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Electric power is a kind of unstorable energy concerning the national welfare and the people’s livelihood, the stability of which
is attracting more and more attention. Because the short-term power load is always interfered by various external factors with
the characteristics like high volatility and instability, a single model is not suitable for short-term load forecasting due to low
accuracy. In order to solve this problem, this paper proposes a newmodel based on wavelet transform and the least squares support
vector machine (LSSVM) which is optimized by fruit fly algorithm (FOA) for short-term load forecasting. Wavelet transform
is used to remove error points and enhance the stability of the data. Fruit fly algorithm is applied to optimize the parameters of
LSSVM, avoiding the randomness and inaccuracy to parameters setting.The result of implementation of short-term load forecasting
demonstrates that the hybrid model can be used in the short-term forecasting of the power system.

1. Introduction

Power load forecasting is an important part of management
modernization of electric power systems, which has attracted
more and more attentions from the academic circle and
the practice. Power load forecast with high precision can
ease the contradiction between power supply and demand,
providing a solid foundation for the stability and reliability
of the power grid. It can avoid the waste of resources in the
process of grid scheduling and improve the economic benefit.
Thus, improving load forecasting methods and the accuracy
of prediction constantly is of great important significance
to formulate the economic and better power generation
plan, reduce spinning reserve capacity, analyse power market
demand, and so forth. However, the power load will be
influenced by many factors, so features like irregularity and
linear independence do exist, which result in the difficulty in
making accurate predictions to the power load.

At present, the methods for load forecasting can be
divided into two parts: classical mathematical statistical
methods and approaches based on artificial intelligence.Most
load forecasting theories are based on time series analysis

and autoregression models, including vector autoregression
model (VAR) and autoregressive moving average model
(ARMA) [1–5]. Time series smoothness prediction methods
are criticized by researchers for their weakness of nonlinear
fitting capability.With the development of the electricitymar-
ket, the requirement of high accuracy load forecasting ismore
strict and efficient. So artificial intelligence, which includes
neural network [6–8], grey model [9, 10], and support vector
machine [11], gains more and more attention from scholars.
Due to the strong self-learning, self-adapting ability, and
nonlinear change character, artificial neural network iswidely
used in prediction field. Kandil et al. [12] applied artificial
neural network (ANN) for short-term load forecasting with-
out the use of load history and only temperature was used,
and it was proved to be effective. After that, BPNN [13] and
GRNN [14] are used in improving ANN model for excellent
predictive abilities. The shortcomings of neural networks are
the requirement of a large amount of data, a long time solving
which may cause easily falling into local optimum.

Support vector machine (SVM) is a new statistical learn-
ing method [15]. Compared with other machine learning
methods, SVM implement the structural risk minimization
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principle to minimize an upper bound on the generalization
error, rather than employing the empirical risk minimization
principle to minimize the training error, and it gives SVMs
better generative performance. As an extension of SVM, least
squares support vector machine (LSSVM) transforms the
second optimal inequality constraints problem in original
space into equality constraints’ linear system in feature space
through nonlinear mapping [16], which improved the speed
and accuracy of convergence. Different parameters selection
in LSSVM (Kernel parameter and penalty factor) would have
big influences on the fitting accuracy and generalization abil-
ity; inappropriate parameter selection may lead to the limita-
tion of the performance of LSSVM. However, it is possible to
employ an optimization algorithm to obtain an appropriate
parameter combination. Particle swarm optimization model
[17], genetic algorithm model [18], and Firefly Algorithm
[19] model are all proposed in parameter optimization for
LSSVM; for example, particle swarm optimization finds over-
all optimal value by following the currently found optimal
values. But premature convergence and easily falling into
local optimum restrict the application of the particle swarm
optimization. Thus, this paper puts forward fruit fly opti-
mization model to optimize the parameters of LSSVM. Fruit
fly optimization algorithm was proposed by Pro. Pan [20] in
Taiwan in 2012. The FOA has the advantages of being easy to
understand due to the shorter program code compared with
other optimization algorithms and reaching a better global
optimal solution. Li et al. [21] applied the FOA to optimize the
parameters of GRNN in order to forecast the annual power
load. Zheng et al. [22] proposed a novel fruit fly algorithm for
the semiconductor final testing scheduling problem. Pan et al.
[23] developed an improved FOA algorithm for continuous
function optimization problems.

