
Research Article
User Utility Oriented Queuing Model for
Resource Allocation in Cloud Environment

Zhe Zhang and Ying Li

Institute of Software, Nanyang Normal University, Nanyang, Henan 473061, China

Correspondence should be addressed to Ying Li; lying1024@163.com

Received 20 August 2015; Revised 29 September 2015; Accepted 8 October 2015

Academic Editor: James Nightingale

Copyright © 2015 Z. Zhang and Y. Li. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Resource allocation is one of the most important research topics in servers. In the cloud environment, there are massive hardware
resources of different kinds, and many kinds of services are usually run on virtual machines of the cloud server. In addition, cloud
environment is commercialized, and economical factor should also be considered. In order to deal with commercialization and
virtualization of cloud environment, we proposed a user utility oriented queuing model for task scheduling. Firstly, we modeled
task scheduling in cloud environment as an M/M/1 queuing system. Secondly, we classified the utility into time utility and cost
utility and built a linear programming model to maximize total utility for both of them. Finally, we proposed a utility oriented
algorithm to maximize the total utility. Massive experiments validate the effectiveness of our proposed model.

1. Introduction

Providers of cloud services usually provide different com-
puting resources with different performances and different
prices, and the requirements of users for performance and
cost of resources differ greatly too. So how to allocate available
resources for users to maximize the total system utilization is
one of the most important objectives for allocating resources
and scheduling tasks [1] and is also a research focus in cloud
computing.

Traditional resource allocation models mainly focus on
the response or running time, saving energy of the whole
system, and fairness of task scheduling and do not take user
utility into consideration [2]. However, the utility of a user in
cloud environment is the usage value of services or resources,
and it describes how the user is satisfied with the proposed
services or resources while occupying and using them [3, 4].
In order to maximize the total utility of all users in cloud
environment, it is necessary to analyze andmodel user utility
first and then optimize it to get amaximum [5].Themodeling
of user utility is very complex, as it needs a formal description
considering many factors, such as the processing time that
tasks have passed by [6], the ratio of finished tasks [7], the

costs of finished and unfinished tasks [8], and the parallel
speedup [9].

In a cloud server, requests of users, called tasks, come
randomly, and a good description of these tasks is the
Poisson distribution assumption. At the same time, under
the commercialization constraint of the cloud environment,
the utility of cloud server becomes much more important.
In this paper, we formalized and quantified the problem
of task scheduling based on queuing theory, divided the
utility into time utility and cost utility, and proposed a linear
programming method to maximize the total utility. The
contributions of the paper are as follows:

(i) We modeled task scheduling as 𝑀/𝑀/1 queuing
model and analyzed related features in this queuing
model.

(ii) We classified utility into time utility and cost utility
and built a linear programming method to maximize
total utility for each of them.

(iii) We proposed a utility oriented and cost based
scheduling algorithm to get the maximum utility.

(iv) We validated the effectiveness of the proposed model
with massive experiments.

Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2015, Article ID 246420, 8 pages
http://dx.doi.org/10.1155/2015/246420

2 Journal of Electrical and Computer Engineering

The rest of the paper is organized as follows. In Section 2,
we review related works about resource allocation and task
scheduling in cloud computing. In Section 3, we formalize
the tasks in cloud environment based on the queuing theory,
define a random task model for random tasks, describe our
proposed user utility model, and design a utility oriented
time-cost scheduling algorithm. Experiments and conclusion
are given in Sections 4 and 5, respectively.

2. Related Works

In cluster systems that provide cloud services, there is a
common agreement in researchers that the moments, when
tasks come into the system, conform to the Poisson distri-
bution, and both the intervals between two coming tasks
and the serviced time of tasks are exponentially distributed.
In this situation, heuristic task scheduling algorithms, such
as genetic algorithm and ant colony algorithm, have better
adaptability than traditional scheduling algorithms. How-
ever, the deficit of heuristic algorithms is that they have
complex problem-solving process, so they can only be applied
in small cluster systems. The monstrous infrastructure of
cloud systems usually hasmany types of tasks, a huge amount
of tasks, andmany kinds of hardware resources, whichmakes
heuristic algorithms unsuitable.

There are a lot of researches about resource allocation
or task scheduling in cloud environment, especially for the
MapReduce programming schema [10]. Cheng et al. [11] pro-
posed an approximate algorithm to estimate the remaining
time (time to end) of tasks in MapReduce environment and
the algorithm scheduled tasks with their remaining time.
Chen et al. [12] proposed a self-adaptive task scheduling
algorithm, and this algorithmcomputed the running progress
(ratio of time from beginning to total running time) of the
current task on a node based on its historical data. The
advantage of [12] is that it can compute remaining time
of tasks dynamically and is more suitable to heterogeneous
cloud environment than [11]. In addition, Moise et al. [13]
designed a middleware data storage system to improve the
performance and ability of fault tolerance.

