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In this paper, we address the problems of joint design for channel selection,medium access control (MAC), signal input control, and
power control with cooperative communication, which can achieve tradeoff between optimal signal control and power control in
wireless sensor networks (WSNs).The problems are solved in two steps. Firstly, congestion control and link allocation are separately
provided at transport layer and network layer, by supply and demand based on compressed sensing (CS). Secondly, we propose the
cross-layer scheme to minimize the power cost of the whole network by a linear optimization problem. Channel selection and
power control scheme, using the minimum power cost, are presented at MAC layer and physical layer, respectively.These functions
interact through and are regulated by congestion rate so as to achieve a global optimality. Simulation results demonstrate the validity
and high performance of the proposed algorithm.

1. Introduction

Wireless sensor networks find many applications in military
areas detection, habitat monitoring, and so on. Performance
degenerate analysis has gained much interest due to unbal-
anced power allocation in physical layer, excessive contention
wireless channel inMAC layer, unfair link capacity allocation
in network layer, and the inappropriate transport protocol in
transport layer. WSNs suffer from several restrictions of the
sink nodes and sensor nodes on account of the battery pow-
ered, computation complexity, communication, and storage
capabilities [1–3].

MAC (medium access control), which is critical technol-
ogy concerning net performance [4], is in charge of allocation
wireless communication resources for contention nodes in
protocol stack.

Scheduling effectively achieves resource allocation for
wireless communication. To reach a satisfying scheduling
scheme, scheduling cost, and scheduling objective regu-
larly compromised, the scheduling problem is transferred
to multiobjective optimization. Recently, scholars integrated
scheduling and power control for better performance and
obtained certain achievements [5, 6].

Reference [7] provided an in-depth analysis on the
CS-based medium access control schemes and revealed
the impact of communication signal-to-noise ratio on the
reconstruction performance. Authors showed the process of
the sensor data converted to the modulated symbols for
transmission and how the modulated symbols are recovered
via compressed sensing. Reference [8] studied the optimal
flow control by a multiobjective linear programming prob-
lem, which achieved the optimization between utility and
lifetime inWSNs. Reference [9] jointly designed rate control,
scheduling, and power control with stochastic optimiza-
tion problems to achieve cross-layer optimization protocol
designing. Reference [10] investigated optimal power control,
rate adaptation, and scheduling for an ultrawideband-based
Intravehicular Wireless Sensor Network for one-electronic-
control-unit (ECU) and multiple-ECU cases. These methods
are widely applied into many-to-one data transmission con-
trol protocols and solved the problems in every aspect [11–14].
However, the above algorithms did not give a comprehensive
analytic process for considering energy consumption, chan-
nel selection, link capacity, and congestion control to ensure
better performance.
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Figure 1: Multihop routing cooperative communication model.

In this paper, cross-layer optimal design is presented,
which considers the influence for congestion rate at physical
layer,MAC layer, network layer, and transport layer to achieve
minimum power cost in WSNs. The algorithm coordinates
communication protocols by congestion rate in the several
layers to solve lossy wireless channel, excessive contention
and unfair access, disabled bandwidth allocation, and the
fundamentally inappropriate mechanisms of TCP. First, we
design a packet error rate control strategy based on conges-
tion rate, which makes the packet error rate in the domain
of validity. The power is exactly allocated on the basis of “to
each according to his needs.” Second, the optimal schemes
of control input and link capacity with compressed sensing
are discussed.Third, we construct minimum energy problem
with power control function, congestion control function,
link allocation function, and so on. The optimum solutions
are the optimal power control and channel selection.

2. Network and Node Model

For energy efficiency purpose, the transmission power at
every node is assumed to be adjustable resulting in congestion
price: when the congestion rate is bigger, the power should be
increased for data transmitted successfully; when the conges-
tion rate is smaller, the power is only satisfied for data trans-
mitted regularly. We assume that the sensor network consists
of𝑁 nodes, of which the sink node is defined as node #𝑁.

Communication from node 𝑖 to node 𝑗 contains directed
communication hop (DCH) 𝑖 → 𝑗 [15] and cooperative
communication hop (CCH) 𝑖 → 𝑘 → 𝑗, as shown in
Figure 1. CCH consists of a sender, a relay, and a receiver
(𝑖, 𝑘, 𝑗 in Figure 1, resp.), such that both direct and relayed
copies of the information transmitted by the sender are
received at the receiver.

