of eigenvalues, we develop
a robust implementation for this criterion in this paper.
To be specific, the null space of the total scatter matrix is
first removed to remedy the singularity problem. Then the
eigen-subspace corresponding to each specific eigenvalue is
achieved. Finally, in each eigen-subspace, the discriminability
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of eigenvectors is measured by the maximum margin crite-
rion and the projection vectors can be achieved by optimizing
this criterion. We also conduct extensive experiments to
evaluate the proposed method on various well-known data
sets such as face images and microarray data sets. Experimen-
tal results show that our method is more stable than other
methods in most cases.

2. Related Works

Assume that there are a set of n-dimensional data points,
denoted by {x,,..., x5}, wherex; € R” (i=1,...,N). When
the labels of data points are available, each data point belongs
to exactly one of ¢ object classes {/;,...,l.} and the number
of samples in class [; is n;. Thus, N = Y7, n; is the number
of all data points. In classical linear discriminant analysis, the
between-class scatter matrix, the within-class scatter matrix,
and the total scatter matrix are defined as follows:

Cc
T
Sp = Z”i (m; —m) (m; —m)" = HbeT’
i=1

Sw= Y, (x=m)(x—m)" = H,H,, 1)
i=1 xel;

i=1

N . .
S = Z(xi—m)(xi—m) =H,H,,

i=1

where m; is the centroid of the ith class and m is the global
centroid of the data set. The precursor matrices are defined as

H, = [y, (my —m),..., v (m. - m)],
H, = [Xl —mlelT,...,XC—mCecT], ()
H, =[x, -m,...,xy—m],

wheree; = (1,..., l)T € M" and X, is the data matrix that
consists of data points from class I;.

Classical LDA is to find the projection direction by
making data points from different classes far from each other
and data points from the same class close to each other. To
be specific, LDA is to obtain the optimal projection vector by
optimizing the following objective function:

w'S,w
max ], (w) = max < wTSZw) . (3)

The optimal projection direction w can be achieved by solving
the generalized eigenproblem: S,w = AS,w. In general, there
are at most ¢ — 1 eigenvectors corresponding to nonzero
generalized eigenvalues since the rank of the matrix S, is
not bigger than ¢ — 1. When S, is singular, some methods
including PCA plus LDA [1], LDA/GSVD [7], and LDA/QR
[26] can be used to deal with this problem.
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3. Optimization Criterion and Its
Robust Implementation

In this section, we revisit an optimization criterion for linear
discriminant analysis and its properties are analyzed in detail.
Finally, we discuss its robust implementation.

Note that if the matrix S, is singular, the optimal function
value of (3) will take the positive infinity. There are several
variants of the model in (3) that can be found [27]. In
fact, when the matrix S, is nonsingular, it is not difficult
to verify that these variants of (3) are equivalent [27]. For
convenience, we adopt the following optimization criterion
to give a stable and efficient algorithm for linear discriminant
analysis, denoted by

T
min ], (w) = min ( v Sww) . (4)

wl'S,w

The main aim for adopting (4) is based on the following
reasons. First, the objective function is a bounded function
in the general case, which avoids the case that the objective
function takes the infinity. Second, since the null space of
S, plays an important role in some cases, especially in the
small-sample-size problem, the optimization criterion of (4)
also provides convenience for analyzing the null space of S,,.
In fact, it is straightforward to verify that (4) and (3) are
equivalent under some conditions. Most importantly, (4) can
produce more generalized eigenvalues than (3) since the rank
of S, is not smaller than the rank of S,,. In addition, from the
viewpoint of optimization, the objective function we optimize
is usually bounded. Thus, (4) is more preferred than (3) in
some cases.

It is obvious that the optimal projection w of (4) can be
achieved by solving the generalized eigenproblem: S, w =
AS,w when the matrix S, is nonsingular. Later we will note
that the generalized eigenvalue A will take values in the
interval of 0 and 1. Different from classical LDA, we extract
the discriminant vectors which are composed of the first g
eigenvectors of S;'S,, corresponding to the first g smallest
eigenvalues if S, is nonsingular. In such a case, we can avoid
the singularity problem of the matrix S,. Before giving an
explicit implementation of the optimization criterion of (4),
we start by giving the definitions of some subspaces [28].

Definition 1. Let A be an n x n positive semidefinite matrix
and A be an eigenvalue of A. The set of all eigenvectors of
A corresponding to the eigenvalue A, together with the zero
vector, forms a subspace. This subspace is referred to as the
eigen-subspace of A with A.

