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The key issue of static routing algorithms is how to construct an energy efficient routing tree that is utilized during the whole
network duration in order to extend network lifetime. In this paper, we have illuminated that, in applications that define network
lifetime as the time when the first sensor dies, the optimal routing tree should be the routing tree with minimal maximal load of
all sensors and named such trees the Minimal Maximal Load Tree (MMLT). Since the procedure of constructing a routing tree is
complex and the number of possible routing trees in a network is very huge, we have proposed a genetic algorithm (GA) based
algorithm to obtain approximate Minimal Maximal Load Tree (MMLT). Each individual corresponds to a routing tree, and the
fitness function is defined as the maximal load of all sensors in accordance with the routing tree that the individual corresponds
to. Thus, approximate MMLT is obtained and network lifetime is extended. Simulation results show that our proposed algorithm
notably extends network lifetime.

1. Introduction

Wireless sensor networks consist of homogeneous, tiny sen-
sors that can measure the environment nearby and report
sensed data to the sink. With the development of computer,
communication, electronic, and other technologies, wireless
sensor networks have become an important technology and
have been widely applied in many fields, such as military,
environment, and space exploration [1–7]. In wireless sensor
networks, all sensors are powered by lightweight batteries.
Therefore, limited energy of sensors constrains network
lifetime and is a serious bottleneck. And how to improve
energy efficiency, thereby extending network lifetime, is a
critical issue in the study of wireless sensor networks [7–10].

Many energy efficiency routing algorithms have been
proposed in order to improve energy efficiency and extend
network lifetime. These proposed algorithms fall into two
types: static routing algorithms and dynamic routing algo-
rithms. With the former, only one routing is constructed
and it is used during the whole network duration. With the
latter, multiple routings are constructed and used based on
changing status of a network. Although dynamic routing can

respond to changing status of a network, it needs to obtain
current status of the network, such as all sensors’ current
residual energy, which requires that networks meet some
specific conditions. For example, with Ratio-𝑤 [11] or Sum-𝑤
[11], it is assumed that there is enough time between two times
of data gathering so that all sensors can report their current
energy to the sink [11]. Therefore, dynamic routings are only
suitable for the networks meeting some specific conditions
and not universally suitable for all networks. On the contrary,
static routings usually do not require networks to meet
specific conditions and can be applied to all applications
because they need not obtain changing status of a network.

Many static routing algorithms have been proposed. The
key issue of static routing algorithms is how to construct
a routing tree that is utilized during the whole network
duration. Usually, the energy consumed to deliver a data
packet between two sensors is set as the weight of the link
between the two sensors [11, 12]. PEDAP (Power Efficient
Data Gathering and Aggregation Protocol) [12] constructs
a routing tree based on MST (Minimum Spanning Tree)
algorithm. However, it is pointed out that the optimal routing
tree is not MST, but LET (Least Energy Tree) [12]. LET

Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2015, Article ID 258343, 7 pages
http://dx.doi.org/10.1155/2015/258343



2 Journal of Electrical and Computer Engineering

constructs a minimum path tree with the sink as the root.
Therefore, each sensor sends its data packets to the sink with
the least energy consumption and the energy consumption of
the whole network is also minimal [11].

Network lifetime of wireless sensor networks has two
definitions in two kinds of applications: (1) in some appli-
cations, network lifetime is defined as the time when the
first sensor depletes its energy and dies because the network
loses its efficacy even if only one sensor dies and (2) in other
applications, the fact that one or a few sensors die has no effect
on the application. And network lifetime is defined as the
time when a certain proportion of sensors die because only
this leads to the fact that the network loses its efficacy [3].

