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Dim point target detection is of great importance in both civil and military fields. In this paper a novel spatiotemporal filter is
proposed to incorporate both the spatial and temporal features of moving dim point targets. Since targets are expected to be detected
as far as possible, in this situation, they have no texture features in spatial dimensions, appearing like isolated points. Based on the
attributes, potential targets are extracted by searching the local maximum point in a sliding window. And the potential targets are
then correlated based on target moving patterns. After combining local maximum points and target moving patterns, structure
background in infrared scene is removed. Next, the temporal profiles of infrared sense are reviewed and examined. By a new max-
median filter performing on temporal profiles, the intensity of target pulse signal is extracted. Finally, each temporal profile is
divided into several pieces to estimate the variance of the temporal profiles, which leads to a new detection metric. The proposed
approach is tested via several infrared image sequences. The results show that our proposed method can significantly reduce the

complex background in aerial infrared image sequence and have a good detection performance.

1. Introduction

Detecting dim point targets is a key unit in a variety of
applications, such as infrared searching and tracking sys-
tems, precision guidance, air traffic control, and telescopic
monitoring. Since targets are expected to be detected as far
as possible, in this situation, they have no texture features
in spatial dimensions, appearing like isolated points, which
makes the detection of the target difficult and complex [1-3].

In the last two decades, a number of target detection
approaches have been proposed to deal with the issue.
Generally, target detection approaches can be categorized
into two classes: detect before track (DBT) approaches and
the track before detect (TBD) approaches. DBT methods
focus on detecting targets in single frames and then track the
targets using temporal associations. For a target, it is brighter
than its neighboring background in its local areas. Thus, a
direct detection method is to match point-like signals to
detect targets. The top-hat transform [4, 5] and the LoG filter
[6] are introduced for point-like signals detection. Another
method for target detection is to suppress background, such
as the TDLMS filter [7], and the max-median filter [8], while

TBD methods focus on tracking all the pixels of a scene
in a short period time and then detecting targets based on
the temporal differences of the targets and background [9].
TBD approaches are proposed to encounter situations that
targets are too dim to be detected in single frames. Silverman,
Caefer, and Tzannes et al. analyzed the temporal profiles of
target and background [10, 11]. Their works indicated that
damped sinusoid filters [12,13], continuous wavelet transform
[14], and hypothesis test performing on temporal profiles
[15, 16] are effective to detect dim point targets from evolving
clutter. Subsequently, Lim et al. develops an adaptive mean
and variance filter for detecting dim point-like targets [17].
In [18], Liu et al. found the connecting line of the stagnation
points (CLSP) of temporal profile has good performance
in detecting dim moving targets. Recently, the CLSP based
method is examined and improved in [19, 20].

In fact, the differences of targets and background exist
in both spatial and temporal domains. Considering spatial
or temporal information independently is not sufficient. In
[21], Akula et al. proposed a ground moving target detection
method in thermal infrared imagery. It is designed for extend
target and not suitable for aerial point targets. Therefore,
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FIGURE 1: Execution of the proposed approach.

a novel spatiotemporal dim point target detection method is
presented by considering both the spatial and temporal infor-
mation. The proposed approach is executed in two stages,
structure background removing stage and target detection
stage. Detailed execution of the approach is shown in Figure 1.

In the structure background removing stage, the local
maximum is first extracted as the potential targets. And the
smoving patterns of local maximum are correlated to remove
structure background. In the target detection stage, the pulse
signals in temporal profiles are extracted by using a new
max-median filter. The variances of temporal profiles are
then estimated by segmenting each temporal profile to small
pieces. Thus, targets can be detected by using a new designed
detection metric. Finally, a threshold that is determined
by probability of false alarm is used to segment moving
targets. The contributions of this paper are threefold: (1) The
structure background in infrared scenes is removed by using
a spatiotemporal filter; (2) the intensity of target pulse signal
is extracted by using a local contrast model; (3) the variance
level of temporal profile is estimated by dividing a temporal
profile into several pieces. The proposed method is tested
via several infrared image sequences. The results show that
our proposed method can significantly reduce the complex
background in aerial infrared image sequence and have a
good detection performance.