3. Cross-Layer Optimization Design of
Cooperative Communication

In the wireline networks, the protocols hold rigorous con-
straint at each layer, which is only responsible for oneself,
not being infiltrated. Physical layer is mostly in charge of
power allocation; channel selection is achieved inMAC layer;
flow control is implemented in transport layer; network layer
is usually responsible for scheduling design. However, the
requirement like this does not occur in WSNs. Cooperative

communication is applied for protocols at each layer to make
net performance better.

3.1. Power Control. Define packet error rate with white
Gaussian noise [15] as follows:

Ω
𝑖𝑘,DC = 1 − (1 −

1

2
𝑒
−𝛾𝑖𝑘/2)

𝐿

, (1)

where 𝛾
𝑖𝑘
= (𝑃tx,tot,𝑖𝑔𝑖𝑘/𝑃𝑛) × (𝐵𝑛/𝑅) is energy per bit to noise

power spectral density ratio, 𝑃tx,tot,𝑖 is the aggregated power
for transmitting a packet at 𝑖, 𝐵

𝑛
is the noise bandwidth, 𝑔

𝑖𝑘

is the path loss of link (𝑖, 𝑘) in linear units, 𝑃
𝑛
is the average

noise power, 𝑅 is the maximum link data rate in bits per
second, bits/s, and 𝐿 is the length of the packet. The power
consumption of a packet transmitted successfully is 𝑃tx,tot,𝑖 =
(1 + 𝑝

𝑖
)𝑃tx,𝑖 if congestion occurs in the WSNs, 𝑃tx,𝑖 denotes

transmitted power to a packet at ideal condition (congestion
does not occur), and 𝑝

𝑖
is the congestion rate at node 𝑖; the

average noise power 𝑃
𝑛
= (1 + 𝑝

𝑖
)𝑃
𝑛
, where 𝑃

𝑛
is the average

noise power at ideal condition; the maximum link data rate
𝑅 = (1+𝑝

𝑖
)𝑅, where 𝑅 is the maximum link data rate at ideal

condition. Thus,

𝛾
𝑖𝑘
=
(1 + 𝑝

𝑖
) 𝑃tx,𝑖𝑔𝑖𝑘

(1 + 𝑝
𝑖
) 𝑃
𝑛

𝐵
𝑛

(1 + 𝑝
𝑖
) 𝑅

=
𝑃tx,𝑖𝑔𝑖𝑘

(1 + 𝑝
𝑖
) 𝑃
𝑛

𝐵
𝑛

𝑅

. (2)

We can conclude that 𝛾
𝑖𝑘
is adjusted to be smaller, and

Ω
𝑖𝑘,DC is bigger when congestion rate is increased from

formula (2).The power, appropriately adjusted by congestion
rate, makes the packet error rate constraint the domain of
validity. The power is exactly allocated on the basis of “to
each according to his needs,” which can extensively highlight
power efficiency.

3.2. Congestion Control. Recently, lots of researchers have
addressed the signal function with cross-layer optimal design
to achieve better performance due to the characteristic of
higher communication consumption and lower data process
consumption in WSNs [16–18]. However, almost all conges-
tion control algorithms did not consider the data preprocess-
ing before being transmitted [19]. In this section, we try to
reduce the number of transmissions with a Toeplitz matrix in
compressed sensing that enables the number of transmissions
to be extensively decreased in WSNs. The transmission of
compressed signal is not only relieving the congestion in
data process overabundance but also economizing energy in
the transmission. Compressed sensing model is expressed as
follows:

𝑦 (𝑡) = Φ𝑥𝑖 (𝑡) + 𝜀, (3)

where 𝑥
𝑖
(𝑡) ∈ R𝑛×1 is input signal, 𝑦(𝑡) ∈ R𝑚×1 is measure-

ment vector, Φ ∈ R𝑚×𝑛 is sensing matrix, 𝑚 ≪ 𝑛, and
𝜀 ∈ R𝑚×1 is unknown vector formeasurement noise. Suppose
that the input signal is sparse, and sensing matrix satisfies
restricted isometry property (RIP) [20]. To speed up con-
gestion control, we select Toeplitz matrix as sensing matrix,
meeting ‖Φ‖

2
≤ 1.
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The scheduling algorithm and signal control scheme are
the same in each link or at each node. In this paper, only
consider the scheduling in (𝑖, 𝑘) and signal control at 𝑖. The
linear function𝐴(𝑓

𝑖𝑘
) of the link capacity 𝑓

𝑖𝑘
in (𝑖, 𝑘) denotes

the service capacity, and the service requirement at node 𝑖
by a linear function 𝐻(𝑥

𝑖
(𝑡), 𝑥
𝑖
) of the control input signal

𝑥
𝑖
(𝑡) and original signal 𝑥

𝑖
indicates the service requirement.