The wavelet transform (WT) is a recently developed
mathematical tool for signal analysis. It has been applied
successfully in astronomy, data compression, signal and
image processing, earthquake prediction, and so on [12]. The
combination ofWT and LSSVM is widely used in forecasting
fields [24, 25]. This paper proposes WT to reprocess the data
and improve its reliability. In order to enhance the accuracy
of load forecasting, WT-FOA-LSSVM is put up with, and the
examples demonstrate the effectiveness of the model.

The rest of the paper is organized as follows: Section 2
provides some basic theoretical aspects of WT, LSSVM, and
FOA and gives a brief description about WT-FOA-LSSVM
model; in Section 3, an experiment study is put forward to
prove the efficiency of the proposed model; Section 4 is the
conclusion of this paper.

2. WT-FOA-LSSVM Model

2.1. Wavelet Transform. Wavelet transform is a mathematical
tool for signal analysis which developed in recent decades.
It can capture the frequency and location information of the
input signal. The basic concept in wavelet transform is to
decompose a signal into an approximation component and
detail components, in which approximation component is
the low-frequency information and contains the important
information of the signal. The details are the high-frequency
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Figure 1: Wavelet decomposition.

components which are related to the small-scale space in the
signal. Figure 1 is a wavelet decomposition tree showing the
decomposition process.

In order to overcome the high redundancy situation
which exists in continuouswavelet transform, it captures both
frequency and location information in temporal resolution.
We propose the discrete wavelet transform (DWT) in this
paper, and it is defined as follows:
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In this paper, the original load signal is proposed to be
decomposed into an approximation component and some
detail components. The approximation presents the main
fluctuation of the load and the details to contain the spikes
and stochastic volatilities. A suitable number of levels can be
decided by comparing the similarity between the approxima-
tion and the original signal.

2.2. Least Squares Support Vector Machine. LSSVM is an
extension of the standard support vector machine (SVM),
proposed by Suykens and Vandewalle [26]. It transforms
the inequality constraints of traditional SVM into equality
constraints and considers sum squares error loss function
as the loss experience of the training set, which transforms
solving quadratic programming problems into solving linear
equations problems [27]. The training set is set as {(𝑥

𝑘
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is the output data. 𝜑(⋅) is the nonlinear mapping function
which transfers the samples into a much higher dimensional
feature space 𝜙(𝑥

𝑘
). Establish the optimal decision function

in the high-dimensional feature space:

𝑦 (𝑥) = 𝜔
𝑇

⋅ 𝜑 (𝑥) + 𝑏, (3)

where 𝜑(𝑥) is mapping function; 𝜔 is weight vector; 𝑏 is
constant.
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Using the principle of structural risk minimization, the
objective optimization function is as follows:
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Its constraint condition is
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in which 𝛾 is the penalty coefficient and 𝑒
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is slack variable.
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According to (7), the optimization problem can be
transformed into solving linear problem, which is shown as
follows:

[
[
[
[
[
[
[
[

[

0 1 ⋅ ⋅ ⋅ 1

1 𝐾 (𝑥
1
, 𝑥
1
) +

1

𝛾
⋅ ⋅ ⋅ 𝐾 (𝑥

1
, 𝑥
𝑙
)

.

.

.
.
.
.

.

.

.
.
.
.

1 𝐾 (𝑥
𝑙
, 𝑥
1
) ⋅ ⋅ ⋅ 𝐾 (𝑥

𝑙
, 𝑥
𝑙
) +

1

𝛾

]
]
]
]
]
]
]
]

]

[
[
[
[
[
[

[

𝑏

𝛼
1

.

.

.

𝛼
𝑙

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

0

𝑦
1

.

.

.

𝑦
𝑙

]
]
]
]
]
]

]

.

(8)

Solve formula (8) to get 𝛼 and 𝑏; then the LSSVM optimal
linear regression function is
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kernel function. In this paper, set radial basis function (RBF)
as kernel function which is shown in the following equation:
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where 𝜎2 is the width of kernel function.

