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The cognitive overload not only affects the physical and mental diseases, but also affects the work efficiency and safety. Hence, the
research of measuring cognitive load has been an important part of cognitive load theory. In this paper, we proposed a method
to identify the state of cognitive load by using eye movement data in a noncontact manner. We designed a visual experiment to
elicit human’s cognitive load as high and low state in two light intense environments and recorded the eye movement data in this
whole process. Twelve salient features of the eye movement were selected by using statistic test. Algorithms for processing some
features are proposed for increasing the recognition rate. Finally we used the support vector machine (SVM) to classify high and
low cognitive load. The experimental results show that the method can achieve 90.25% accuracy in light controlled condition.

1. Introduction

In the field of cognitive psychology, cognitive load refers
to the amount of mental effort being used in the working
memory. Cognitive load is always related to a specific task,
and people need to use the limited resources of working
memory to complete this task. When the task’s difficulty is
controlled within a certain range, the more complex the task
is, the more the cognitive resource is needed, which means
the higher the cognitive load is.

In a classroom, a teacher often needs to combine the
students’ cognitive structure and performance tomeasure the
students’ cognitive load state, so as to adjust the teaching
content and strategy. The method that the teacher uses is
subjective and empirical. In a remote education system, due
to the lack of the cognitive load evaluation process between
teachers and students, the teaching quality may not be satis-
factory. Therefore, finding a real-time and objective method
of measuring cognitive load is particularly important. The
application of the cognitive load measurement can not only
be in the education field, but also be extended to vehicle
driving [1–3], human-computer interaction [4, 5], product
design [6], and so forth.

There are three ways tomeasure cognitive load, which are
subjective measures, behavioral measures, and physiological
measures [7–9]. Subjective measures have the advantages of
noninterference and simpleness, but they need participants
to adopt the method of introspection to assess the load
level, which may lead to deviation. Behavioral measures are
more direct. Single task measures can directly reflect the
participant’s cognitive efforts, but the indices are task-related.
Multitask measures are more sensitive and have a higher
validity, but the secondary tasks easily cause interference to
the main task. Physiological measures measure the cognitive
load indirectly through testing participants’ physiological
reactions in one task. Though behavioral and subjective
measures can permit detailed inferences to bemade concern-
ing operators’ mental workload [10], physiological measures
can provide results with higher level of objectivity and
instantaneity about cognitive load. Above all, the physical
measurement is more suitable for practical application.

The common physiological signals used to measure cog-
nitive load includeHRV [11–13], EEG [10, 13, 14], GSR [15, 16],
and the eye movement signal [17, 18]. For the HRV, EEG,
and GSR, participants need to wear sensors, which may not
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Figure 1: Experimental environment. (a) The layout of participants room. (b) The projection of P A and P B.

be convenient and comfortable. However, the eye movement
measurement allows participants be measured without wear-
ing any electronic equipment. It makes participants more
comfortable and relaxed.

In this paper, we establish an objective method for
recognizing the state of cognitive load through analyzing the
data of eye movement. We used the eye tracker as acquisition
equipment, selected features which are correlated to the state
of cognitive load, adopted a newmethod tomake the features
more independent of individual change, and used the support
vector machine to classify the high and low cognitive load
status. The method can achieve high recognition rate under
both the light controlled condition (90.25%) and light change
condition (82.95%).

2. Method

Eye tracker was used to collect data in the process of experi-
ment. Eye movement data are easily affected by light [19], so
the intensity of light had been controlled in the experiment
contexts. But we try to find a more robust identification
method. We therefore set up two kinds of light intensity
models: light controlled model and light change model.

The aimof the studywas to collect a range of physiological
data that would allow us to identify the subjects’ cognitive
load state. In a designed experiment, participants were asked
to determine whether two segments are in parallel. In order
to make participants concentrate more, we added another
person in the task. Participants competed against each other
in the task, and the winner who had the better recognition
accuracy would get better pay.

2.1. Apparatus. Experiment room is required to insulate the
noise and light, and the experimenter andparticipantswere in
the independent operating areas, so that they did not disturb
each other.

Experimental equipment includes three computers, con-
nected to each other through the network; two projectors;
an eye tracker and a video camera; and a light meter
for recording the amount of light that impacted on the
participant’s eyes.