Consider

𝑍 (𝑓
𝑖𝑘
, 𝑥
𝑖 (𝑡) , 𝑥𝑖) = (1 − 𝑝𝑖) 𝐴 (𝑓𝑖𝑘) − 𝐻 (𝑥

𝑖 (𝑡) , 𝑥𝑖) . (4)

Formula (4) represents supply and demand function of the
service. The valid service capacity achieves optimality if
and only if it is exactly satisfied with service requirement.
Otherwise, it will bring unnecessary energy consumption:

𝑥
𝑖 (𝑡) = argmin

𝑥
𝑍 (𝑓
𝑖𝑘
, 𝑥
𝑖 (𝑡) , 𝑥𝑖) + 𝑝𝑖 (

𝜀

0
) . (5)

The most desired input feedback signal is argmin
𝑥
𝑍(𝑓
𝑖𝑘
,

𝑥
𝑖
(𝑡), 𝑥
𝑖
). Considering congestion in the WSNs, however,

input signal should reach to expression in (5).

3.3. Scheduling Algorithm. The adjustment of the transmitted
power in Section 3.1, being changed in the transmission range
and the connectivity of the node, causes the changes in the
requirement of the link capacity. In Section 3.2, the input
signal satisfying supply and demand function minimum is
generated. On this basis, we will discuss the link capacity
allocation in the link (𝑖, 𝑘) in this section. From analysis,
the network optimal condition is that supply and demand
function attains minimum. When function (4) is the actual
minimum, the link capacity 𝑓

𝑖𝑘
is the optimal link capacity.

In this scheduling, on the one hand, unnecessary energy
consumption with link capacity too big is effectively avoided;
on the other hand, the new congestion with link capacity too
small is suppressed. Thus, 𝑓

𝑖𝑘
can be denoted as follows:

𝑓
𝑖𝑘
∈ argmin𝑍 (𝑓

𝑖𝑘
, 𝑥
𝑖 (𝑡) , 𝑥𝑖) . (6)

3.4. Channel Selection. Power control is applied to dynam-
ically adjust transmission power, which can not only effec-
tively reduce energy consumption in communication, but
also prolong network lifetime in WSNs. In addition, power
control could remarkably influence the topology control,
connectivity, throughput, and real-time of message transmis-
sion. Moreover, MAC layer or cross-layer design with power
control evidently optimizes network performance and high-
lights QoS. In this section, we will discuss how to select chan-
nel by cutting down unnecessary energy consumption [21].
Energy is mainly expended at communications, and compu-
tation brings the energy to be neglected. For a CCHwith relay
node 𝑘, power consumption chiefly includes three parts: the
first part is transmission power of a packet sent at node 𝑖;

𝐶
𝑆,𝑘,𝑖𝑗

= 𝑃tx,𝑖,tot; (7)

the second part indicates that, for relay node 𝑘, the power
aggregate to receive a packet from node 𝑖 and successfully
transmit a packet to node 𝑗 is

𝐶
𝑅,𝑘,𝑖𝑗

= 𝑃rx,𝑘,cir + (1 − Ω𝑖𝑘,DC) 𝑃tx,𝑖,tot. (8)

The third part indicates that, for node 𝑗, the power aggregate
to receive a packet from node 𝑖 and node 𝑘 is

𝐶
𝐷,𝑘,𝑖𝑗

= 𝑃rx,𝑗,cir + (1 − Ω𝑖𝑘,cir) 𝑃rx,𝑗,cir. (9)

Suppose that 𝑃rx,𝑘 is the required power for receiving a
packet for node 𝑘 at ideal condition. Congestion should be
considered for data valid transmission. To achieve energy
optimization, let

𝐶
𝑆,𝑘,𝑖𝑗

= 𝑃tx,𝑖,tot = (1 + 𝑝𝑖) 𝑃tx,𝑖

𝐶
𝑅,𝑘,𝑖𝑗

= 𝑃rx,𝑘,cir + (1 − Ω𝑖𝑘,DC) 𝑃tx,tot,𝑘

= (1 + 𝑝
𝑘
) 𝑃rx,𝑘 + (1 − Ω𝑖𝑘,DC) (1 + 𝑝𝑘) 𝑃tx,𝑘

𝐶
𝐷,𝑖𝑗,𝑘

= 𝑃rx,𝑗,cir + (1 − Ω𝑖𝑘,DC) 𝑃rx,𝑗,cir

= (1 + 𝑝
𝑗
) 𝑃rx,𝑗

+ (1 − Ω
𝑖𝑘,DC) (1 − Ω𝑘𝑗,DC) (1 + 𝑝𝑗) 𝑃rx,𝑗.