With static routing algorithms, each sensor consumes the
same energy in each data gathering because the routing is
constant. We define a sensor’s energy consumption in each
data gathering as the sensor’s load. For an application which
defines its network lifetime as the time when the first sensor
dies and adopts static routing algorithms, its network lifetime
is decided not by energy consumption of the whole network
but by the load of the sensor with the maximal load because
the first dead sensor must be the one with the maximal
load. Therefore, the optimal routing tree is the routing tree
minimizing maximal load of all sensors, which is named
Minimal Maximal Load Tree (MMLT) by us. However, it is
very difficult to find the MMLT in a network. This is because
the process of constructing a routing tree is complex and
most networks have large numbers of possible routing trees,
especially when a network has quite a few sensors.

In this paper, we have proposed an algorithm that finds
approximate MMLT. The genetic algorithm (GA) is adopted
in our algorithm to find approximate MMLT because the
GA is a stochastic searching and optimizing technology
and appropriate to solve complex problems having huge
numbers of possible solutions [9]. In detail, all sensors are
divided into different layers according to their minimal hops
to the sink. For a sensor, its neighbor sensors in its next
layer closer to the sink are its possible parent sensors. A
routing tree is constructed as an individual of the GA after
each sensor is designated a possible parent sensor. And
the objective function of the GA is minimizing maximal
load of all sensors. Thus, an approximate MMLT can be
obtained. Although routing trees obtained by our proposed
algorithm are only approximateMMLT, they still can improve
energy efficiency and prolong network lifetimes compared
to traditional rooting algorithms because they decrease the
maximal load of all sensors.

The remainder of this paper is organized as follows: in
Section 2, we describe related works of routing algorithms;
in Section 3, we present the model of our work; in Section 4,
our proposed algorithm is described minutely; experimental
results are provided and analyzed in Section 5; finally, this
paper is concluded and future work is presented in Section 6.

2. Related Works

In this section, we summarize some routing algorithms that
have been proposed to extend network lifetime.

As mentioned before, routing algorithms in wireless
sensor networks have been widely studied and many energy
efficient routing algorithms have been proposed in order
to extend network lifetime. In this section, we summarize
some of these routing algorithms. We also summarize some
applications of the GA in the study of routing in wireless
sensor networks.

Some routing algorithms are proposed based on Flooding
or Gossiping [13, 14]. For example, a gossip-based routing
algorithmwas proposed in [14]. With this routing, for a route
quest received by a sensor the first time, the sensor broadcasts
it with the probability 𝑝 and discards it with the probability
1−𝑝; and for a route quest received by the sensor not the first
time, the sensor discard it [14]. Routing algorithms based on
Flooding or Gossiping produce and forward too much route
quests that waste sensors’ energy and limit network lifetime
[11].

In [12], PEDAP (Power Efficient Data Gathering and
Aggregation Protocol) was proposed. PEDAP computes a
routing tree with MST (Minimum Spanning Tree) algorithm
by setting the energy cost delivering a data packet between
two sensors as the weight of the link between them [11, 12].
However, routing trees constructedwithMST are not optimal
energy efficient routing trees and cannot obtain long network
lifetime [11].

Based on PEDAP, another algorithm, PEDAP-PA (Power
Efficient Data Gathering and Aggregation Protocol-Power
Aware) [12], was proposed. With PEDAP-PA, the sink peri-
odically estimates each sensor’s residual energy based on the
current routing and computes the weight from sensor 𝑖 to
sensor 𝑗 as follows:

𝑤 (𝑖, 𝑗) =

𝑐 (𝑖, 𝑗)

𝑒
𝑖

(1)

(see [12]), where 𝑐(𝑖, 𝑗) is the energy consumption sending a
packet from sensor 𝑖 to sensor 𝑗 and 𝑒

𝑖
is the residual energy

of sensor 𝑖. And routing trees are periodically constructed
with theMST algorithm [12].However, it is a dynamic routing
algorithm and not suitable for all applications.