The area for the participants’ testing is shown in Fig-
ure 1(a). All the computers were placed in the operating
areas of the experimenter. The computer C A controlled the

projector P A (3000 lm). The projector (P A) was used to
provide indoor lighting. The light intensity had two models:

(1) light controlled model: projector (P A) projects a
square onto the white wall in front of the participants;
the brightness intensity of the projected square is set
as 67.1 lux;

(2) light change model: the projector (P A) continues to
project a square onto the wall; the brightness of the
square kept changing frommaximum intensity of 79.9
lux to a minimum intensity of 2.4 lux with a period of
8 s.

Projector P Bwas used to project the experimentmaterial
on the center of projection area of P A (the size of the
experiment material area is 53 cm ∗ 40 cm), as shown in the
upper panel of Figure 1(b).The computer C Bwas used to run
E-prime.

Eye movement data was obtained by using an EyeLink
1000 Desktop (SR Research company) in this experiment,
which is an eye tracker providing a noncontact method for
recording the data (the key features of EyeLink 1000 Desktop
are shown in the following part). The sampling rate of the
EyeLink 1000 was set to 500Hz; only the monocular eye data
was recorded.

EyeLink 1000 Desktop System’s Key Features

Key Features
Supports the Remote CameraUpgrade allowingHead
Free-to-Move tracking
Supports monocular and binocular recording
No electronics near participant’s head
Camera-to-eye distances that are optimal between 40
and 70 cm
32∘ × 25∘ tracking range
940 nm illuminator available for dark adapted envi-
ronments

We only had one eye tracker and itmust be placed in front
of the participants, so it was unable to record two people’s data
at the same time. In order tomake the participants ignore this
problem, a camera was placed in front of another participant,
to disguise it as a recording device.
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Figure 2: The process of experiment. (a) A complete process of one trial. (b) Full process of the experiment, including 8 task-trials and two
rest-trials.

2.2. Participants. Thirty students (15 males and 15 females)
volunteered in the experiment. The average age of the
participants was 21.4 years (SD = 1.27). All participants were
offered monetary compensation for their time and effort.
Participants had normal vision and had not taken part in
such experimental tasks. The experiment was approved by
Local Ethic Committee; the written consent was obtained
from the participants before the experiment.They could leave
the experiment at any time and for any reason during the
experiment.

It is necessary to make sure that two people take part
in the experiment at the same time, so anyone quits the
experiment will result in deleting the data of two people.
Finally we collected 24 participants’ data (three groups of
data were deleted, because the participants dropped out of
the experiment; the fact that participants give a very low
judgment accuracy may indicate lower concentration; the
data of these participants were not in use either).

2.3. Experimental Design and Procedure. Upon arrival at the
lab, the participants sat in a quiet room to read and sign
informed consents and filled questionnaires (in order to
eliminate the effects of smoking, drugs, sleep, disease, etc.).
Thereafter, they moved to the experiment room and adjusted
to a comfortable sitting position. Then they would receive
instructions from the projection area and have a training
trial to disclose any potential issue (misunderstandings,
equipment, operation, etc.).

Before the beginning of the formal task sessions, baseline
physiological signals during a 30 s rest period (t0) were
recorded, in which the participants relaxed and looked at a
fixation point. Subsequently both of the participants would
complete 8 trials, and each trial had ten judgments as shown
in Figure 2(a). Judgment accuracy was shown after each trial,
and then the participants had a minute of rest.

The first two trials (t1, t2) were under the light controlled
model (see Figure 2(a)), and the other two trials (t3, t4) were
under the light change model. In t1, player 1 was required to
judge and player 2 was required to watch. In t2, the tasks of
two players were switched. The operation modes of t3 and t4
are the same as those of t1 and t2.

Four trials were only the half of whole experimental
processes. Because the roomonly had one eye tracker, we only
record the data of player 1. Then the experimenter told the
participants that they have completed half the experiment, so

the two participants need to swap seats. The same four trials
would be repeated and the data of player 2 would be recorded.
The process of the experiment is shown in Figure 2(b).

Through analyzing the subjective reports of 24 partic-
ipants, it is showed that the participants were in a high
cognitive load statewhen theywere doing judgment tasks and
in low cognitive load state when they were watching others’
operation.

3. Data Acquisition and Analysis

The desktop system recorded eye movement data. And three
reports (sample report, fixation report, and trial report)
of the data were derived by Data Viewer (SR Research).
We used Matlab to calculate the features (mean, standard
deviation, and variation coefficient) of each report and then
selected features that have significant differences between
two cognitive load states in statistical analysis. There are two
problems during the whole process: (1) missing data of pupil
size when the participants are blinking their eyes and (2)
effect of individual differences on the features selected.