(10)

From formula (10), the power aggregate is as follows:

𝐶
𝑖𝑗,𝑘

= 𝐶
𝑆,𝑘,𝑖𝑗

+ 𝐶
𝑅,𝑘,𝑖𝑗

+ 𝐶
𝐷,𝑘,𝑖𝑗

= (1 + 𝑝
𝑖
) 𝑃tx,𝑖 + (1 + 𝑝𝑘) 𝑃rx,𝑘

+ (1 − Ω
𝑖𝑘,DC) (1 + 𝑝𝑘) 𝑃tx,𝑘 + (1 + 𝑝𝑗) 𝐸rx,𝑗

+ (1 − Ω
𝑖𝑘,DC) (1 − Ω𝑘𝑗,DC) (1 + 𝑝𝑗) 𝐸rx,𝑗.

(11)

The energy for the packet transmitted or sent is considered
equal at each node (not considering congestion); thus (11)
becomes
𝐶
𝑖𝑗,𝑘

= 𝐶
𝑆,𝑘,𝑖𝑗

+ 𝐶
𝑅,𝑘,𝑖𝑗

+ 𝐶
𝐷,𝑘,𝑖𝑗

= (1 + 𝑝
𝑖
) 𝑃
𝑇
+ (1 + 𝑝

𝑘
) (𝑃
𝑅
+ (1 − Ω

𝑖𝑘,DC) 𝑃𝑇)

+ [(1 − Ω
𝑖𝑘,DC) (1 − Ω𝑘𝑗,DC) + 1] (1 + 𝑝𝑗) 𝑃𝑅.

(12)

Suppose that the desired packet error ratio at hop isΩobj and
power allocation constraint packet error ratio at hop can be
denoted:

min {𝐶
𝑖𝑗,𝑘
, ∀𝑘 ∈ [2,𝑁] , 𝑘 ̸= 𝑖, 𝑗}

s.t. max (Ω
𝑖𝑘,DC, Ω𝑘𝑗,DC) ≤ Ωobj

(1 − 𝑝
𝑢
) 𝐴 (𝑓

𝑢V) − 𝐻 (𝑥
𝑢 (𝑡) , 𝑥𝑢) ≥ 0

0 ≤ 𝑝
𝑢
≤ 1

𝑥
𝑢 (𝑡) = argmin

𝑥
𝑍 (𝑓
𝑢V, 𝑥𝑢 (𝑡) , 𝑥𝑢) + 𝑝𝑢 (

𝜀

0
)

𝑓
𝑖𝑘
= 𝑓
𝑢V ∈ argmin

𝑓

𝑍 (𝑓
𝑢V, 𝑥𝑢 (𝑡) , 𝑥𝑢)

𝑝
𝑢 (𝑡 + 1)

= 𝑝
𝑢 (𝑡) + 𝛾𝑡 (𝐻 (𝑥

𝑢 (𝑡) , 𝑥𝑢) − 𝐴 (𝑓𝑢V)) .

(13)

Node 𝑘making (13) optimal is the optimal occupied node.
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3.5. Algorithm Design

Algorithm 1.

Step 1. Initialization

Step 1.1. Initialize original signal 𝑥
0
∈ 𝑅
𝑛×1, and

select appropriate Φ ∈ 𝑅
𝑚×𝑛, 𝑚 ≪ 𝑛, calculate

𝐿;
Step 1.2. Given 𝑔

𝑖𝑘
, 𝐵
𝑛
, 𝑝
𝑛
, 𝑅.

Step 2. Given the original 𝑝
𝑢
(0) and the expression of

𝐻(𝑥
𝑢
(𝑡), 𝑥
𝑢
), 𝐴(𝑓

𝑢V),

Step 2.1. ∀𝑡 ∈ [0,𝑁], calculate 𝑝
𝑢
(𝑡), 𝑥
𝑢
(𝑡) and

𝑓
𝑢V;

Step 2.2. Given Ωobj,
If (1 − 𝑝

𝑢
)𝐴(𝑓
𝑢V) − 𝐻(𝑥𝑢(𝑡), 𝑥𝑢) ≥ 0

Then calculate Ω
𝑖𝑘,DC, Ω𝑘𝑗,DC;

Else go to Step 1.