In [11], it is pointed out that the optimal routings are
not the routings constructed with MST algorithm, but the
routings constructedwith LET (Least Energy Tree) algorithm
which constructs a minimum path tree with the sink as the
root [11]. And two dynamic routing algorithms, Ratio-𝑤 and
Sum-𝑤, were proposed. It is assumed that there is enough
time between two times of data gathering. Before each round
of data gathering, all sensors report their residual energy to
the sink, and the weight between sensor 𝑖 and 𝑗 is computed
as follows:

𝑤 (𝑖, 𝑗) = [𝑐 (𝑖, 𝑗)]
𝛼
[

1

𝑒
𝑖

]

𝛽

,

𝑤 (𝑖, 𝑗) = 𝜆𝑐 (𝑖, 𝑗) + 𝛿 [

1

𝑒
𝑖

]

(2)

(see [11]), where the former is used in Ratio-𝑤 and the latter is
used in Sum-𝑤. And then a routing is constructed with LET
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algorithm [11]. However, these two algorithms are dynamic
routing algorithms and cannot be applied to all applications.

In [9], a GA based algorithm for energy efficient routing
in two-tiered networks is proposed.The bottom tier is sensors
and the upper tier is relay nodes with higher power. Relay
nodes act as cluster headers, receive data from sensors, and
forward the data to the sink through the network formed
among them. Network lifetime is mainly determined by
relay nodes. The proposed algorithm schedules the data
gathering of relay nodes with GA and notably extends
network lifetimes. The algorithm is designed for networks
with relay nodes, while our proposed algorithm is designed
for networks without relay nodes.

In [15], GA is applied to select cluster headers from
sensors. In detail, the whole network is divided into some
areas, and some sensors in each area act as cluster headers.
Cluster headers in each area form a chromosome. Then the
most suitable solutions of cluster heads in each area for
each round are obtained with GA. The algorithm increases
network lifetime. However, it is only suitable for networks
with clustering hierarchy.

In [16], GA is applied to solve the optimization problems
of finding combinations of sensors detecting and/or locating
targets. The algorithm decreases the energy consumption
of the whole network. In [17], GA is applied to allocate
different detection methods to different sensors in order to
increase detection probability. However, the two algorithms
are designed and suitable for the applications of detecting
targets.

3. The Model

We have considered a square area in which some homoge-
neous sensors are randomly and evenly deployed, and one
fixed sink is deployed at the center of the area. The sensors
are powered by lightweight batteries and have limited energy.
And the sink is assumed to have limitless energy, memory,
and computing power. After the network is deployed, sensors
obtain their positions by GPS or other technologies and
report their positions to the sink. Therefore, the sink has the
data of each sensor’s position [18].

The first order radio model [19] is adopted as our radio
model. The energy consumed by a sensor to receive 𝑘 bits is

𝐶
𝑅 (
𝑘) = 𝑘𝐸elec (3)

(see [11, 19]), where 𝐸elec is the energy consumed by transmit-
ter or receiver circuits to send or receive one bit. The energy
consumed by a sensor to send 𝑘 bits is

𝐶
𝑇 (
𝑘, 𝑑) = 𝑘𝐸elec + 𝑘𝐸amp𝑑

𝛾 (4)

(see [11, 19]), where 𝑑 is the distance between the sending sen-
sor and the receiving sensor, 𝐸amp𝑑

𝛾 is the energy consumed
by transmit amplifier to send one bit, and 𝛾 is called path loss
exponent with the value 2, 3, or 4. Therefore, the total energy
consumed by sensor 𝑖 to send 𝑘 bits and sensor 𝑗 to receive 𝑘
bits is

𝐶 (𝑘, 𝑑) = 2𝑘𝐸elec + 𝑘𝐸amp𝑑
𝛾 (5)

(see [11, 19]).

4. A Genetic Algorithm Based Minimal Load
Tree Routing Algorithm

As mentioned before, the key issue of static routing algo-
rithms is how to construct a routing tree that is utilized
during the whole network duration. And usually, the energy
consumed to deliver data packets between two sensors is
set as the weight of the link between the two sensors. Some
routing algorithms, such as PEDAP (Power Efficient Data
Gathering and Aggregation Protocol), are based on MST
(Minimum Spanning Tree), that is, construct routing trees
by Prim algorithm [12]. However, these routing trees are not
optimal routing trees because they do not aim at reducing
energy consumption of thewhole network.Therefore, routing
algorithms based on LET (Least Energy Tree) are proposed.
These algorithms, such as Sum-𝑤 and Ratio-𝑤, construct a
minimum path tree with the sink as the root by Dijkstra
algorithm. Therefore, all sensors send their data packets
to the sink with the least energy consumption and energy
consumption of the whole network is also minimal [11].