3.1. Preprocessing. Eye tracker was set to use the pupil area
(the number of pixels in pupil image) to represent pupil size.
However the record of pupil size will be lost if blinking hap-
pens. To solve the problemofmissing data, we identified blink
onset and offset instances in the pixel data and then replaced
blink data by means of linear interpolation [20]. There are
two peaks before and after the blink (see Figure 3(a)); in
order to remove the abnormal data, we used 30–60 samples
before blink onset as starting point and 30–60 samples after
blink offset as ending point. Finally the moving average filter
was used for smoothing the data after linear interpolation
(see Figure 3(c)). The preprocessing procedure is shown in
Figure 3.

3.2. Feature Selection and Individual Differences Removal.
The mean, standard deviation, and variation coefficient of
each report were calculated as features, and these features
of 24 participants were evaluated by paired sample t-test,
respectively. Under the light controlled condition, there are 10
features (Table 1) showing significant difference between the
high cognitive state and low cognitive state. And also there
are 9 features (Table 2) showing significant difference under
the light change condition.
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Table 1: The salient features in light controlled condition.

High cognitive load Low cognitive load t-score p value
Pupil size (Pup size) 389 (90) 350 (78) 6.583 0.000∗∗

Fixation frequency (Fix fre) 1.18 (0.238) 0.936 (0.32) 5.851 0.000∗∗

Blink frequency (Bli fre) 0.149 (0.083) 0.222 (0.122) −4.528 0.000∗∗

Fix pupil size (Fix Pup size) 395 (93) 350 (74) 6.111 0.000∗∗

Saccade velocity (Sac vel) 168 (29) 137 (26) 7.621 0.000∗∗

Saccade duration (Sac dur) 81.3 (53.6) 98.9 (40.7) −2.976 0.007∗∗

Saccade peak velocity (Sac peak vel) 388 (94) 520 (205) −3.55 0.002∗∗

Std of saccade duration (Sac dur std) 63.5 (30.4) 105.8 (49.2) −4.191 0.000∗∗

Std of saccade peak velocity (Sac peak vel) 358 (151) 511 (254) −3.602 0.002∗∗

Adjacent fixation point distance (Adj fix dis) 6.86 (1.65) 6.22 (1.92) 2.772 0.011∗

M: mean; Std: standard deviation; significance level 𝛼 = 0.05
∗𝑝 < 0.05,

∗∗𝑝 < 0.01.

Table 2: The salient features in light change condition.

High cognitive load Low cognitive load t-score p value
Pupil size (Pup size) 464 (110) 430 (93) 4.351 0.000∗∗

Fixation frequency (Fix fre) 1.15 (0.172) 0.963 (0.239) 3.561 0.002∗∗

Blink frequency (Bli fre) 0.165 (0.075) 0.233 (0.132) −3.079 0.005∗∗

Fix pupil size (Fix pup size) 456 (112) 433 (108) 2.428 0.023∗

Saccade velocity (Sac vel) 159 (29) 129 (27) 5.263 0.000∗∗

Saccade duration (Sac dur) 53.3 (16.1) 87.2 (36.2) −5.106 0.000∗∗

Blink duration (Bli dur) 137 (59) 192 (121) −2.711 0.012∗

Saccade velocity variation (Sac vel var) 0.505 (0.096) 0.663 (0.162) −7.107 0.000∗∗

Std of saccade duration (Sac dur std) 73 (37.8) 117 (89.3) −3.565 0.002∗∗

M: mean, Std: standard deviation; significance level 𝛼 = 0.05
∗𝑝 < 0.05,

∗∗𝑝 < 0.01.
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Figure 3: (a) The raw pupil size data. (b) The pupil size data after
linear interpolation. (c) The pupil size data after interpolation and
smooth.

Part of the features of Tables 1 and 2 have been found and
verified bymany other scholars’ researches.The blink interval
is positively related to mental workload, and a longer blink
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Figure 4: The blink frequency of 24 participants.

interval reflects greater attention accorded by subjects to a
more difficult task [21, 22]. The pupil diameter was used to
measure the cognitive load [23]. Peak value of the saccade
speed was used to reflect the mental workload [24].

