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Several common elevator malfunctions were diagnosed with a least square support vector machine (LS-SVM). After acquiring
vibration signals of various elevator functions, their energy characteristics and time domain indicators were extracted by
theoretically analyzing the optimal wavelet packet, in order to construct a feature vector of malfunctions for identifying causes
of the malfunctions as input of LS-SVM. Meanwhile, parameters about LS-SVM were optimized by K-fold cross validation (K-
CV). After diagnosing deviated elevator guide rail, deviated shape of guide shoe, abnormal running of tractor, erroneous rope
groove of traction sheave, deviated guide wheel, and tension of wire rope, the results suggested that the LS-SVM based on K-CV
optimization was one of effective methods for diagnosing elevator malfunctions.

1. Introduction

With the development of modern society, elevators have
achieved rapid development as tools for transporting things
up and down inside high-rise buildings. While enjoying
express elevator services, people have proposed more rigor-
ous requirements for taking elevators comfortably and safely
[1]. Major indicators [2] impacting if elevators can be taken
with comfort include vibration of elevation compartments,
noise, temperature, decoration, and starting and braking
characteristics, among which the vibration is a major indica-
tor for evaluating whether elevators can be taken comfortably
[3]. Under normal circumstances, passengers will not feel
uncomfortable in taking an elevator in case of relatively
smaller vibration amplitude. However, passengers will have a
feeling of great discomfort when the vibration reaches certain
value or the frequency is up to a level to which people are
sensitive [4]. To guarantee passengers’ physical and mental
health as well as personal safety, it is of great significance for
passengers to take elevators more comfortably and safely by
reducing vibration, finding out vibration source, predicting
malfunctions, and recovering them promptly [5].

In case of malfunctions, vibration signals in elevators will
become remarkably nonstationarywith noise.Wavelet packet
analysis has been widely recognized and applied in diagnos-
ing failures of machines, especially in processing transient
signals, because it is highly effective for localizing time
frequency and has unique advantages in processing time-
varying signals. When an elevator malfunctions, changes to
the vibration signals contain abundant information about
characteristics of malfunctions [6–8]. In combination with
noise, elevator vibration signals were decomposed at different
frequency bands by wavelet packet transform, in order to
determine the energy of signals distributed in each sub-
space. The energy distribution was then compared with
that of vibration signals in normally running system to
exact information about characteristics of elevator malfunc-
tions [9]. Besides, kurtosis of vibration signals in 𝑍-axis
and peak-to-peak values of vibration signals in 𝑋/𝑌-axes
were taken as characteristic parameters in time domain.
In this way, vibration characteristics could be extracted for
malfunctions.

Support vectormachine (SVM) has been extensively used
and developed in the field of fault diagnosis. Tang et al.
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[10] diagnosed faults of rotating machines by LIttlewood-
Paley wavelet support vector machines (LPWSVM). Shuixia
et al. [11] achieved promising outcomes in classifying elevator
malfunctions by diagnosing faults with kernel principal com-
ponent analysis (KPCA) and SVM. Li et al. [12] put forward
a model for fault diagnosis based on a genetic algorithm
for hierarchically optimizing least squares support vector
machines (LS-SVM), which could increase the precision
of LS-SVM for predicting faults and improve self-adaptive
diagnosis. Widodo and Yang [13] diagnosed faults of asyn-
chronousmotors by extracting nonlinear characteristics with
SVM and achieved ideal results. In this paper, an attempt was
made to optimize parameters about SVM (mainly referring to
penalty parameter 𝑐 and kernel function 𝑔) via cross valida-
tion by integrating theories on optimal wavelet packet with
SVM, so as to effectively avoid overfitting and underfitting.
In other words, vibration signals were analyzed according
to theories on optimal wavelet packet. By using SVM as
classifier, energy characteristics and time domain indicators
of vibration signals were extracted to construct fault feature
vectors. They were adopted as input of SVM, and elevator
malfunctions were classified with a well-trained SVM.