In [9], it is pointed out that network lifetime is mainly
determined by the maximal energy consumption of all relay
nodes in each data gathering in two-tiered networks [9].
Similarly, for applications with their network lifetime as the
time when the first sensor dies and adopts static routing
algorithms, their network lifetime is decided not by energy
consumption of the whole network but by the load of the
sensor with the maximal load because the first dead sensor
must be the one with the maximal load, where the load
is defined as a sensor’s energy consumption in each data
gathering. For example, a small network is shown in Figure 1,
in which node 0 is the sink. In the figure, the number beside
a link is the weight of the link (i.e., the energy consumed to
deliver a data packet between two sensors) and the number
beside a sensor is its load, and to simplification, only energy
consumed to send data packets is considered because the
energy consumed to receive data packets is little, and it
assumed that each sensor generates only one data packet in
each data gathering. (1) is the network’s topology and (2) is
the LET constructed by Dijkstra algorithm. As can be seen
in the figure, (2) obtains the least energy consumption of the
whole network, and its maximal load is (1+1+1+1)×4 = 16,
at sensor 2.However, in (3), themaximal load is (1+1+1)×4 =
12, at sensor 2. Therefore, (3) has smaller maximal load and
can obtain longer network lifetime than (2).

Therefore, for applications with their network lifetime as
the time when the first sensor dies and adopts static routing
algorithms, optimal routing trees are the ones minimizing
maximal load of all sensors and we named such routing trees
Minimal Maximal Load Tree (MMLT). However, it is very
difficult to findMMLT because the procedure of constructing
a routing tree is complex and the number of possible routing
trees in a network is very huge, especially when the network
contains many sensors. In this paper, we applied the genetic
algorithms (GA) to findMMLTbecause theGA is a stochastic
searching and optimizing technology and appropriate to
solve complex problems having huge numbers of possible
solutions [9]. Although routing trees obtained with our
proposed algorithm are only approximate MMLT, they aim
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Figure 1: A small network in which node 0 is the sink. (1)The network’s topology, (2) the LET, and (3) the routing tree with smaller maximal
load than LET [11].

Generate an initial population;
Compute the fitness function value of each individual;
𝑛 = 0;
While (𝑛 < 𝑛 gen)
{

Perform selection;
Perform crossover and generate new offspring;
Perform mutation;
Compute the fitness function value of each individual;
𝑛++;
}

Algorithm 1: The procedure of the GA [9, 20].

at decreasing themaximal load of all sensors, improve energy
efficiency, and prolong network lifetimes.

The symbols used in our proposed algorithm are listed as
follows:
𝑛 gen: the number of generations in the GA,
𝑛 pop: the size of population in the GA,
𝑝𝑐: the probability that an individual is chosen to
perform crossover in the GA,
𝑝𝑚: the probability that an individual is chosen to
perform mutation in the GA,
𝑖: an individual in the GA,
𝑠: the sink,
V: a sensor,
𝑡
0
: the tree constructed with the Dijkstra algorithm

when all weights of links are set 1,
ℎ(V): the number of hops from sensor V to 𝑠 in 𝑡

0
,

𝑛(V): the set of neighbor sensors of V in 𝑡
0
,

𝑝(V): the set of possible parent sensors of V in 𝑡
0
,

LT: the network lifetime,
𝑒: initial energy of sensors,
𝐿max: the maximal load of all sensors.

And the procedure of the GA is shown in Algorithm 1.

0 0 0 1 2 5

1 2 3 4 5 6Sensor

Parent sensor

Figure 2: The individual corresponding to the routing tree in
Figure 1(3) [9].