Fruit fly
group

Fruit fly 
1

Fruit fly
2

Fruit fly
3

Dist2

Dist1

Dist3

Food

Interactive
evolution

(X2, Y2) (X3, Y3)

(X1, Y1)

(X, Y)

Figure 2: Food finding iterative process of a fruit fly swarm.

From the problems of training LSSVM, kernel parameter
𝜎
2 and penalty parameter 𝛾 are generally set based on

experience, which leads to the existence of randomness and
inaccuracy in the application of the LSSVM algorithm. To
solve the problem, the paper uses fruit fly optimization
algorithm to optimize these two parameters to improve the
prediction accuracy of LSSVM.

2.3. Fruit Fly Optimization Algorithm. Fruit fly optimization
algorithm is a kind of intelligent optimization algorithms
based on fruit fly foraging behaviours proposed by Pan [20]
in 2012. The basic concept of FOA is that fruit fly perceives
food concentration according to its position, and then it will
move to the site of maximum or minimum concentration by
comparing flavor concentration; finally the objective function
extreme value can be obtained through repeated iterations of
food concentration. Food finding iterative process of fruit fly
swarm is shown in Figure 2.

According to the food finding characteristics of fruit fly
swarm, the fruit fly optimization algorithm can be divided
into following steps:

(1) Randomly initialize the fruit fly swarm location
(𝑥 axis, 𝑦 axis).

(2) Give the random flight direction and the distance for
food finding of an individual fruit fly by using olfactory:

𝑋
𝑖
= 𝑥 axis + Random Value

𝑌
𝑖
= 𝑦 axis + Random Value.

(11)

(3) Calculate the distance between the origin and each
individual fruit fly position (Dist), and then calculate the
value of flavor concentration (𝑆); it is the reciprocal of
distance:

Dist = √𝑋2
𝑖
+ 𝑌2
𝑖

(12)

𝑆 =
1

Dist
. (13)
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(4) Put the value of flavor concentration 𝑆 into its
fitness function, and then get the flavor concentration of the
individual fruit fly location (Smell).

(5) Find out the individual fruit fly with minimal smell
concentration among the fruit fly swarm:

[best Smell, best index] = max (Smell) . (14)

(6) Retain the best flavor concentration and its 𝑋, 𝑌
coordinates, and then the fruit flies fly to the position by
using vision. Enter iterative optimization to repeat steps
(2)–(5). When the fitness value reaches target set, or the
iterative number reaches the maximal iterative number, the
circulation stops. Update the information as follows:

Smell best = best Smell

𝑥 axis = 𝑋 (best index)

𝑦 axis = 𝑌 (best index) .

(15)

2.4. The Introduction of WT-FOA-LSSVM. Flowchart of the
WT-FOA-LSSVM model is shown in Figure 3, and the
detailed processes are as follows.

(1) Data PreprocessingUsingDWT.Decompose the load signal
into the approximation A1 and the details D1, and select A1 as
the training data and testing data.

(2) Initialization of the Fruit Fly Optimization Algorithm
Parameters. Fruit fly optimization algorithm parameters
contain the initial fruit fly swarm location (𝑥 axis, 𝑦 axis),
the random flight distant range FR, the population size
sizepop, and the maximum iterative number 𝑁max. In this
paper, we set 𝑥 axis = rands(1, 2), 𝑦 axis = rands(1, 2),
where rands() represents the random number generation
function inMATLABprogram. In addition, we suppose FR ⊂

[−10, 10], sizepop = 50, and𝑁max = 100.

(3) LSSVM Optimized by Fruit Fly Optimization Algorithm.
Calculate the distance 𝐷

𝑖
between the origin and each

individual fruit fly 𝑖 according to formulas (11) and (12)
and the smell concentration judgment value 𝑆

𝑖
according to

formula (13). In the FOA-LSSVM program, the parameters
[𝐶, 𝜎
2

] of LSSVM model are represented by [𝑆(𝑖, 1), 𝑆(𝑖, 2)],
and we set 𝐶 = 20 ∗ 𝑆(𝑖, 1) and 𝜎2 = 𝑆(𝑖, 2) for LSSVMmodel
training. According to the electric load forecasting result, the
value of fitness function can be calculated. In this paper, we
employ the mean absolute percentage error (MAPE) as the
fitness function, and the formula is as follows:

MAPE =
1
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where 𝑦
𝑖
represents the actual value at period 𝑖; 𝑦

𝑖
is the

forecasting value at period 𝑖 and 𝑛 is the number of forecasting
periods.