2. On Safety for Taking
Elevators and Mechanism

2.1. On Safety for Taking Elevators. Elevator compartments
may vibrate vertically or horizontally [1].Major causes of their
vertical vibration include vibration incurred by running a
tractor, vibration of gearmeshing inside a speed reducer,mis-
alignment between axes of worm gear reducer and traction
motor, and insecure fastening of tractor base with the bearing
beam and nonuniform load of wire rope. All of these factors
impact vertical vibration of elevator compartments. Horizon-
tal vibration of elevator compartments is mainly caused by
[14] vibration resulting from guiding system, out of tolerance
perpendicularity of guide rails, out of tolerance of distance
between guide rails, and out of tolerance between local gap
of guide rails and steps at joints, partial distortion of guide
rails, and straightness error of working surface of guide rails.
These factors possibly lead compartments to horizontally
vibrate in the course of up-and-down motion. Additionally,
static balance of compartments is influenced by deviated
suspension center and eccentric load of compartments. As a
consequence, horizontal vibration is affected.

2.2. On Vibration and Mechanism of Elevator Compart-
ments. Although there are numerous causes of compartment
vibration, after analysis and investigation, the main causes
[15–18] are concluded to be deviated guide rail, deviated
shape of guide shoe, abnormal running of tractor, erroneous
rope groove of traction sheave, deviated guide wheel and
nonuniform tension of wire rope, and so on.

2.2.1. Deviated Guide Rail. Elevator compartment runs by
attachment to guide rail, so horizontal vibration of an elevator
is directly impacted by its guide rail. Asymmetric guide rail
groove, undesirable perpendicularity of guide rail, widened
or narrowed distance between guide rails and fastened bolts
of guide rail brackets or clips, and so on cause horizontal
vibration of compartments.

2.2.2. Deviated Shape of Guide Shoe. Attaching to guide
rails, guide shoe is used to limit obliquity and horizontal
displacement. It will be ineffective for reducing vibration
if guide rails are adjusted to be excessively tight when an
elevator is running. Consequently, the resistance for running
compartments gets higher and leads to vibration. Besides, the
guide shoes will become inelastic once the gap between them
is regulated to be too large and thereby cause compartments
to vibrate during working.

2.2.3. Abnormal Running of Tractor. High-speed shaft-driven
imbalance and misaligned vibration of coupling are major
causes of tractor vibration. As a tractor is rotating at a high
speed, the pulse becomes an excitation source for diagnosing
compartments. Errors will be caused to rope grooves and
result in inaccurate dynamic balance after the tractor is worn
for a long period. In addition, vibrator compartments will
vibrate during running provided that speed measurement
encoder is not well connected with motor or misaligned.

2.2.4. Deviated Guide Wheel. The deviation of guide wheel
from the perpendicular line will be higher than 2mm when
the wheel is empty or fully loaded. The protection shall
meet given requirements when suspended traction wheel or
sprocket wheel is used. To be exact, geneva wheel shall not be
seriously and nonuniformly worn to a level that its shape is
changed, or else compartments will vibrate abnormally.

2.2.5. Nonuniform Tension of Wire Rope. Nonuniform ten-
sion of wire rope leads to unequal specific pressure on
traction rope inside the grove of pulley wheel. Compartment
will abnormally vibrate due to relative slip of rope caused by
joint difference, because the rope of traction wheel is worn
more quickly in case of great force [14].

3. Signal Processing and Analysis

In this paper, data on elevators provided by Yunnan Special
Equipment Safety Inspection and Research Institute were
analyzed. The data was acquired by EVA-625 elevator tester.
Because the data measured about elevator running were
limited, for better diagnosis, simulative samples were com-
bined with actual samples of malfunctions to establish a
sample database necessary for the training of support vector
machines. Firstly, the Matlab extracts the data distribution
characteristics (almost the same as authentic samples) of
authentic fault samples as well as their mean value, vari-
ance, standard deviation, extremum, moment, skewness, and
kurtosis, based on which it randomly generates 100 groups
of simulative samples. Integrating simulative samples with
authentic fault samples, it establishes the data base needed for
support vector machine (SVM). 70 out of those samples are
used for training and another 70 for testing.

3.1. EVA-625 Elevator Tester

3.1.1. EVA-625 Introduction. Aimed to record the vibrations
and noises of elevators, EVA-625 elevator tester is a par-
ticularly designed high-precision recorder of acceleration
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Figure 1: Screenshot of variation analysis tools.