4.1. Genetic Coding. Each individual corresponds to a routing
tree. And each gene corresponds to a sensor’s parent sensor.
First, the weights of all links are set 1 and the tree 𝑡

0
is

constructed with theDijkstra algorithm. For each sensor V, its
number of hops to the sink in 𝑡

0
, ℎ(V), can be obtained. And

all sensors are divided into different layers in accordance with
their values of ℎ(V). Then, the set 𝑝(V) can be obtained by the
following:

𝑝 (V) = {𝑥 | 𝑥 ∈ 𝑛 (V) , ℎ (V) − ℎ (𝑥) = 1} . (6)

For sensor V, it is randomly designated a sensor from 𝑝(V) as
its parent sensor. Obviously, since each sensor is designated
a sensor from its closer layer to the sink as its parent sensor,
a routing tree is constructed after all sensors are designated.
Thus an individual is generated. For example, the routing tree
in Figure 1(3) corresponds to the individual in Figure 2.

4.2. Fitness Function. The fitness function is defined as the
maximal load of all sensors. For individual 𝑖, a routing tree
can be constructed based on it. Then, it is assumed that
each sensor generates a data packet and the data packet is
forwarded to the sink according to the routing tree. Energy
consumption of each sensor receiving or sending the data
packet can be computed with (3) and (4) [9]. After all sensors
are assumed to generate and send a data packet to the sink,
energy consumption of each sensor during the procedure can
be computed, the sensor with maximal energy consumption
can be found, and the maximal energy consumption is
𝐿max corresponding to 𝑖, also the fitness function value of
individual 𝑖.

4.3. Initial Population and Selection. First, a population
involving 𝑛 pop individuals is randomly generated.
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Figure 3: Two individuals performed crossover, where the 2rd, 4th,
and 5th genes are chosen to perform crossover [9].

Selection is performed with the Roulette-Wheel or rank-
ing selection method to eliminate inferior individuals and
reserve good individuals. In selection, the probability that
an individual is selected increases with its value of fitness
function.

4.4. Crossover. Each individual is randomly selected to
perform crossover with the probability 𝑝𝑐. Two selected
individuals performed crossover to produce new offspring. In
this paper, we have adopted the uniform crossover operator
[20, 21]. For each gene in the individuals, it is chosen
to perform crossover with a probability. For example, two
individuals performed crossover in Figure 3, where the 2rd,
4th, and 5th genes are chosen to perform crossover.

4.5. Mutation. Mutation is performed to avoid previous
convergence. Each individual is selected with the probability
𝑝𝑚. For an individual selected to perform mutation, each of
its genes is chosen tomutatewith a probability [17, 18]. For the
sensor corresponding to the gene selected to mutate, V, a new
parent is randomly selected from 𝑝(V) to perform mutation.
An example of mutation is shown in Figure 4, where the 5th
gene is selected to perform mutation.

Our proposed algorithm is a centralized algorithm. After
the network is deployed, each sensor reports its position to
the sink. The sink computes a routing with our GA based
algorithm.Then the sink broadcasts the computed routing to
the whole network before the network operation. Although
the computation of the GA is huge, the computing process
does not affect the application because the sink is assumed to
have powerful computing capability [18] and the computing
process is performed only once before the network operation.

Table 1: The values of the main simulation parameters.

Parameters Values
Size of the network area 400 × 400m2

Number of sensors 100/120/140/160/180/200
Communications of sensors 80m
Initial energy of sensors 10.0 J
Data quantity of a data packet 1 × 103 bits/packet
Generating rate of data packets 1 packet/second
𝐸elec in the first-order radio model 50 nJ/bit
𝐸amp in the first-order radio model 100 pJ/bit/m2

𝛾 in the first-order radio model 2

Table 2: The values of the main parameters in the GA.