Definition 2. The null space of the matrix A is the set of all
eigenvectors of A with A = 0.

Definition 3. The range space of the matrix is the set of all
eigenvectors of A corresponding to nonzero eigenvalues.

In the case of the positive semidefinite matrix, the number
of repeated roots of the characteristic equation det |[AI-A| = 0
determines the dimension of the eigen-subspace of A with A.
If the dimension of the eigen-subspace of A with A is bigger

than 1, the eigenvalue A is degenerative since the number of
repeated roots of the characteristic equation is bigger than 1.
It is observed from (1) that the matrices S,, S, and S, are
positive semidefinite. According to the above definitions, we
can obtain the following four subspaces from S, and S, [20]:

(a) The null space of S, is denoted by null (S;).

(b) The null space of S, is denoted by null (S,)).

(c) The range space of S, is denoted by span (S,).

(d) The range space of S, is denoted by span (S,,).

Based on these four subspaces, we can construct another
four subspaces.

(e) Subspace A is defined as the intersection of span (S,)
and null (S,).

(f) Subspace B is defined as the intersection of span (S;)
and span (S,)).

(g) Subspace C is defined as the intersection of null (S,)
and span (S,,).

(h) Subspace D is defined as the intersection of null (S,)
and null (S,).

From Subspaces A, B, C, and D, we find that the objective
function J,(w) of (4) satisfies the following equation:

(0 w € Subspace A
(0,1) w € Subspace B

Jo(w) =1 1 w € Subspace C ®)
g w € Subspace D.

From (5), one can see that if w is taken from Subspace A,
Subspace B, or Subspace C, the objective function J,(w) is
bounded. If w belongs to Subspace D, the objective function
J,(w) takes the indefinite value. It is of interest to note that
the null space of S, is the intersection of the null space of
S, and the null space of S,,. It has been proved that the null
space of S, does not contain any discriminant information
[29]. Thus, Subspace D does not contain any discriminant
information and this also shows that part of the null space
of §,, does not contain discriminant information. Therefore,
Subspace D can be removed without losing any information
and this can be done by removing the null space of S,. An
effective method to remove the null space of S, is to perform
the singular value decomposition (SVD) [28] on H,, denoted
by H, = U,Z,V/', where U, consists of the left singular vectors
corresponding to the nonzero singular values of H,. In such
a case, we do not lose any information of data. By doing so,
we also remove part of the null space of S, that does not
contain discriminant information. Since we focus on (4), the
range space of S, must be considered. If the null space of S,
is removed, it is necessary to consider three subspaces in the
case of (4): the null space of S, the range space of S, and the
range space of S,. For these three subspaces, we also give their
relations with Subspace A, Subspace B, and Subspace C. It is
not difficult to verify that the intersection of the null space



of S, and the range space of S, is equivalent to Subspace A,
and the intersection of the range space of S, and the range
space of S, contains Subspaces B and C. This shows that we
do not lose any discriminant information from Subspace A,
Subspace B, and Subspace C if we solve (4). In such a case,
we first remove the null space of S,. That is, we consider the
following optimization function in the case of the range space
of S,,

=
min /5 (a) = min ( a iwa) , (6)

a’S,a

where S, = U/S,U,, S, = U/'S,,U,.
It is evident that §t in (6) is nonsingular when the

null space of S, is removed. In such a case, we obtain the
projection vectors which are composed of t eigenvectors of

§t_1§w corresponding to t eigenvalues. From (6), we can see
that J;(a) takes values in the interval of 0 and 1. In fact,
the value J5(a) gives an indicator of choosing the effective
subspace. According to the definition of the optimization
criterion, we have the following conclusions: the subspace
corresponding to J5(a) = 0 is the most important; the
subspace corresponding to J5(a) € (0,1) is the second
important; the subspace corresponding to J;(a) = 1 is the
least important.