Figure 2: EVA-625 control and constituent parts.

and noises and the EVA system can quantize the data of
acceleration as well as noises. In short, if it is put in an
elevator to rise and fall, it can record the overall situation
of time-variable operating state and noises of the elevator.
Downloading the recorded information on the PC, you can
use the apparatus-matched variation analysis tools software
for analysis just as in Figure 1.

3.1.2. EVA-625 Principles and Structure. The basic structure
of EVA-625 is comprised of a Triaxial Accelerometer Package,

a microphone, interior circuits (digit, simulation), a LCD, a
4-key keyboard, a start/stop switch, and batteries (Figure 2):

Triaxial Accelerometer Package. It is the acceleration
(vibration) sensor of EVA-625 system.

Axes of Sensitivity. The axes of sensitivity of accelera-
tion module includes 𝑋-, 𝑌- and 𝑍-axis. The 𝑋-axis
tests vibration of forward and backward while the 𝑌-
axis measures vibration of sideways and the 𝑍-axis
that of vertical dimensions.
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The Microphone. It is used to collect noises while
the sound track is designed at a restrictive, quickly
reactive, and fidelity RMS volume to collect the
volume which reaches the level of noises.

The Tachometer. The accessory allows for real time
measurement and operation of escalator handrails,
step speed, braking length, and its intervals.

The LCD: it is made up of 4 lines and 20 characters.

The Keyboard. It allows users to set and modify
some necessary parameters while operating EVA-625
without PC.

The Start/Stop Switch. It equals the ENT and ESC
button to reduce useless vibrations when beginning
record model.

3.2. Wavelet Packet Analysis. Being capable of providing an
accurate analytical method for signals, it divides frequency
bands into multilevels, further resolving the high frequency
parts that are not dispersed by multiresolution analysis and
decomposing the frequency domain of the primitive into
similar frequency band. In case of the sampling frequency
being recognized and adequate levels being resolved, the fre-
quency domain of each frequency band is restricted in a small
scope so that similar and super-low frequencies will be in
different domains. In consequences, it analyzes signals more
delicately to provide more efficient approaches for extracting
characteristics of signals. As an international recognized
high technology to acquire and process information, wavelet
packet analysis is excellently applied in many fields, such
as voices, images, graphs, communications, earthquakes,
biomedicines, mechanical vibrations, and computer visions.

3.3. The Energy Feature Extraction. In case of malfunctions,
abundant information about features of malfunctions would
be reflected from energy changes of vibration signals. Signals
were decomposed by wallet packet transform at different
bands, to determine the energy of signals distributed in
each subspace. Then, the energy distribution was compared
with the situation when the system was normally running,
in order to extract information about features of elevator
malfunctions. Features were exacted according to the steps
as follows [9]:

(1) First of all, signals of vertical vibration acceleration
were decomposed with a 4-layer db 6-wavelet packet,
and the optimal wavelet packet tree was obtained
pursuant to the standard of minimum Shannon
entropy, as shown in Figure 3. Next, the wavelet
packets corresponding to the first two nodes on the
4th layer, the 2nd node on the 3rd layer, the 2nd node
on the 2nd layer, and the 2nd node on the 1st layer
were selected to compose the optimal wavelet packet
base of signals.

(2) Signals were reconstructed with the wavelet packet
bases corresponding to nodes (4, 0), (4, 1), (3, 1), (2, 1),
and (1, 1). 𝑆

40
was a reconstructed signal of node (4, 0);

Tree decomposition

(0, 0)

(1, 0) (1, 1)

(2, 0) (2, 1)

(3, 0) (3, 1)

(4, 0) (4, 1)

Figure 3: Optimal wavelet packet tree of vertical acceleration
signals.

the rest could be deduced by analogy, so the overall
signal reconstruction was as follows:
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at discrete points, and the energy at rest bands could
be calculated in the same way.

(4) Based on abundant information about malfunctions
reflected from energy of all signals at different bands,
the normalized feature vector was constructed as
follows:
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3.4. Time Domain Analysis and Feature Extraction. The
elevator vibration incurred during running may reflect basic
attributes of an elevator. Changes to operating state of an
elevator may cause changes to time signals of vibration and
parameters described by time domain of signals. Vibration
acceleration signals of a compartment were acquired from
𝑋, 𝑌, and 𝑍 directions in case of malfunctioning with an
EVA-625 elevator tester. As remarkable changes occurred
to vibration acceleration in the vertical direction when an
elevatormalfunctions, abnormal vibrationwill also take place
horizontally. Therefore, kurtosis of vibration acceleration
signals in the 𝑍 direction and peak-to-peak values of the
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signals in 𝑋 and 𝑌 directions were used as time domain
parameters.