Some features of single participant were significantly
different between the high and low cognitive load conditions,
but these differences were reduced if all 24 participants are
considered. Take the blink frequency as an example; the blink
frequency of majority of participants in high cognitive load
state was lower than that in low cognitive load state (as shown
in Figure 4); however, due to the individual difference, not
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only some different results in some participants exist (such
as participant 23 in Figure 4), but also some participant’s
blinking frequency in high cognitive load could be higher
than that of another participant (such as participants 11 and 12
in Figure 4). Therefore, directly using the blinking frequency
as a feature for classifying high and low cognitive load will
not produce high recognition rate because of the individual
difference effect.

To reduce the effect and make the features more useful
for the recognition, we used an individual difference removal
method. We will elaborate the method by using the feature of
blinking frequency as an example.

We assume that the blink frequency is influenced by
two aspects, that is, the cognitive load and blinking habit.
Experimental environment is strictly controlled and every
participant experiences the same task, so we assume further
that the influence of the cognitive load on the blinking
frequency is basically the same. Therefore the personal habit
of blink causes the differences of blinking frequency.

Bearing the above hypothesis in mind, we observed
Figure 5 that shows the blink frequency of all participants
in relaxed (baseline) state and high cognitive state. Each data
point represents a participant, the graph’s horizontal axis (𝑥
axis) is the blinking frequency under the relaxed state when
it collected in the rest period, and the vertical axis (𝑦 axis)
is the blinking frequency under the high cognitive load state.
These points exhibit a linear trend; the linear fitting results are
𝑦 = 𝑎𝑥 + 𝑏 (𝑎 = 0.343, 𝑏 = 0.073).

To obtain the blinking frequency only triggered by the
cognitive task, we translate the line 𝑦 = 𝑎𝑥 + 𝑏 to a
data point, such as participant 1 in Figure 5. The intercept
produced by the new line 𝑦1 = 𝑎𝑥1 + 𝑏1 is assumed to
be the blinking frequency only triggered by the cognitive
task. This assumption is based on the knowledge that, at the
interception point (0, 𝑏1), the bilking frequency at relaxed
state is zero; in other words, there is no individual difference
here; everyone has zero baseline blinking frequency.

Figure 6 (middle, right) shows the box plots of blink
frequency of all participants in high cognitive and low
cognitive conditions.The left pairs show raw data, the middle
and right pair showdata after removing individual differences
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Figure 6: Box plot of 24 participants.

Table 3: The influence coefficients of four features.

Light controlled Light change
Pupil size 0.9 0.99
Blink frequency 0.343 0.365
Fixation frequency 0.46 0.2
Fix pupil size 0.85 1.17

through subtractive method [20] and our proposed method
(coefficient method), respectively. It is seen that the features
processed by the coefficient method concentrate more, have
no outliers, and have the least overlap ratios under two states.
These results indicate that the proposed method can remove
the individual difference to a large extent.

We applied the coefficientmethod on 4 features, as shown
in Table 3. These four features have a common characteristic,
that is, the individual differences between participants affect
the feature significantly, and each of feature’s value has a linear
correlation between the cognitive load state and relaxed state.
The influence coefficients (𝑎) of each feature are also given in
Table 3.

For the feature of pupil size, its coefficient is close to 1. In
this case, coefficient method and subtractive method [20] are
basically the same, so the coefficient method can be thought
of as the extension of subtractive method.

In order to verify the process of removing individual
differences that can improve the recognition performance of
single characteristic, the raw features and processed features
of 24 participants were randomly divided into two groups as
training and testing set to the support vector machine (SVM)
classifier, respectively, under both the light change and light
controlled conditions. The proposed method can produce
high classification rates (identifying high cognitive load from
low cognitive load) in both conditions. The results repeated
100 times are shown in Table 4.

4. Classification with SVM

SVM is a supervised learning machine proposed by Cortes
and Vapnik [25]. It is mainly used in small sample data. The
classifier can provide the minimizing error andmaximize the
geometric fringe. Once given the labeled training data, the
SVM can output an optimal hyper plane that categorizes new
test data.
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Table 4: Single feature’s recognition rates.

Light change Light control
Raw Remove individual difference Raw Remove individual difference

Pupil size 62.62% 64.46% ↑ 56.33% 62.17% ↑
Fixation frequency 64.79% 66.25% ↑ 66.21% 68.17% ↑
Blink frequency 65.66% 69.33% ↑ 58.79% 63.21% ↑
Fix pupil size 62.33% 67.21% ↑ 63.17% 63.71% ↑

SVM has been widely used in the field of human-
computer interaction and affective computing. Jang et al.
[26] used the SVM as the classifier to analyze eye movement
data and achieved good results. So we used the SVM as
classifier and combined the operation of removing individual
differences to classify the cognitive load state.