2. Structure Background Removing

2.1. Spatial Feature Extraction. Aircraft generally have hot
engines and plume, which makes targets brighter than back-
ground in their local areas in infrared images. In practical
applications, targets are expected to be detected as long as
possible. In this situation, a target only occupies one or
several pixels in infrared images and shows like a bright point,
sometimes resembling noise. In a small area where a target
presents, the value of the target pixel appears as a local max-
imum point. Figure 2 shows some targets in their local areas.

As shown in Figure 2, the target pixels in their local areas
are the brightest pixels (in a 3 x 3 window). This model
is based on the assumption that a target is very small (in
the order of one pixel). This attribute can be used for target
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detection. The position of a local maximum point in its
neighborhood is

(a,-, aj) = ;Sirsg max [x (i + 85+ sj)] , )
025
where (i, j) denotes spatial position, s; = 1,0, 1, and s; =

—1,0, 1. If the position of the local maximum point is (0, 0), it
is labeled as a potential target

1 (a5a;)=(0,0)
L, (i jun) = (3a) )

0 else,

where n denotes the index of frames.

2.2. Target Moving Patterns Correlation. Considering local
maxima can only remove few fractions of background.
To improve background removing, the moving patterns of
targets are introduced. In fact, aircraft flying across sky follow
Newton’s law and do not have sharp trajectories. Figure 3
shows an example of a moving target in several frames.

As shown in Figure 3, the target presenting in a beginning
frame may move from its original pixel to its neighboring
pixel or stand in the same position in the next frame and does
not move in a sharp trajectory.

Suppose a target present in a pixel of a frame. The target
can only present in its neighboring pixel or the same pixel
in the previous frame. Similarly, the target can only present
in its neighboring pixels or the same pixel in the next frame.
The possible patterns of a target moving in consecutive three
frames are shown in Figure 4.

As shown in Figure 4, the consecutive three frames are
previous frame (left frame), current frame (middle frame),
and next frame (right frame). The dark box denotes the
possible position of a target. Figure 4(a) denotes a target
appears in the upper left corner in the previous frame.
In this situation, the target will appear in a pixel of the
four dark pixels in the next frame. Considering all possible
positions in the previous frame, the corresponding positions
in next frame are listed in Figures 4(a)-4(i). If we index the
nine pixels in Figure 4 with 1 to 9, as shown in Figure 5
the corresponding indexes that the target presented in the
previous frame and the next frame are shown in Table 1.

The labeled potential targets are then tested by using
target moving patterns (listed in Table 1). If the movement of
potential targets does not follow moving patterns of targets,
they are removed.

Assume the moving patterns in Table 1 are denoted by

Pmov = {pmov,l’ pmov,2’ e Pmov,Nm} > (3)

where pmov,l = {1’ 5}’ pmov,Z = {1’ 6}’ c ’pmov,Nm = {9’ 5}
Let a local maximum pixel in current frame be denoted by
I.(i, j,n). The index of the corresponding local maximum
in previous frame is denoted by /.. The index of the
corresponding local maximum in next frame is denoted by
lex- The moving pattern of the pixelis poy = {lyre> Lnex}- Thus

nex-

1 Pmov € Prov
L (i, jim) = e (4)
0 else.
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FIGURE 2: Targets in their local areas.

FIGURE 3: A moving target in several frames.

The pixels that a target may present are

n=Nj

LG j) = |J LG jim), ©)
n=1

where N; is the number of frames. Thus, the removed
structure background pixels are

1 L (i,j)=0
Ly (i j) = (6)
0 else.

By incorporating local maxima with moving patterns of
targets, many background pixels can be removed. Generally,
the structure background of an infrared scene, such as
clouds and buildings, has fixed patterns. The local maxima of
structure background have moving patterns that are distinct

TaBLE 1: Corresponding indexes in the previous frame and the next
frame.