According to a given set of data on discreet vibration
signals, the𝐾 (Kurtosis) [19] was determined as follows:

𝐾 =
1

𝑁

𝑁

∑

𝑖=1
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where 𝑥
𝑖
is signal value, 𝑥wasmean signal value,𝑁 indicated

sampling length, and 𝜎
𝑡
represented standard deviation.

4. Basic Principles of Least Squares Support
Vector Machines

Support vector machines [20–22] construct statistical learn-
ing theories according to principles of structural risk mini-
mization when only a limited amount of samples is available.
To be specific, input vectors were firstly projected from origi-
nal space to high-dimension feature space through nonlinear
mapping, in order to construct the optimal decision function
in this high-dimension space based on principle of structural
risk minimization. In this process, the calculation got less
complicated as the dot product of the high-dimension feature
space was replaced by kernel function of the original space.
Convex quadratic programming problem was solved by the
support vector machine that the extreme values obtained
could be guaranteed to be the global optimal solution. In this
way, the deficiency that neural networks easily became the
smallest within local areas was overcome.

Having extended the standard SVM, the least squares
SVM is proposed by J. A. K. SuyKens and J. Vandewalle,
acquiring outstanding achievements in pattern recognition
and nonlinear function fitting. The differences between LS-
SVM and standard SVM lie in that the loss function of an
optimized object is represented by 2-norm error, inequality
constraints of SVM are replaced by equality constraints, and
convergence rate is increased.

Assuming that the training set is {(𝑥
1
, 𝑦
1
), . . . , (𝑥

𝑛
, 𝑦
𝑛
)},

where 𝑛 is total number of samples, 𝑥
𝑖
∈ 𝑅
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input, and 𝑦
𝑖
∈ {−1, 1} is desired output of the 𝑖th sample, the

function of linear regression was calculated as follows:
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(SRM) [23–25], optimized problem could be converted into

min 1

2
‖𝜔‖
2
=

1

2
𝑐

𝑛

∑

𝑖=1

𝜉
2

𝑖
. (6)

The constraint is as follows:

𝑦
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where 𝑐 is a tolerable penalty coefficient (𝑐 > 0) for controlling
the degree of penalties on samples beyond the calculation
error, 𝜉

𝑖
is a relaxation factor, and ⟨⋅⟩ is a mapping function of

kernel space.

By introducing a Lagrange function, the model of regres-
sion function was obtained for LS-SVM according to KKT
optimality conditions as follows:
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where 𝛼
𝑖
is a Lagrange multiplier and 𝐾(𝑋,𝑋

𝑖
) is a kernel

function for calculating the inner product of sample data.
In using a regression model with LS-SVM, it is necessary
to properly set a coefficient of tolerable penalty and select a
suitable kernel function.

4.1. Classification and Analysis of LS-SVM. In this paper,
feature vectors of energy distribution of elevator vibration
acceleration signals, including 𝐸

40
, 𝐸
41
, 𝐸
31
, 𝐸
21
, and 𝐸

11
,

were selected. Besides, time domains of vibration acceleration
signals of a compartment in𝑋,𝑌, and𝑍 directions were used,
involving gradient in the𝑍 direction and peak-to-peak values
in 𝑋 and 𝑌 directions. Furthermore, extreme values of noise
measured by a noise sensor was considered, so malfunction
symptoms composed by these nine characteristic values were
adopted as parameters input into SVM, in order to classify
training samples. There are 70 groups training samples. At
last, tested samples were classified and identified with a
well-trained classifier. Malfunctions were defined as follows:
normal state = 1, deviation of elevator guide rail = 2, deviation
of shape of guide show = 3, error of abnormal running of
tractor = 4, error of rope groove of traction sheave = 5,
deviation of guide wheel = 6, and nonuniformity of tension
of wire rope = 7.