If themaximum iterative number𝑁max = 100 orMAPE <

0.01%, stop the iterative process and output the best values of
𝐶 and 𝜎2.

(4) Forecast Using Least Squares Support Vector Machine. Put
the optimal parameter value obtained from step (3) in the
least squares support vector machine and do the forecast.
Finally, get the forecasting load value.

3. Case Studies

3.1. Data Preprocessing. This paper chooses the 24-hour
power load data from May 1, 2013, to July 23, 2013, in Shanxi
province for model checking. In this paper, we select 1986
pieces of load data from May 1 to July 22 as training set and
24 pieces of load data of July 23 as testing set. In order to
eliminate the effects of random fluctuations of load data, we
decompose the original load data S into the approximation
component A1 and detail component D1 through one-level
DWT, as shown in Figure 4.

From Figure 4, it is clear that the major fluctuation of A1
shows high similarity to the original load data S. The detail
component D1 is excluded from the original data to ensure
the stability of the input data. So, A1 is selected as the input in
proposed model.

3.2. Selection of Input. Human activities are always disturbed
by many external factors and then the power load is affected.
So, some effective features are considered as input features. In
this paper, the input features are discussed as follows.The first
feature is the highest temperature and the lowest temperature.
Temperature is one of these effective features. In [27–29],
temperature was considered as an essential input feature and
the forecasting results were accurate enough. So, the highest
and lowest temperatures are taken into consideration. The
second feature is weather conditions.The weather conditions
are divided into four types: sunny, cloudy, overcast, and rainy.
For different weather conditions, we set different weights:
{sunny, cloudy, overcast, and rainy} = {0.9, 0.7, 0.5, 0.2}. The
third feature is days type. For different days type, the electric
power consumption is different. Figure 5 shows the load data
from June 10, 2013, to June 16, 2013, among whichWednesday
is dragon festival in China. From Figure 5, we can see that the
mean power load ofWednesday is higher than other days and
different days type has different curve features. So, we assign
values to days type in Table 1.

3.3. Parameters Setting of Comparison Models. In this paper,
we introduce five other models, WT-LSSVM, least squares
support vector machine optimized by fruit fly optimiza-
tion algorithm (FOA-LSSVM), least squares support vector
machine optimized by particle swarm optimization algo-
rithm (PSO-LSSVM), least squares support vector machine,
and the BP neural network, to make a comparison with the
proposed model. Referring to some of the relative literature
[21, 27], the parameters of the comparison models are set as
shown in Table 2.
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Figure 3: Flowchart of the WT-FOA-LSSVMmodeling.

Table 1: The weights of days type.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Holiday
Weights 1 2 3 4 5 6 7 8

Table 2: Parameters of models mentioned in the paper.

Model Parameters
WT-LSSVM 𝛾 = 40; 𝜎2 = 5

FOA-LSSVM Initial-location[rands(1, 2), rands(1, 2)]; FR = [−10, 10]; sizepop = 50;𝑁max = 100

PSO-LSSVM 𝐶
1
= 𝐶
2
= 2;𝑁max = 100; sizepop = 20; 𝑤

0
= 0.8; 𝑤

𝑛
= 0.3

LSSVM 𝛾 = 40; 𝜎2 = 5

BPNN 𝑁max = 100; hidden-layer-node = [5, 5]; learning-rate = 0.1; goal = 0.00004
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3.4. Model Performance Evaluation. To examine the perfor-
mance of model, the relative error (RE), the mean absolute
percentage error (MAPE), the mean square error (MSE), and
the mean absolute error (MAE) are proposed to measure the
forecast accuracy. The formulas are as follows:
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Figure 7: Actual load and forecasting results of WT-FOA-LSSVM,
FOA-LSSVM, and PSO-LSSVM.

where 𝑦
𝑖
represents the actual value at period 𝑖; 𝑦

𝑖
is the

forecasting value at period 𝑖 and 𝑛 is the number of forecasting
periods.