Traditional task scheduling algorithms mainly focus on
efficiency of the whole system. However, some researchers
introduce economic models into task scheduling, and the
basic idea is optimizing resource allocation by adjusting users’
requirements and allocating resources upon price mecha-
nism [14]. Xu et al. [15] proposed a Berger model based task
scheduling algorithm. Considering actual commercialization
and virtualization of cloud computing, the algorithm is based
on the Berger social allocation model and adds additional
cost constraints in optimization objective. According to
experiments on the CloudSim platform, their algorithm is
efficient and fair when running tasks of different users. In
addition, with respect to the diversity of resources in cloud
environment, more researchers believe that the diversity will
increase as time goes on with update of hardware resources.
In order to alleviate this phenomenon and ensure quality of
services, Yeo and Lee [16] found that while the resources were
independently identically distributed, dropping resources

that needed three times the number ofminimal response time
couldmake the whole system use less total response time and
thus less energy.

The study of random scheduling began in 1966, and
Rothkopf [17] proposed a greedy optimal algorithm based
on the weights of tasks and expected ratios of finished time
to total time. If all tasks had the same weights, then this
algorithm became the shortest expected processing time
algorithm. Möhring et al. [18] proved the optimal approxi-
mation for scheduling tasks with random finished time.They
began with the relaxation of linear programming, studied
the problem of integer linear programming for systems with
homogeneous tasks, and got an approximate solution with
the lower limit of the linear programming. Based on the
above research, Megow et al. [19] proposed a better optimal
solution with better approximation. In addition, Scharbrodt
et al. [20] studied how to schedule independent tasks ran-
domly. They analyzed the problem of scheduling 𝑛 tasks
on 𝑚 machines randomly and gave the worst performance
of random scheduling under homogeneous environment
theoretically, and their result was the best among related
works.

All of the above algorithms focus on the response or
running time of users’ requirements, saving energy of the
whole system and fairness of tasks, and do not take user utility
into consideration. However, utility of users is very important
in cloud service systems. In order tomaximize the total utility
of all users in cloud environment, we analyze and model
user utility first and then optimize it to get a maximal solu-
tion.

In addition, Nan et al. [21] studied how to optimize
resource allocation for multimedia cloud based on queuing
model, and their aim is tominimize the response time and the
resource cost. However, in this paper, we deal with commer-
cialization and virtualization of cloud environment, and our
aim is maximizing utility. Xiao et al. [22] presented a system
that used virtualization technology to allocate data center
resources dynamically. Their aim is to minimize the number
of servers in use considering the application demands and
utility, whereas in this paper we aim to maximize the system’s
total utility under a certain cloud environment.

3. Proposed Model

3.1. Queuing Model of Tasks. In this paper, we describe ran-
domness of tasks with the𝑀/𝑀/1model of queuing theory,
and the model is illustrated in Figure 1. The model consists
of one server, several schedulers, and several computing
resources.When user tasks are submitted, the server analyzes
and schedules them to different schedulers and adds them to
local task queue of the corresponding scheduler. Finally, each
scheduler schedules its local tasks to available computing
resources. In Figure 1, 𝑡(𝑑) is the waiting time of a task in the
queue and 𝑡(𝑒) is the running time.

3.2. Modeling Random Tasks. In the following, we will ana-
lyze the waiting time, running time, and queue length of the
proposed𝑀/𝑀/1model.

Journal of Electrical and Computer Engineering 3

User 1

User 2 Server
Scheduler 2

Task queue 2

Scheduler 1

Task queue 1

Resource 1

Resource 2

Resource 1

Resource 2

Resource n

Resource nTask queue n

Scheduler n
User n

t(d) t(e)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 1: Scheduling model of user tasks in cloud environment.

Definition 1. If the average arrival rate of tasks in a scheduler
is 𝜆, the average service rate of tasks in a scheduler is 𝜇, and
then the service intensity 𝜌 is

𝜌 =
𝜆

𝜇
. (1)

The service intensity describes the busyness of the sched-
uler. When 𝜌 approaches zero, the waiting time of tasks
is short, and the scheduler has much idle time; when 𝜌

approaches one, the scheduler has less idle time, and thus
tasks would have long waiting time. Generally speaking, the
average arrival rate should be equal to or smaller than the
average service rate, otherwise there will be more and more
waiting tasks in the scheduler.