Step 3

For 𝑓
𝑢V ∈ argmin

𝑓
𝑍(𝑓
𝑢V, 𝑥𝑢(𝑡), 𝑥𝑢)

If 0 ≤ 𝑝
𝑢
(𝑡) ≤ 1, max(Ω

𝑖𝑘,DC, Ω𝑘𝑗,DC) ≤ Ωobj

Then calculate 𝐶
𝑖𝑗,𝑘

;

Else if 0 ≤ 𝑝
𝑢
(𝑡) ≤ 1, max(Ω

𝑖𝑘,DC, Ω𝑘𝑗,DC) > Ωobj

Then go to Step 2.2;
Else if 𝑝

𝑢
(𝑡) > 1

Then go to Step 2.1;
End

End

End

End For.

The performance analysis of the algorithm is presented
and proves its validity.

Theorem 2. If 𝑥
𝑢
(𝑡) ∈ R𝑛×1 is sparse signal satisfying formula

(5), measurement vector with noise is expressed to 𝑦
𝑢
(𝑡) =

Φ𝑥
𝑢
(𝑡) + 𝜀, where the optimal vector is 𝑦∗

𝑢
constrained by

‖𝑦
∗

𝑢
−𝑦
𝑢
(𝑡)‖ ≤ 𝛿

𝑢
. Let sensingmatrixΦ ∈ R𝑚×𝑛 obey restricted

isometry property (RIP); then

󵄩󵄩󵄩󵄩𝑥𝑢 (𝑡) − 𝑥
∗

𝑢

󵄩󵄩󵄩󵄩2
≤

𝑝
𝑢
𝛿
𝑢

1 − 𝑝
𝑢 ‖Φ‖2

, (14)

where 𝑥∗
𝑢
is the optimal value of 𝑥

𝑢
(𝑡).

Proof. By formula (5), we have

󵄩󵄩󵄩󵄩𝑥𝑢 (𝑡) − 𝑥
∗󵄩󵄩󵄩󵄩2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

argmin
𝑥
𝑍 (𝑓
𝑢V, 𝑥𝑢 (𝑡) , 𝑥𝑢)

− argmin
𝑥
𝑍 (𝑓
𝑢V, 𝑥
∗

𝑢
, 𝑥
𝑢
)

+ 𝑝
𝑢
(

𝑦 − Φ𝑥
𝑢 (𝑡) − (𝑦

∗
− Φ𝑥
∗

𝑢
)

0
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

(15)

≤
󵄩󵄩󵄩󵄩󵄩󵄩
argmin
𝑥
𝑍 (𝑓
𝑢V, 𝑥𝑢 (𝑡) , 𝑥𝑢)

− argmin
𝑥
𝑍 (𝑓
𝑢V, 𝑥
∗

𝑢
, 𝑥
𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝
𝑢
(

𝑦 − Φ𝑥
𝑢 (𝑡) − (𝑦

∗
− Φ𝑥
∗

𝑢
)

0
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

(16)

≤
󵄩󵄩󵄩󵄩󵄩󵄩
argmin
𝑥
𝑍 (𝑓
𝑢V, 𝑥𝑢 (𝑡) , 𝑥𝑢)

− argmin
𝑥
𝑍 (𝑓
𝑢V, 𝑥
∗

𝑢
, 𝑥
𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩2
+ 𝑝
𝑢

󵄩󵄩󵄩󵄩𝑦 − 𝑦
∗󵄩󵄩󵄩󵄩2

+ 𝑝
𝑢

󵄩󵄩󵄩󵄩Φ𝑥𝑢 (𝑡) − Φ𝑥
∗

𝑢

󵄩󵄩󵄩󵄩2
.

(17)

The optimal value 𝑥∗
𝑢
is the minimum value of 𝑥

𝑢
(𝑡);

formula (17) is transformed into
󵄩󵄩󵄩󵄩󵄩󵄩
argmin
𝑥
𝑍 (𝑓
𝑢V, 𝑥𝑢 (𝑡) , 𝑥𝑢)

− argmin
𝑥
𝑍 (𝑓
𝑢V, 𝑥
∗

𝑢
, 𝑥
𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩2
= 0.