By solving the generalized eigenproblem, S,a = AS,a,
we can obtain #(= rank(H,)) eigenvalues, which produces
t eigenvectors. In some cases some of these ¢ eigenvalues
may be equal. In other words, some eigenvalues degenerate
into the same eigenvalue, which may affect the performance
of some algorithms. Assume that these ¢ eigenvalues consist
of d (d < t = rank(S,)) different values A; (i = 1,..,
d) in an increasing order and have multiplicities s; (i =

.,d), where s; denotes the algebraic multiplicities of

the eigenvalue A; and Zid:l s; = t. In some situations, it
is useful to work with the set of all eigenvectors associ-
ated with a specific value A;. Let us define the following
set:

S(A) = {a :aeR and S,a = /\Sta}. (7)

The dimension of S(A;) is in general equal to the algebraic
multiplicities of A; since S, and S, are symmetric real
matrices. The set S(A;) forms the eigen-subspace of the matrix
pairs (S,,S,) corresponding to the generalized eigenvalue
A;. When the dimension of S(A;) is equal to 1, it is not
necessary to deal with this subspace since it only contains
an eigenvector. However, when the dimension of S(A;) is
bigger than 1, it is impossible to determine which eigenvector
in this eigen-subspace is the most important since all the
eigenvectors correspond to the same eigenvalue. The case
often occurs in the small-sample-size problem where the
dimension of the eigen-subspace of S(A; = 0) is relatively
high. In such a case, it is infeasible to determine which
projection vector in the eigen-subspace of S(A; = 0) is
the most important if we only use (7). For some nonzero
generalized eigenvalues from the matrix pair (S,,S,), the
dimension of S(A; # 0) may be bigger than 1. For example,
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S(A; = 1) shows that the eigenvector is taken from the null
space of S, = S, — S,,. Generally speaking, the dimension
of the null space S, is bigger than 1 and this makes the
dimension of S(A; = 1) be bigger than 1. So it is necessary
to use an additional strategy to determine the importance of
eigenvectors if the dimension of S(A;) is bigger than 1. For the
subspace S(A;), we can obtain a matrix whose columns consist
of the eigenvectors of the generalized eigenvalue A;, denoted
by P, . Obviously the dimension of S(A;) is equal to the
number of the columns of Py . If this matrix is provided, it is
straightforward to obtain an orthogonal basis by performing
the QR decomposition on P and the orthogonal basis can
be expressed in the matrix form: Qj,- Note that the space
spanned by the column vectors of P,\ is equivalent to the
space spanned by the column vectors of Qy,- Thus, in the
space spanned by the column vectors of Q) , we formulate the
following objective function based on the maximum margin
criterion.

max ], (g) =max(g'S,9-9'S,9),
(8)
T
g'g=1

where S, = Q) U/ $,U,Q,, S, = Q1 U/ S, U,Qy.

When the dimension of the set S(A;) is 1, it is easy to prove
that g = +1. When the dimension of the set S(A;) is blgger
than 1, it is necessary to obtain s; eigenvectors of Sb - S
corresponding to s; eigenvalues in a decreasing order. These
s; eigenvectors form the matrix G, (= [gy,...,9,]). Thus,
the discriminability of eigenvectors in the eigen-suiaspace of
S(A;) can be measured by the eigenvalues of S, — S,. This
gives suggestions on how to choose effective discriminant
vectors in the eigen-subspace S(A;), which solves the degen-
erated case of eigenvalues. In classical LDA, the discrim-
inability of eigenvectors in the eigen-subspace is sometimes
neglected.

Note that, in the small-sample-size problem, the dimen-
sion of the eigen-subspace of S(A; = 0) is relatively high.
In such a case, we need to obtain this eigen-subspace. In
fact, it is noted that the eigen-subspace S(A; = 0) is the
null space of S, and obtaining the null space S, may be
time consuming when the dimension of the null space of
S,, is high. Fortunately, several effective methods have been
proposed to obtain the null space of S,. Cevikalp et al. [15]
have proposed an effective algorithm to avoid computing
the null space of S, by finding the range space of S,,. Note
that the dimension of the range space of S,, is equal to the
rank of the matrix S,,. Based on the range space of S, we
can obtain common vectors for each class and construct
the scatter matrix of the common vectors as done in [15].
Finally, the projection vectors can be obtained by performing
eigen-decomposition on the scatter matrix of the common
vectors.

As a summary of the above discussion, we list the
detailed steps for solving linear discriminant analysis in
Algorithm 4.
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Algorithm 4. It is a stable and efficient algorithm for solving
linear discriminant analysis.

Step 1. Construct H,,, Hy, and H,, and compute the left singu-
lar matrix U, of H, by performing the SVD on H, = U,%,V/,
where U, consists of singular vectors corresponding to the
nonzero singular values of H,; obtain H,, = (UtZt_l)THw.