3.5. Analysis of Forecasting Results. The program in this
paper is run in MATLAB R2011b under the XP system.
Table 3 shows the short-term electric load forecasting results
of the WT-FOA-LSSVM, WT-LSSVM, FOA-LSSVM, PSO-
LSSVM, LSSVM, and BPNN models. Figures 6, 7, and 8
present the comparisons of the forecasting results between
the proposed model and the others. Figures 9, 10, and 11
show the comparisons of relative errors between the proposed
model and the others. The relative error ranges [−3%, 3%]
and [−1%, 1%] are always considered as a standard to assess
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Table 3: Actual load and forecasting results.

Time/h Actual value/MW WT-FOA-LSSVM WT-LSSVM FOA-LSSVM PSO-LSSVM LSSVM BPNN
1:00 802 794.57 794.48 811.09 817.87 813.47 811.50
2:00 789.71 786.76 787.26 796.86 804.78 798.72 800.40
3:00 786.59 778.32 778.41 790.53 764.12 792.73 785.70
4:00 786.82 782.07 781.90 791.48 768.02 792.93 782.74
5:00 784.16 783.38 783.36 784.04 795.92 796.98 801.99
6:00 785.28 792.11 791.62 798.36 773.31 799.73 790.22
7:00 787.18 807.72 811.68 803.65 798.63 810.33 811.39
8:00 801.29 819.94 819.71 826.31 816.22 830.52 817.20
9:00 801.71 816.90 816.87 819.94 804.59 822.10 812.74
10:00 826.78 824.57 824.37 839.52 819.02 842.58 838.74
11:00 834.31 845.44 844.48 854.89 828.72 857.19 850.32
12:00 858.62 862.27 862.07 875.15 849.75 874.93 873.86
13:00 852.87 844.17 844.70 859.51 854.92 871.70 880.61
14:00 813.21 819.19 819.59 831.13 825.04 829.22 830.73
15:00 818.59 820.88 820.84 827.56 827.45 828.01 825.97
16:00 839.14 837.15 836.17 847.18 848.92 849.39 853.78
17:00 853.36 859.53 858.90 854.69 861.14 868.99 878.91
18:00 877.21 869.92 869.73 887.87 862.37 889.47 899.97
19:00 899.76 872.85 872.72 898.40 927.42 900.42 902.82
20:00 869.36 883.01 882.77 881.83 868.06 888.95 877.78
21:00 886.74 903.93 903.35 903.41 893.90 917.73 897.03
22:00 887.77 890.44 890.68 915.67 889.76 919.97 925.14
23:00 873.6 854.58 847.88 882.64 896.88 884.27 866.82
24:00 834.67 834.29 834.34 836.32 856.53 839.34 846.50

Table 4: Models performance evaluations.

Index Model
WT-FOA-LSSVM WT-LSSVM FOA-LSSVM PSO-LSSVM LSSVM BPNN

MAPE (%) 1.068 1.111 1.3534 1.414 1.8457 1.674
MSE (MW2) 130.4913 147.9492 181.4398 191.3687 300.9418 268.3937
MAE (MW) 8.9425 9.297083 11.26083 11.90875 15.3725 13.98458

the performance of a forecasting model [30]. First, based
on Table 2 and Figures 9, 10, and 11, the relative errors of
short-term load forecasting of WT-FOA-LSSVM are all in
the range of [−3%, 3%], and the maximum relative error is
2.6096% at 7:00 and the minimum relative error is −2.991%
at 19:00. There exist fourteen points that are in the scope
of [−1%, 1%]. Second, the WT-LSSVM has two forecasting
points that exceed the relative error range [−3%, 3%], which
are 3.1121% at 7:00 and 3.006% at 19:00, and there are
fifteen forecasting points in the range of [−1%, 1%]. Third,
the FOA-LSSVM has two forecasting points that exceed the
relative error range [−3%, 3%], which are 3.1225% at 8:00
and 3.1429% at 22:00, and there are eight forecasting points
in the range of [−1%, 1%]. Fourth, the PSO-LSSVM has
one forecasting point that exceeds the relative error range
[−3%, 3%], which is 3.0743% at 9:00, and there are eight
forecasting points in the range of [−1%, 1%]. Fifth, the single
LSSVM has three forecasting points that exceed the relative
error range [−3%, 3%], which are 3.6484% at 8:00, 3.4946%
at 21:00, and 3.627% at 22:00, and there are three forecasting