Next frame
5,6,8,9
578,9
4,5,7,8
3,5,6,9

1,2,3,4,56,7,8,9
1,4,5,7
2,3,5,6
1,2,3,5
1,2,4,5

Previous frame

O o N N U W

from that of targets. The removed pixels by using local
maxima labeling and targets moving patterns are mainly from
structure background. The result is shown in Figure 6.

As shown in Figure 6, most of the structure background
pixels are removed. In fact, the structure background in an
infrared scene is difficult to eliminate.

3. Target Detection

3.1. Temporal Profile of Infrared Image Sequences. By using
a focal plane array (FPA) detector to constantly monitor a
scene, each pixel will produce a temporal profile over a short
period of time. The temporal profile indicates variation of
the pixel values in this period of time. When a target moves
across a pixel, a pulse-like signal is created on its temporal
profile. The width of the pulse will be inversely proportional
to the target velocity. Its height above (or depth below)
background depends on its differential radiance with respect
to the background. This model is based on the assumption
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FIGURE 4: Possible patterns of a target moving in consecutive three frames.
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FIGURE 5: Pixel indexing.

that the target is very small (in the order of one pixel) and
moving across the scene.

For clear sky background, the temporal profiles affected
by targets can easily be discriminated; however in practice
there are also drifting and evolving cloud clutters in back-
ground. Temporal profiles produced by this drifting and
evolving clutter may have similar temporal behaviors to that
of the targets, which will lead to false alarms in detection
implementation. Figure 7 shows temporal profiles of a target,
clear sky, inner cloud, and cloud edge pixel.

As shown in Figure 7, pixels affected by clear sky or inner
cloud background have temporal profiles that behave like a
constant mean value plus white noise. Pixels affected by cloud
edges or other difficult clutter features will have less regular
temporal behaviors. A pixel affected by a small moving target
will have a pulse-like shape on its temporal profile, which is
distinct from that of the cloud clutter and clear sky.

3.2. Target Pulse Signal Extraction. The temporal profile that
is affected by a target will have a pulse signal. The height
of the pulse signal is proportional to the radiance of the
target, and its width related to the relative velocity of the
target and the detector. The temporal profiles that are affected
by evolving clouds will have irregular large fluctuations,
which will cause the increase of false alarm of pulse signal
extraction. Therefore, we present a new efficient and novel
target detection algorithm by using max-median approach to
extract target pulse signal.

Suppose a target pulse signal appears on a temporal
profile with N; points. A slide window with width w, = 2N, +1
moves on the temporal profile, followed by two background
estimation windows with width wj, located on the two sides of
the slide window. The maximum value in the slide window is

fi(n) = max [x(n+k)], (7)
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FIGURE 6: Structure background removing. (a) Infrared scene. (b) Structure background removing.
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FIGURE 7: Temporal profiles of a target, clear sky, inner cloud, and cloud edge pixel. (a) One frame of an IR image sequence. (b) Temporal

profiles.

where x(n) denotes the pixel value of a temporal profile in
framen; k = -N,,-N, +1,...,N,.

The background level on the left side of the slide window
can be estimated by

b (n) = meckiian [x(n+Kk)], (8)
where k = —w,—N,, —w,—N,+1,...,—N,—-1. The background
level on the right side of the slide window is

b, (n) = meilian [x(n+ k)], 9)

where k = N, + 1, N, + 2,..., N, + w,. The background level
in position n can be estimated by

b (n) = b +b ) (10)
2
Hence, the height of a potential pulse signal is
d;(n) = f; (n) = b, (n). 11

The the height of the target pulse signal can be acquired

by
hy, = max [d, (n)]. (12)

The calculation of target pulse signal extraction is shown
in Figure 8.

Since max-median filter is a nonlinear filter and is robust
in heavy noisy conditions, the max-median filter proposed to
extract target pulse signal can avoid the interferences of noise
or blind pixels.