Definition 2. If we denote the expected length of tasks in a
scheduler as 𝐿, the expected length of tasks in queuing as
𝐿𝑞, the expected total time (including both waiting time and
running time) of a task as𝑊, and the expectedwaiting time of
a task in queuing as𝑊𝑞, then we have the following equations
according to queuing theory [17]:

𝐿 =
𝜆

(𝜇 − 𝜆)
= 𝜌 (1 − 𝜌)

𝐿𝑞 =
𝜆
2

𝜇 (𝜇 − 𝜆)
= 𝜌
2
(1 − 𝜌) = 𝐿 ⋅ 𝜌

𝑊 =
1

(𝜇 − 𝜆)

𝑊𝑞 =
𝜆

𝜇 (𝜇 − 𝜆)
= 𝑊 ⋅ 𝜌.

(2)

In addition, let 𝑃𝑛 = 𝑃{𝑁 = 𝑛} be the possibility of
number of tasks in a scheduler at any moment; then, we have
the following equation:

𝑃𝑛 = 𝜌 (1 − 𝜌) . (3)

If 𝑛 = 0, then 𝑃0 is the possibility that all virtual machines are
idle.

3.3. Model of User Utility

3.3.1. Time Utility of Tasks. As we can see from Figure 1,
the total time that a user takes from submitting a request to
getting the result includes bothwaiting time 𝑡(𝑑) and running
time 𝑡(𝑒). Here, the computing resources are virtual resources
managed by virtual machines. Let 𝑇 be total time; then, we
have

𝑇 = 𝑡 (𝑑) + 𝑡 (𝑒) . (4)

In (4), the running time 𝑡(𝑒) is the sum of used time 𝑡(𝑓)
and remaining time 𝑡(𝑢); that is,

𝑡 (𝑒) = 𝑡 (𝑓) + 𝑡 (𝑢) . (5)

In order to calculate the time requirement of a task, the
system needs to calculate the remaining time 𝑡(𝑢) and
schedules 𝑡(𝑢) for different tasks to different virtualmachines.

For analyzing the remaining time, we classified tasks into
set 𝑃 = {𝑝𝑖 | 1 ≤ 𝑖 ≤ 𝑚} and nodes into set 𝑉 = {𝑝𝑗 | 1 ≤ 𝑗 ≤

𝑛}. According to statistical computing, we can get the average
executing rate of task 𝑝𝑖 on node V𝑗; that is, 𝑅 = {𝑟𝑖,𝑗 | 1 ≤ 𝑖 ≤

𝑚, 1 ≤ 𝑗 ≤ 𝑛}, and then the remaining time of 𝑝𝑖 on V𝑗 is

𝑡 (𝑢)𝑖,𝑗 =
(𝑤 − 𝑤𝑢)

𝑟𝑖,𝑗

, (6)

where 𝑤 is the number of total tasks and 𝑤𝑢 is the number
of finished tasks. For computing intensive tasks, 𝑤 is the
total input data and 𝑤𝑢 is the already processed input
data. Schedulers schedule tasks on virtual machine resources
according to their remaining time and assure all tasks are
finished on time.

A task can be executed either on one virtual machine
or on 𝑛 virtual machines in parallel, while being divided
into 𝑚 subtasks. We denoted the subtask set as 𝐷 = {𝑑𝑘 |

1 ≤ 𝑘 ≤ 𝑚}. While these subtasks are executed on
different virtualmachines, especially different physical nodes,
the communication cost increases, and we use speedup to
measure the parallel performance

𝑠 =
𝑇1

𝑇𝑝

, (7)

where 𝑇1 is the time of a task in one node and 𝑇𝑝 is the time
of a task in 𝑝 nodes. In order to make sure 𝑠 ≤ 𝑆0, all subtasks
run in parallel, and total time of the task is

𝑇 = 𝑡 (𝑑) +max {𝑡 (𝑒)𝑘,𝑗} , (8)

where 𝑡(𝑒)𝑘,𝑗 is the time of subtask 𝑑𝑘 on V𝑗 and max{𝑡(𝑒)𝑘,𝑗}
is the maximal time of all subtasks.

3.3.2. Cost Utility of Tasks. In this paper, we assume that the
cost rate of nodes is proportional to CPU and I/O speed, and
tasks of different types consume different energy, different
bandwidth, and different resource usage. So different tasks
will have different cost rates.