Step 2. Obtain the range space of H,, denoted by U,
whose column vectors are orthogonal; perform the SVD on

U,)'H, = UwaVE and assign o; in an increasing order
from the diagonal elements of 2.

— —T
Step 3.LetY = 1,,,-U,U,.IfY is not a zero matrix, perform
Step 4; otherwise, go to Step 5.

Step 4. Based on Y, obtain the common vectors of each class,
compute the scatter matrix of common vectors, and perform
the eigen-decomposition on the scatter matrix of common
vectors to obtain projection vectors, denoted by Q.

Step 5. For each nonzero o;, do the following.

Step 5(a). Obtain the singular submatrix U, by searching the
column vectors of U,, corresponding to the singular value o;;
let P, = UZ; lva; apply the QR decomposition on P, to
obtain the matrix Q, whose column vectors are orthogonal.

Step 5(b). Let S, = ((Q,)'H,)(H,Q,) and §, =
((Qoi)THw)(HgQai); compute all discriminant vectors which
are the eigenvectors of S, — S ; sort the eigenvectors accord-

ing to the eigenvalues of S, — S, in a decreasing order and
form the matrix G,, .

Step 6. Obtain the transformation matrix T = [U,Qy, Q, G, »
> Qg,Gg 1.

Note that, in Step 2 of Algorithm 4, we only need to
obtain the range space of ﬁw, that is, an orthonormal basis
of H,,. There are some effective methods for obtaining the
range space of H,,. For example, the range space of H,, can

be achieved by finding the left singular matrix U, of H,,
corresponding to nonzero singular values. It is pointed out in

(28] that computing left singular vectors of H , corresponding
to nonzero singular values is more efficient than finding left

singular vectors of H,, corresponding to all singular values
including zeros. In addition, one may resort to difference
subspaces and the Gram-Schmidt orthogonalization proce-

dure [15] to obtain the range space of H,. Note that, in Step
3 of Algorithm 4, we use a criterion to judge whether the
null space of ﬁwﬁi exists. If Y = I, — ﬁwﬁi is not a
zero matrix, this shows that there exists the null space of
ﬁwﬁi. In such a case, one may use the method (Step 4 of
Algorithm 4) proposed in [15] to further deal with the null
space of ﬁwﬁi. It is observed from Algorithm 4 that we need
to perform Step 5 of Algorithm 4 regardless of the existence

of the null space of H,,H,. In such a case, we can see that

5
TABLE 1: Statistics of the data sets we use.
Datasets Number of I\_Iumbe_r of Number of
samples dimensions classes

ORL 400 112 % 92 40
Yale 165 112 % 92 15
ALLAML 72 7129 2
Duke-Breast 42 7129 2
Colon 62 2000 2
Prostate 102 5966 2
Leukemia 72 7129 2
MLL 72 5848 3

t (= sy +---+s,) eigenvectors can be ordered in terms of their
importance. By performing Algorithm 4, we can evaluate the
projection vectors from Subspace C which is often neglected
in the previous literature. It is obvious that the above method
can provide ¢ discriminant vectors because the rank of H, is ¢
which is much bigger than ¢ — 1. As a result, this method may
be helpful when the number of classes is relatively small. Note
that we use the eigenvalue A; in (7) and it is not difficult to
verify that A, = (0;)*. If the singular value 0, occurs only once
in the diagonal elements of X, we do not need to perform
Step 5(b) in real applications.

4. Experiments Results

In our experiments, we use the ORL face database, the
Yale face database, and microarray data sets to evaluate
the performance of Algorithm 4. The ORL face database
consists of 40 distinct persons, with each containing 10
different images with variations in poses, illumination, facial
expressions, and facial details. The original face images are
resized to 112 x 92 pixels with 256-level gray scales. The Yale
face database contains 165 gray-scale images of 15 individuals.
The images demonstrate variations in lighting condition and
facial expressions. All of these face images are aligned based
on eye coordinates and are resized to 112 x 92 pixels. Six
microarray data sets including ALLMLL [30], Duke-Breast
[31], Colon [32], Prostate [32], Leukemia [32], and MLL [32]
are used to test the proposed method. Table 1 lists the statistics
of the data sets we use. It is observed that the dimensions
of features of samples on these data sets are much higher
than the number of samples. The experiments are performed
on a PC with the operating system of Windows 8.1, an i3
CPU (3.30GHz) and an 8 G memory. The programming
environment is MATLAB 2014a.