3.3. Temporal Profile Variance Estimation. In [22], the
authors employ a local contrast model to detect targets, using
the average of background as reference. This is inappropriate
for temporal profiles. Because evolving clouds can generate
sharp peaks on temporal profiles, the local contrast model
will extract the sharp peaks as target pulse signals, leading to
a high probability of false alarm. To reduce the sharp peaks
of evolving clutters, the fluctuation level of a temporal profile
is considered to normalize the amplitude of pulse signals. In
this paper, the variance of temporal profile is introduced to
represent the fluctuations of temporal profiles.
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FIGURE 9: Background variance estimation.

For target temporal profiles, the estimated variance
should not be affected by the target pulse signal. Therefore, we
propose a new variance estimation method by dividing each
temporal profile into several pieces. And we use the minimum
variance of the pieces as reference:

U = wLZx[n+(m—l)wp],

pn=1
(13)
1 & 2
ofn= Z{x[n+(m—1)wp]—[4m} ,
w, - 15
where w, = LN,/MPJ, m = 1,2,...,Mp, and Mp is the

number of divided pieces.
The reference temporal profile variance is

af = mmin (afn). (14)

The estimation of temporal profile variance is shown in
Figure 9. By dividing a temporal profile into several pieces,
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a target pulse signal will only appear in one or two pieces
of the temporal profile. Using the minimum variance of the
pieces can avoid the affection of the target pulse signal. And
the calculation procedure is simple and highly efficient.

Finally, the target detection in infrared sequences can be
achieved by the following metric:

_h

R

= (15)
9

n

4. Experimental Results and Discussion

We test our proposed approach by using three infrared image
sequences, captured by Rome Laboratory, named as “npa,”
“j2a,” and “na23a.” The “npa” and “j2a” scenes have two
targets on the sky with heavy clutters. The “na23a” scene
has one very dim point target below clouds. All the targets
are emphasized by red boxes. To compare the performance
of our proposed approach, the CWT [14], CLSP [18], TCF
[23], and fusion filters (FF) [24] approaches are selected as
references. FF approach focuses on the tracking of small
targets. Our approach focuses on detecting moving target
from infrared sequences. Here, only the target detection stage
of the FF approach is compared with our approach. The
detection results are shown in Figure 10.

The images from the second to the fifth row are detection
results of the CWT, CLSP, TCE FE and the proposed
approach, respectively. As shown in Figure 10, the CWT
approach can highly enhance the response of target, but the
heavy clutters and noisy background also have high response.
The CLSP approach has good performance in background
suppression, yet some target pixels are also suppressed. The
interferences of TCF approach are much higher in the three
evaluated scenes. FF approach has slight enhancement in
the targets pixels. However, the evolving clutters have high
response, which can lead to high false alarms. The results
of the new proposed approach have high contrast of target
and background in the evaluated scenes. All the targets are
enhanced and the response of background becomes much
weaker. The bottom line of Figure 10 is the threshold result
of the proposed approach, indicating that all targets are truly
segmented out.

To further evaluate the performance of our proposed
approach. We calculate the receiver operating characteristic
(ROC) curves of the evaluated approaches. The results are
shown in Figure 11.

As shown in Figure 11, the solid lines with down triangle
symbols are ROC curves of our proposed approach. The
ROC curves of our approach are on the top of the evaluated
approaches. The results indicate that our new proposed
approach has much better performance than the evaluated
approaches.

5. Conclusion

In this paper, we propose a local signal-to-noise filter based
moving dim target detection approach to eliminate the
interferences of slow moving clouds and some abnormal
blind pixels. By using median-mean model, the new approach
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FIGURE 10: Detection results. (a) Detection result of “npa” scene. (b) Detection result of “j2a” scene. (c) Detection result of “na23a” scene.
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can remove the large fluctuations on temporal profiles and
eliminate the impact of blind pixels. The approach estimates
temporal profile variances by using a segmentation method,
avoiding the interference of target pulse signal. The proposed
approach is tested and compared with several conventional
temporal profile based target detection approaches. The
experimental results validate the high efficient and robust of
the proposed approach.
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