Parameters Values
The number of generations 𝑛 gen 100
The size of population 𝑛 pop 5000
The probability that an individual is
chosen to perform crossover 𝑝𝑐 0.80/0.85/0.90/0.95

The probability that an individual is
chosen to perform mutation 𝑝𝑚 0.10/0.20/0.30/0.40

5. Experimental Validation

Simulations are performed with OMNet++ to validate our
proposed algorithm. We have compared the following three
static routing algorithms in the experiments:

(1) Power Efficient Data Gathering and Aggregation
Protocol (PEDAP) [12], with which routing trees are
constructed by MST (Minimum Spanning Tree);

(2) Least Energy Tree (LET) [11], withwhich routing trees
with the sink as the root are constructed by Dijkstra
algorithm;

(3) our proposed GA basedMinimal Maximal Load Tree
routing algorithm (GA-MMLT), with which approx-
imate MMLT is constructed with the GA.

The values of the main simulation parameters are shown
in Table 1.

The values of the main parameters in the GA are listed
in Table 2. We have set the size of population a large
number because the number of the possible individuals (i.e.,
routing trees) is very huge. Additionally, an elitist approach
is adopted, with which 5% of the individuals with the best
fitness function values are permitted to proceed the next
generation [9, 21].

Network lifetime is defined as the time when the first
sensor exhausts its energy and dies [3, 11]. We have compared
network lifetimes obtained in different networks with differ-
ent number of sensors.The experimental results are shown in
Figure 5, where each dot is the average value of 5 networks. As
can be seen in the figure, our proposed GA-MMLT notably
increases network lifetime. With GA-MMLT, network life-
time is prolonged by about 66% on average compared to LET
and about 273% on average compared to PEDAP. PEDAP or
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Figure 6: Total energy consumption of the whole network in each
data gathering using three static routing algorithms.

LET does not consider the maximal load of all sensors, while
GA-MMLT does. Therefore, network lifetimes obtained by
PEDAP or LET are shorter than network lifetimes obtained
by GA-MMLT which reduces the maximal load of all sensors
with the GA.

We have also compared total energy consumption of the
whole network in each data gathering using the three static
routing algorithms. The experimental results are shown in
Figure 6. As can be seen in the figure, LET performs best
in this metric, GA-MMLT takes second place, and PEDAP
performs worst. This is because LET aims at reducing energy
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Figure 7: Network lifetimes obtained by GA-MMLT using different
values of 𝑝𝑐 and 𝑝𝑚.

consumption of the whole network. Although GA-MMLT
consumes more total energy of the whole network in each
data gathering than LET, it obtains longer network lifetimes
because it obtains approximate minimal maximal load of all
sensors.

Additionally, we have compared network lifetimes
obtained by GA-MMLT using different values of 𝑝𝑐 and 𝑝𝑚.
The experimental results are shown in Figure 7. As can be
seen in the figure, network lifetimes obtained by GA-MMLT
using different values of 𝑝𝑐 and 𝑝𝑚 are very close, where
𝑝𝑐 = 0.90 and 𝑝𝑚 = 0.30 have slight advantage. This shows
that GA-MMLT can obtain close performance using different
values of 𝑝𝑐 and 𝑝𝑚.

6. Conclusion and Future Work

In this paper, we have illuminated that, in applications which
define network lifetime as the time when the first sensor
dies, the key of extending network lifetime is not the energy
consumption of the whole network but the maximal load of
all sensors and named the routing tree minimizing maximal
load of all sensors as the Minimal Maximal Load Tree
(MMLT). And furthermore, we have proposed a routing
algorithm based on the genetic algorithms (GA) to find
approximate MMLT because the procedure of constructing
a routing tree is complex and the number of possible routing
trees in a network is very huge, especially when the network
contains many sensors. In our proposed algorithm, each
individual corresponds to a routing tree, and the fitness
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function is defined as the maximal load of all sensors in
accordance with the routing tree. After some generations of
selection, crossover, and mutation, an approximate optimal
individual (routing tree) is obtained. Thus, the time the first
sensor dies is postponed and network lifetime is extended.
For the future work, we plan to propose a novel algorithm
that can find the authentic MMLT.
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