The SVM was implemented by using the LIBSVM tools
[27]. The SVM type was C-SVM and the kernel function was
radial basis function, -c value is 1, and -g value is 0.07.

The datasets composed of 24 participants’ data were used
to train and test the classifiers. The details of datasets are
described below:

(1) Each participant has 10 features under the light
controlled condition and 9 features under the light
change condition. We used the SVM to complete
the recognition of cognitive load states under the
different light condition.

(2) Under light controlled condition, the 24 participants
were separated randomly into 2 groups (training
groups and testing groups); each group has 12 par-
ticipants. Training dataset (24 ∗ 10, 12 participants, 2
cognitive load states, and 10 features) was composed
of the features of training group. Similarly, the testing
dataset was composed of training group’s features.

(3) Under the light change condition, the dataset also
used the same operation of (2). The structure of
training datasets and test datasets was 24 ∗ 9 (12
participants, 2 cognitive load states, and 9 features).

5. Result and Discussion

We sent the training dataset and testing dataset selected
randomly to the SVM classifier and then got one recognition
rate. We repeated the program 100 times and used the
average recognition rate as the final result. In order to display
the performance improvement of removing the individual
differences, we used the raw features’ recognition rate as a
contrast.

We investigated which feature combination is the best for
the highest recognition rate.The recognition rates as function
of the number of features are shown in Figure 7. It is seen form
Figure 7 that the combinations of 5 or 6 features can achieve
the highest recognition rate (except the raw-features-light-
change condition, 6 features can get the next-best result that
is only 0.77% less than the best). The recognition rate would
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Figure 7: The recognition rates under different features’ number.

lower if more/fewer features are used. It may be because less
features could not carry enoughuseful information, andmore
features would cause more interferences.

By using the best feature combination, the recognition
rates in four conditions are given in Table 5. It is observed that
the classification rate can reach as high as 90.25% in the light
control condition, if the individual difference is removed. For
using the raw feature, the recognition rate is 85.17%. These
results support the idea that removing individual differences
is able to improve recognition rate.

In practice, if collecting eye movement data under the
relaxed state is allowed, then the recognition rate can be
improved by removing individual differences. In most cases,
the data under relaxed state cannot be obtained. By using
the feature combination that we proposed, an acceptable
recognition can be achieved as well.

By comparing the two experimental light environments,
we find that no matter how many features and whether the
features have been processed by coefficient method, the light
controlled condition would have higher recognition rate.The
coefficient method even does not function well in the light
change condition. This phenomenon is caused by the change
of light intensity. Light intensity significantly affects the eye
movement features; the cognitive load information carried
by the features is concealed by the effects of light intensity,
which leads to the lower recognition rate. It is suggested that
a constant ambient light should be maintained when this
contact-free method is used.
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Table 5: The recognition rates and features used.

Recognition rate Feature combination

Light control
Remove baseline 90.25% Fix fre; Fix Pul size; Sac dur std; Sac vel;

Sac peak vel

Raw feature 85.17% Pul size; Fix Pul size; Sac dur std;
Sac vel; Sac peak vel

Light change Remove baseline 82.95% Fix fre; Fix Pul size; Bli fre; Sac vel;
Sac dur; Bli dur

Raw feature 83.16% Fix fre; Fix Pul size; Sac dur std; Sac vel;
Sac vel var; Pul size; Bli fre; Bli dur

6. Conclusion

In this paper, we proposed a contact-freemethod to recognize
human’s cognitive load state based on eye movement signals.

Wedesigned experiment to trigger high and low cognitive
load. The illumination environments were also set as light
controlled and light change conditions.

We proposed a coefficient method to remove the individ-
ual difference effect.The experimental results proved that this
method can improve the final recognition rate.

The features combination for recognition were also inves-
tigated, it is found that 5 or 6 features can achieve higher
recognition rate. Under the light controlled condition, the
recognition rate can reach as high as 90.25%.

The light change condition will affect the recognition rate
dramatically. The variation of the light intensity will lead
to the variation of eye movement, which will conceal the
features resulting from cognitive load. It is thus suggested to
set the light intensity as constant as possible for getting better
recognition result if this method is used in practice.
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