4.1. Face Recognition. In this set of experiments, the number
of each individual in the training set varies from 2 to
min{n,,...,n} — 1, and the remaining images in the data
set are used to form the testing set. To reduce the varia-
tions of the accuracies from randomness, the classification
performance we report in the experiments is achieved over
twenty runs. That is, there are twenty different training
and testing sets used for evaluating the classification per-
formance. We compare the proposed method with some
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FIGURE 1: The error rates of each algorithm on two face databases.

TABLE 2: Performance comparisons (%) of some methods on face databases.

Databases TS

DLDA PCA+LDA MMC DCV LDA/QR LDA/GSVD Ours
2 36.73 (4.05)  29.82(3.08) 18.04 (2.35) 16.43 (1.95) 21.62 (3.08) 19.92 (2.08) 16.32 (1.91)

ORL 4 8.45 (1.45) 8.60 (1.83) 6.52 (1.60) 6.12 (1.95) 8.45 (1.45) 10.45 (1.72) 5.31 (1.70)
6 3.21(1.31) 3.37 (1.62) 2.96 (1.31) 3.26 (114) 3.21(1.31) 7,09 (1.34) 2.50 (L11)
8 1.75 (2.99) 2.00 (1.68) 2.18 (2.29) 2.00 (2.20) 1.75 (2.29) 4.12 (1.76) 1.75 (1.33)
2 52.88 (4.68) 65.14 (8.70)  40.07 (4.35) 2877 (1525)  41.66 (5.23) 37.81 (4.45) 35.81 (3.85)

Vale 4 28.09 (4.51)  38.23(3.68)  30.61(4.80) 19.85 (4.18) 30.61 (4.80) 19.47 (4.02)  19.47 (3.06)
6 22.86 (4.07)  23.60 (5.24) 21.53 (4.56) 12.06 (3.76) 24.26 (6.08) 12.06 (3.87) 1153 (3.27)
8 19.33 (4.45) 20.00 (5.67) 1744 (6.29) 10.44 (3.80) 19.33 (4.45) 9.66 (3.61) 9.55 (3.25)

previous methods including LDA/GSVD [7], LDA/QR [26],
DLDA [12], PCA+LDA [1], MMC [13], and the discriminant
common vector (DCV) approach [15] which is an effective
approach for solving NLDA [14]. Note that these methods
are designed to solve the small-sample-size problem when
linear discriminant analysis is used. Subspace A or Subspace
B are considered in LDA/QR, DLDA, PCA+LDA, and DCV.
Although LDA/GSVD makes use of three subspaces (Sub-
space A, Subspace B, and Subspace C), the importance of
projection vectors in some eigen-subspaces is not effectively
measured in some cases. In this paper we do not compare
other discriminant methods since the main objective of paper
is to provide a stable and efficient algorithm for solving the
degenerated eigenvalue of LDA. Note that we do not give the
running time of algorithms we test since some methods only
make use of part of subspaces in (5). Generally speaking, the
performance of each algorithm varies with the change of the
dimension of features. For comparisons, we try to search for
the performance on all the feature dimensions and list the
best one.

Figure 1 shows the error rate of each method we test
with different training images in each class on the ORL and
Yale face databases. For clarity, we also show the mean and
standard deviation in the parentheses of the error rates of
each method in Table 2. Note that the best performance of
each method in each line is highlighted in bold and we show
the results of 2, 4, 6, and 8 training images per class.

From Figure 1 and Table 2, one can see that the error rate
of each algorithm decreases as the number of the training
samples in each class increases in most cases. It is observed
from Table 2 that the standard deviation of our method is
smaller than that of the other methods in most cases. On the
ORL face database, the error rate of our method decreases
from 16.32% with 2 training samples per class to 1% with 9
training samples per class, while the error rates of DLDA,
PCA+LDA, MMC, DCV, LDA/QR, and LDA/GSVD decrease
from 36.73%, 29.82%, 18.04%, 16.43%, 21.62%, and 19.92%
with 2 training samples per class to 1.75%, 1.25%, 1.625%,
1.125%, 2.75%, and 3% with 9 training samples per class,
respectively. The results show that our method outperforms
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FIGURE 2: The error rate of the proposed method with the change of features.

other methods in most cases. On the Yale face database,
although the DCV method gives the best result in the case
of 2 training samples per class, it obtains the biggest standard
deviation. It is also observed that our method is superior to
other methods in terms of the classification performance with
the increase of training samples.