(18)

Thus, formula (17) becomes

= 𝑝
𝑢

󵄩󵄩󵄩󵄩𝑦 − 𝑦
∗󵄩󵄩󵄩󵄩2

+ 𝑝
𝑢

󵄩󵄩󵄩󵄩Φ𝑥𝑢 (𝑡) − Φ𝑥
∗

𝑢
(𝑡)
󵄩󵄩󵄩󵄩2

≤ 𝑝
𝑢

󵄩󵄩󵄩󵄩𝑦 − 𝑦
∗󵄩󵄩󵄩󵄩2

+ 𝑝
𝑢 ‖Φ‖2

󵄩󵄩󵄩󵄩𝑥𝑢 (𝑡) − 𝑥
∗

𝑢
(𝑡)
󵄩󵄩󵄩󵄩2
.

(19)

Therefore formula (15) becomes

󵄩󵄩󵄩󵄩𝑥𝑢 (𝑡) − 𝑥
∗󵄩󵄩󵄩󵄩2

≤
𝑝
𝑢

1 − 𝑝
𝑢 ‖Φ‖2

󵄩󵄩󵄩󵄩𝑦 − 𝑦
∗󵄩󵄩󵄩󵄩2

≤
𝑝
𝑢
𝛿
𝑢

1 − 𝑝
𝑢 ‖Φ‖2

.

(20)

Thus, algorithm (5) converges statistically to within a
small neighborhood of the optimal values 𝑥∗.

Since 𝑝
𝑢
is continuous, Theorem 2 implies that the input

signal approaches the optimal 𝑥∗ when 𝛿
𝑢
is small enough.

4. Simulation Analysis

In this section, we exhibit numerical examples and simula-
tion results for the proposed algorithm (cross-layer optimal
design, CLOD). We conduct numerical experiments using
NS2 to confirm the efficiency of the proposed algorithm. We
also perform simulations using Lee and Lim [3] and DCH to
validate our assumptions. In our numerical examples, we set
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Figure 2: Comparison of dropped packet.

a net topology with 100 nodes placed randomly in a 10 × 10
field, where the distance of neighboring nodes is set to 20m.
The buffers are 10–100 packets. Packet size is 1024 bits, and
simulation time is 300ms.

Figure 2 indicates that the dropped packets of the Lee
algorithm and CLOD algorithm are relatively lower. This
illustrates that the algorithms could relieve congestion at
a certain extent. However, there are some differences in
the algorithms: CLOD dropped packet is the lowest when
node-level congestion and link-level congestion are simul-
taneously existing. This verifies that the algorithm achieves
better network control by signal compressed and channel
selection; the dropped packet is lower in CLOD algorithm
than Lee algorithm,which is owing to only dispose node-level
congestion and ignore link-level congestion in Lee algorithm;
DCHmakes the congestion stay at the top because the coping
mechanism for congestion is weak.

Figure 3 shows that CLOD makes transmitted packet
remarkably increase per second for signal compressed and
channel selection strategy. The other algorithms cannot
achieve so high throughput for required transmitted data too
large resulting in congestion. In addition, the Lee algorithm
and DCH algorithm show incapability of channel contention
triggered congestion.

Figure 4 displays comparison with energy in three algo-
rithms. From Figure 4, it can be observed that the best
results of CLOD can reach the lowest energy consumption.
Such a phenomenon implies that compressed data makes the
transmission traffic drastically decrease, which can effectively
reduce energy consumption, and distinctly relieve node-
level congestion. Channel selection makes certain positive
contribution to save energy, and link capacity allocation can
be used to take full advantage of limited energy. The others
are to be considerably inferior to CLOD in this problem.
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Figure 4: Comparison of remaining energy.

5. Conclusions

In this paper, we propose a cross-layer optimal protocol
by integrating using “cross-layer design,” “optimal theory,”
and “compressed sensing” to achieve higher throughput and
power efficiency. In the power control protocol, by adjusting
congestion rate to the reduction of power, we could attain
lower power consumption than the former algorithms. In the
proposed input signal control algorithm, the signal size is
adjusted to stable state. Link capacity allocation is presented
by supply and demand function of the service. Channel is
selected by energy minimum optimal. Through the analysis,
accuracy of signal transmission is guaranteed, although signal
is to be lossy compression. In addition, simulation results
show that the proposed algorithm offers better performance
in terms of throughput and power consumption compared
with the other protocols.
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