4 Journal of Electrical and Computer Engineering

Definition 3. Let 𝐶 = (𝑐𝑖,𝑗 | 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛) be the cost
matrix of task 𝑝𝑖 on node 𝑐𝑗, and then total cost of a task is the
product of node cost and running time; that is,

𝑀 = 𝐶 × 𝑇 =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

(𝑐𝑖,𝑗 × 𝑡 (𝑒)𝑖,𝑘,𝑗) , (9)

where 𝑐𝑖,𝑗 is the unit cost of task 𝑝𝑖 on node V𝑗 and 𝑡(𝑒)𝑖,𝑘,𝑗 is
the time of subtask 𝑑𝑘 on node V𝑗.

3.3.3. Formalization and Optimization of User Utility

Definition 4. Let the time utility function be 𝑈𝑡 and let the
cost utility function be 𝑈𝑐; then, the total utility is

𝑈 = 𝑎 × 𝑈𝑡 + 𝑏 × 𝑈𝑐, (10)

where 𝑎 + 𝑏 = 1, 0 ≤ 𝑎 ≤ 1 and 0 ≤ 𝑏 ≤ 1.
In (10), both time utility and cost utility are between 0 and

1 and 𝑎 and 𝑏 are the weights of time utility and cost utility,
respectively.

The aim of utility oriented task scheduling is to maximize
the total utility, and the constraints are expected time of tasks,
expected cost, finished rate, speedup, and so on. In this paper,
we classify user tasks into time sensitive and cost sensitive.

For time sensitive user tasks, change of running time for
a task will affect the time utility a lot, and its definition is as
follows.

Definition 5. The utility model of time sensitive user tasks is
defined by the following equations:

𝑈 = 𝑎 × 𝑈𝑡 + 𝑏 × 𝑈𝑐,

𝑈𝑡 =
𝑘

(ln (𝑡 − 𝑎) × 𝑏)
,

𝑈𝑐 = 𝑎 × 𝑐 + 𝑏.

(11)

The constrains are

𝐹 (𝐷) = 1, (12)

0 ≤ 𝑈𝑇 < 𝑈𝑡 ≤ 1, (13)

0 ≤ 𝑈𝐶 < 𝑈𝑐 ≤ 1, (14)

𝑡 (𝑑) + 𝑡 (𝑒) < 𝑇0, (15)

𝐿𝑞

𝜆
< 𝑇1,

(16)

max {𝑡 (𝑒)𝑘,𝑗} < 𝑇2, (17)

𝐶 × 𝑇 < 𝑀0, (18)

𝑠 > 𝑆0, (19)

where 𝐷 is the set of subtasks for all tasks, and the aim is to
maximize total utility 𝑈.

For cost sensitive user tasks, change of running cost for
a task will affect the cost utility a lot, and its definition is as
follows.

Definition 6. The utility model of cost sensitive user tasks is
defined by the following equations:

𝑈 = 𝑎 × 𝑈𝑡 + 𝑏 × 𝑈𝑐,

𝑈𝑐 =
𝑘

(ln (𝑐 − 𝑎) × 𝑏)
,

𝑈𝑡 = 𝑎 × 𝑡 + 𝑏.

(20)

The constrains are

𝐹 (𝐷) = 1, (21)

0 ≤ 𝑈𝑇 < 𝑈𝑡 ≤ 1, (22)

0 ≤ 𝑈𝐶 < 𝑈𝑐 ≤ 1, (23)

𝑡 (𝑑) + 𝑡 (𝑒) < 𝑇0, (24)

𝐿𝑞

𝜆
< 𝑇1,

(25)

max {𝑡 (𝑒)𝑘,𝑗} < 𝑇2, (26)

𝐶 × 𝑇 < 𝑀0, (27)

𝑠 > 𝑆0. (28)

In bothDefinitions 5 and 6, their aims aremaximizing the
total utility 𝑈, but the differences are the computation of 𝑈𝑐
and 𝑈𝑡. Based on the above definitions, we propose a utility
oriented and cost based scheduling algorithm. The details of
the algorithm are as follows:

(1) Analyze user type for each user and select computing
equations for 𝑈𝑐 and 𝑈𝑡.

(2) Initialize parameters in constraints for𝑈𝑇,𝑈𝐶,𝑇0,𝑇1,
𝑇2,𝑀0, and 𝑆0.

(3) Compute 𝐿𝑞 and 𝑊𝑞 for each scheduler according to
(1) to (3).

(4) With the results of step (3), tag𝑋 schedulers with least
waiting time.

(5) Input some data into the 𝑋 schedulers and set the
highest priority for these tasks.