Since the number of the extracted features of samples by
using the proposed method is not limited by the number of
classes and only limited by the rank of §,, we can project
the samples onto the space whose dimension is greater than
the number of classes. Figure 2 shows a plot of the error
rate versus dimensionality. The numbers in the parentheses
denote the optimal dimension corresponding to the best
classification performance. As can be seen from Figure 2,
the error rate of the proposed method decreases with the
increase of training samples per class. It is also found from
Figure 2 that the classification performance may be improved
when the dimension of the reduced space is bigger than
the number of classes. On the Yale face database, it is
observed that the error rate of the proposed method first
decreases and then rises with the increase of dimensions,
which shows that choosing too many features yields the
overfitting phenomenon in the classification task. On the
ORL face database, the error rate of the proposed method first
decreases drastically and then becomes flat when the number
of training samples is bigger than 2. It is found that the best
performance of our method is achieved when the number of
extracted features is much bigger than the number of classes.
In short, these experimental results show that Subspace C
which is often neglected in classical LDA in (5) may play a
role in face recognition in some cases.

Now let us explain the reason why our method can
achieve the good classification performance. The DLDA and
LDA/QR methods first remove the null space of S,. However,
removing the null space of S, will also lose part of the

null space of S, and may result in the loss of important
information in the null space of S,,. The PCA+LDA method
does not consider the null space of S,,. It has been proved
that the null space of S, will play an important role in the
SSS problem [14]. The DCV method does not make use
of subspace B in (5) and this subspace may be helpful in
obtaining discriminant vectors in the SSS problem. Although
the LDA/GSVD method considers three subspaces, the dis-
criminability of each eigen-subspace is not analyzed. In the
MMC method, the discriminant vectors in Subspace A and
Subspace B in (5) may have the same objective function. This
results in the difficulty in determining which discriminant
vector is the most important. In fact, Subspace C in (5)
is often neglected in LDA-based methods in the previous
literature. We give a strategy to measure the importance of
each discriminant vector in all subspaces including Subspace
C for the first time. As can be seen from Figure 2, Subspace C
also plays a role in face recognition. As a result, the proposed
method can achieve better classification performance than
other methods in the general case.

In the following experiments, we study the effect of
image sizes on the classification performance in terms of
two face databases. Since the number of face images on
these two face databases is relatively small, the leave-one-out
method is performed where it takes one image for testing
and the remaining images for training. By reducing the image
resolution of 112 = 92 pixels, we can obtain 56 * 46 pixels
where each pixel value is the average value of a 2 * 2 subimage
of the original images. Similarly, we can achieve the images
with 28 % 23 pixels. In such cases, there exists the null
space of the within-class scatter matrix. Table 3 shows the
experimental results of each method in three resolutions on
two face databases.

As can be seen from Table 3, the error rate of each
method does not always increase with the reduction of image
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TaBLE 3: Comparisons of misclassification rates (%) of several methods on face databases.
Databases  Training size DLDA PCA+LDA MMC DCV LDA/QR LDA/GSVD Ours
112 * 92 2.25 (1.68) 250 (2.68) 250 (1.66) 150 (L74)  3.25(2.68) 250(2.04)  2.25(1.84)
ORL 56 46 2.00(2.58)  2.00(2.83)  2.50(2.83)  2.00(2.58)  3.00(2.35) 2.75 (3.40) 1.25 (1.31)
28 % 23 2.00 (2.29) 4.75(2.94) 2.00 (2.58) 5.25(4.31) 3.75(2.58) 6.25 (4.75) 2.00 (2.37)
112 + 92 2100 (1024) 1636 (8.62)  1151(6.72)  12.12(833)  20.60 (9.16)  12.12(9.34)  9.09 (6.22)
Yale 56 % 46 20.00 (6.66)  1515(793)  2727(1021)  10.90 (8.85)  21.21(8.85)  10.90 (5.39)  7.87 (5.19)
28 % 23 1939 (10.93) 1272 (8.66)  14.54(9.34)  9.09(9.07)  20.00 (IL15)  9.09(9.07)  8.48 (9.02)
TABLE 4: Error rates (%) of each method on microarray data sets.
Datasets DLDA PCA+LDA MMC DCV LDA/QR LDA/GSVD Ours
ALLMLL 4.27 (3.50) 5.00 (4.27) 411 (4.32) 3.99 (4.01) 4.32 (5.05) 4.01 (4.72) 3.78 (3.23)
Duke-Breast  14.32 (9.15) 12.67 (8.96) 11.98 (7.69) 12.05 (8.99) 13.03 (9.45) 11.88 (8.22) 11.56 (8.03)
Colon 3111 (18.28) 22.78 (19.24) 23.33 (19.56) 23.33 (19.56) 3111 (18.92) 23.33 (19.56) 20.00 (17.21)
Prostate 6.88 (6.32) 6.94 (751) 6.74 (8.02) 6.63 (7.03) 7.88 (6.23) 6.55 (6.21) 6.32 (5.99)
Leukemia 12.85 (17.10) 16.28 (17.10) 2.85 (6.02) 2.85 (6.02) 12.95 (6.02) 2.85 (6.20) 1.42 (4.51)
MLL 9.88 (5.52) 13.93 (6.02) 9.52 (5.09) 9.34 (5.85) 10.93 (5.42) 9.62 (5.45) 9.01 (5.01)