points in the range of [−1%, 1%]. Sixth, the BPNN has
three forecasting points that exceed the relative error range
[−3%, 3%], which are 3.0755% at 7:00, 3.2531% at 13:00, and
4.209% at 22:00, and there are seven forecasting points in the
range of [−1%, 1%]. However, the comparison models also
predict more accurately than the proposed model at some
points, such as 7:00 and 19:00.

Themean absolute percentage errors,mean square errors,
and mean absolute errors of WT-FOA-LSSVM,WT-LSSVM,
FOA-LSSVM, PSO-LSSVM, LSSVM, and BPNN are listed
in Table 4. From Table 4, we can conclude that the MAPE
of the proposed model is 1.068%, which is smaller than the
MAPE of WT-LSSVM, FOA-LSSVM, PSO-LSSVM, LSSVM,
and BPNN (which are 1.111%, 1.3534%, 1.414%, 1.8457%, and
1.674%). Additionally, the MSE of the proposed model is
130.4913, which is smaller than the MSE of the comparison
models (which are 147.9492, 181.4398, 191.3687, 300.9418, and
268.3937). The MAE of the proposed model is 8.9425, which
is smaller than the MAE of the comparison models (which
are 9.297083, 11.26083, 11.90875, 15.3725, and 13.98458). As
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Figure 8: Actual load and forecasting results of WT-FOA-LSSVM,
LSSVM, and BPNN.
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Figure 9: Relative errors of WT-FOA-LSSVM andWT-LSSVM.

a result, the MAPE, MSE, and MAE of the WT-FOA-
LSSVM are all smaller than those of the WT-LSSVM, so
we can conclude that the parameter optimization to LSSVM
is essential in the forecasting model. Besides, the MAPE,
MSE, and MAE of the WT-LSSVM are all smaller than
those of FOA-LSSVM, PSO-LSSVM, LSSVM, and BPNN,
indicating the preprocessing of load data is useful for a better
performance and higher forecasting accuracy. At the same
time, the MAPE, MSE, and MAE of the FOA-LSSVM are
all smaller than those of PSO-LSSVM, LSSVM, and BPNN,
and it is presented that the optimization result of the fruit fly
optimization algorithm is efficient. So, we can conclude that
the stability and forecasting accuracy of the proposed model
is better than the comparisonmodels, and it is worth of being
widely used in the short-term load forecasting.

WT-FOA-LSSVM
FOA-LSSVM

PSO-LSSVM

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Re
la

tiv
e e

rr
or

5 10 15 20 250
Time (h)

Figure 10: Relative errors of WT-FOA-LSSVM, FOA-LSSVM, and
PSO-LSSVM.
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Figure 11: Relative errors ofWT-FOA-LSSVM, LSSVM, and BPNN.

4. Conclusion

To strengthen the stability and economy of the grid and avoid
the waste in grid scheduling, it is essential to improve the
forecasting accuracy. Because the short-term power load is
always interfered by various external factors with the charac-
teristics like high volatility and instability, the high accuracy
of load forecasting should be taken into consideration. Based
on the features of load data and the randomness of the
LSSVM parameters setting, we propose the model based on
wavelet transform and least squares support vector machine
optimized by fruit fly optimization algorithm. To validate
the proposed model, four other comparison models (FOA-
LSSVM, PSO-LSSVM, LSSVM, and BPNN) are employed
to compare the forecasting results. Example computation
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results show that the relative errors of WT-FOA-LSSVM
model are all in the range [−3%, 3%], and the MAPE, MSE,
and MAE are all smaller than the others. In addition, the
fruit fly optimization algorithm is easy to understand and
operate, so it is applied widely in parameters optimization.
The hybrid model can be effectively used in the short-term
load forecasting on power system.
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