4.2. Parameter Optimization for LS-SVM. In the process of
realizing LS-SVM, two parameters should be determined,
including kernel function 𝑔 and penalty factor 𝑐. Parameters
were optimized with K-CV, while the processes for searching
and optimizing optimal parameters were shown in Figures 4
and 5 as follows. Firstly, parameters were sketchily searched
within 2−10∼210 with coarse mesh, as shown in Figure 4.
Then, optimal parameters 𝑐 and 𝑔 were found to range
within 2−2∼210 and 2−10∼20. Subsequently, parameters were
precisely searched within the sphere to find out the optimal
parameter with K-CV method (Figure 5).

The searching results suggested that LS-SVM could real-
ize the optimal precision for identifying faults when 𝑐 is 0.5
and 𝑔 equals 1.

Figure 1 offers part of the recognition results of 70 groups
test samples about normal state of elevators and 6 kinds
of fault types and the recognition efficiency is 92.7%. It
may be clearly seen from the table that the normal state of
elevators, deviated elevator guide rail, deviated shape of guide
shoe, abnormal running of tractor, erroneous rope groove of
traction sheave, deviated guide wheel, and tension of wire
rope were successfully identified with a LS-SVM classifier
optimized through cross validation (Table 1).
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Table 1: Results for identifying elevator faults with a LS-SVM optimized by cross validation.

Faults of tested
samples

Input of SVM

Output
Energy characteristics Time Domain characteristics

Noise extremes
(dB)𝐸

40
𝐸
41

𝐸
31

𝐸
21

𝐸
11

𝑘

Peak-to-peak
values in𝑋

direction (m/s2)

Peak-to-peak
values in 𝑌

direction (m/s2)
Normal state (1) 0.089 0.167 0.124 0.118 0.068 0.889546 0.009 0.01 47.9 1
Normal state (2) 0.093 0.173 0.136 0.121 0.079 0.796675 0.009 0.012 47.1 1
Deviation of
guide rail (1) 0.044 0.242 0.276 0.171 0.026 4.139485 0.191 0.024 58.1 2

Deviation of
guide rail (2) 0.041 0.241 0.285 0.166 0.024 3.247673 0.178 0.025 59.5 2

Deviation of
shape of guide
shoe (1)

0.56 0.294 0.028 0.031 0.012 3.173433 0.021 0.02 55.6 3

Deviation of
shape of guide
shoe (2)

0.534 0.295 0.027 0.034 0.018 4.272636 0.025 0.019 55.2 3

Abnormal
running of tractor
(1)

0.545 0.294 0.028 0.038 0.022 2.380825 0.021 0.02 56.4 4

Abnormal
running of tractor
(2)

0.582 0.273 0.026 0.036 0.02 3.567978 0.025 0.018 55.9 4

Error of rope
groove of traction
sheave (1)

0.814 0.031 0.022 0.022 0.024 3.677453 0.024 0.022 57.1 5

Error of rope
groove of traction
sheave (2)

0.79 0.026 0.021 0.024 0.022 2.824331 0.023 0.022 56.4 5

Deviation of
guide wheel (1) 0.02 0.212 0.11 0.066 0.105 3.187661 0.124 0.1 53.8 6

Deviation of
guide wheel (2) 0.022 0.207 0.108 0.056 0.105 2.095107 0.115 0.1 54.2 6

Uniformity of
tension on wire
rope (1)

0.12 0.525 0.028 0.118 0.022 2.109227 0.02 0.019 55.6 7

Uniformity of
tension on wire
rope (2)

0.124 0.566 0.028 0.109 0.021 3.099955 0.023 0.02 55.9 7
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5. Conclusions

(1) The basic idea of wavelet packet analysis is to cen-
tralize information and energy to find out laws from
details and provide a more precise method for signal
analysis. Thus, elevator faults were diagnosed accord-
ing to theory on optimal wavelet packet with the least
squares support vector machine.

(2) Feature vectors of energy distributed by elevator
vibration signals and feature vectors of faults con-
structed by time-domain parameters were used as
input of LS-SVM. Elevator malfunctions were clas-
sified and identified with a well-trained LS-SVM
classifier. Parameters of LS-SVM were optimized via
cross validation, in order that the classifier could
classify LS-SVMmost precisely.

(3) Experimental results suggested that this method was
effective for identifying faults of elevators. As an
advancedway for intelligently diagnosing faults, it has
good prospects for application in condition monitor-
ing and fault diagnosis.
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