resolutions. On the ORL face database, the DCV method
obtains the best classification result on the resolution of 112
92 pixels. With the reduction of image resolutions, the perfor-
mance of NLDA becomes worse since the dimension of the
null space of S, becomes smaller. On the ORL face database,
the proposed method is better than LDA/GSVD and has a
smaller standard deviation than other methods in most cases.
The main reason is that we consider the degenerated case
of the eigenvalue. It is noted that our method achieves the
best classification result when the resolution of images is
56 %46 pixels. On the Yale face database, the proposed method
outperforms other methods in terms of the classification
performance. It is also observed that the best recognition rate
among all methods is 92.13% and is achieved by the proposed
method when the images are 56 * 46 pixels on the Yale face
database. From these experiments, we can also notice that it
is not necessary to use the large-size images to obtain good
classification performance in the classification task.

4.2. Applications to Microarray Data Sets. In this set of
experiments, we further validate the proposed method on
microarray data sets. In order to evaluate the classification
performance of various LDA methods, we adopt the tenfold
cross validation on these data sets. In other words, we divide
each data set into ten subsets of approximately equal sizes.
Then we perform training and testing ten times, each time
leaving out one of the subsets for training and the discarded
subset for testing. The classification performance is averaged
over ten runs. Table 4 shows the mean and the standard
deviation of the error rate of each method.

As can be seen from Table 4, the classification perfor-
mance of the proposed method is consistently superior to
that of other methods on all the data sets we tested. It is
found that our method is more stable than other methods
since the standard deviation of our method is smaller than
that of other methods on all of data sets we tested. It is
noted that PCA+LDA performs poorly on Leukemia and

MLL data sets. This may come from the fact that the null
space of the within-class scatter matrix is removed and it
plays an important role in obtaining discriminant feature
vectors. It is also found that DLDA does not give satisfactory
results on Duke-Breast and Colon data sets since DLDA may
remove the part of the null space of the within-class scatter
matrix. One can see from Table 4 that the NLDA method
achieves good classification accuracies on these data sets
since these data sets are the small-sample-size sets. One can
also observe that the LDA/QR method does not perform well
on some data sets. This may be explained by the fact that the
LDA/QR method may remove part of the range space of S,
and part of the null space of S,,. It is found that LDA/GSVD is
not better than our method although LDA/GSVD considers
three subspaces. This is possibly because in LDA/GSVD the
discriminability of each eigen-subspace is not given. Because
the discriminant vectors in Subspace A and Subspace B in
the MMC method may correspond to the same objective
function, this may lead to the degradation in MMC. Overall,
the proposed method is very stable on these data sets due
to the fact that we consider the degenerated eigenvalues of
scatter matrices, especially for Subspace C which is neglected
in previous literature.

5. Conclusions

In this paper, we revisit linear discriminant analysis based on
an optimization criterion. Different from the existing LDA-
based algorithms, the new algorithm adopts the spirit of
the maximum margin criterion (MMC) and applies MMC
to the eigen-subspace when the eigenvalue is degenerative.
The new implementation avoids the singularity problem in
the SSS problem and provides more than ¢ — 1 discriminant
vectors. We also conduct a series of comparative studies on
face images and microarray data sets to evaluate the proposed
method. Our experiments on face images and microarray
data sets demonstrate that the classification performance
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achieved by our method is better than that of other LDA-
based algorithms in most cases and the proposed method is
an effective and stable linear discriminant method for dealing
with high-dimensional data.
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