(6) Execute the above tasks, and record the running time
and cost (see Pseudocode 1).

(7) Predict running time, cost, and corresponding utility
of all tasks with time and cost of results from step 6,
and tag the scheduler with the maximal utility.

(8) Schedule tasks in the scheduler with maximal utility,
and optimize user utility (see Pseudocode 2).

(9) Wait until all tasks finish, and record the running
time, cost, and corresponding utility.

Journal of Electrical and Computer Engineering 5

if (user task is time sensitive) {
select nodes with quickest speed, execute the above tasks, such that 𝑠 < 𝑆

0
;

} else {
Select nodes with lowest cost, execute the above tasks, such that 𝑠 < 𝑆

0
;

}

Pseudocode 1

initialize upgrade = 1;
while (task is time sensitive and upgrade = 1) {

let previous user of current be current user;
unit time cost of current user = unit time cost × (1 + V%);
unit time cost of previous user = unit time cost × (1 − 𝑤%);
if (both cost of current user and previous user do not decrease) {
upgrade = 1;

else {
upgrade = 0;
rescore current user bo be current user;

}

}

Pseudocode 2

Table 1: Hardware configuration parameters.

Number CPU Amount Memory (GB)
1 4-core, 3.07GHz 10 4
2 4-core, 2.7 GHz 10 4

4. Experiments

4.1. Experimental Setup. Wedo experiments on twohardware
configurations and the configurations are in Table 1. Both
of the two hardware configurations run on CentOS5.8 and
Hadoop-1.0.1.

There are total 20 computing nodes in our experimental
environment, and each computing node starts up a virtual
computing node. We start 10 schedulers, and each scheduler
manages 2 virtual nodes (computing nodes). The application
that we use in the experiments is WordCount.

According to (1) to (3), we computed the service intensity
𝜌, the expected number of tasks in a scheduler 𝐿, the
expected length of queuing 𝐿𝑞, the expected finishing time
of tasks 𝑊, and the expected waiting time of queuing 𝑊𝑞.
Figure 2 describes the expected waiting time 𝑇(𝑤) on each
scheduler. As we can see from the figure, the waiting time
from schedulers 1, 3, 5, and 7 satisfied (14) and (23), and thus
we can copy and execute some subtasks (data with size 1 KB)
on them. If the user task is time sensitive, thenwe run the task
onnodewith faster speed; and if the user is cost sensitive, then
we run the task on node with lower cost.

4.2. Experiments for Time Sensitive User Utility Model. In
order to select the parameters for time utility and cost utility
functions, we normalize them first and get the following

×10
−3

T
(w

)
(s

)

101 2 3 4 5 6 7

Scheduler
8 9

0

5

10

15

20

25

30

35

Figure 2: Expected waiting time for each scheduler.

equations. Figure 3 describes the curves of the following two
equations:

𝑈𝑡 =
8

(ln (𝑡 − 20) × 5)
,

𝑈𝑐 = −(
1

63
) × 𝑐 +

61

63
.

(29)

Based on running time and rate, total time, cost, and
utility from schedulers 1, 3, 5, and 7, we set 𝑎 = 0.7 and 𝑏 = 0.3

in (10). Under constrains from (12) to (19), we compute the
total utility. In Figure 4, 𝑈𝑡 is the predicted time utility, 𝑈𝑐 is
the predicted cost utility, 𝑈󸀠 is the predicted total utility, 𝑈 is

6 Journal of Electrical and Computer Engineering

25

Line of time utility
Line of cost utility

30 35 40

Unit of time or cost

U
til

ity

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3: Time and cost utility lines for time sensitive user tasks.

Uc

Ut U

U
󳰀

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
til

ity

3 5 71

Scheduler

U#

Figure 4: Utility distribution of time sensitive user tasks.

the actual total utility, and𝑈# is the total utility that we get by
rescheduling tasks on the above 1, 3, 5, and 7 schedulers.

In Figure 4, for scheduler 1, 𝑈𝑡, 𝑈𝑐, 𝑈
󸀠, and 𝑈 are all the

lowest; for scheduler 3,𝑈𝑡 is the highest,𝑈𝑐 ismuch lower, and
𝑈
󸀠 is the highest too; for schedulers 5 and 7, although their𝑈𝑐

is higher than scheduler, their 𝑈󸀠 is lower than scheduler 3.
According to the rule ofmaximizing utility, we should choose
scheduler 3 as the scheduler. However, in order to further
improve the total utility, we applied the proposed algorithm
in Section 3.3.3. By rescheduling the tasks in queuing, we get
the actual total utility 𝑈# for each scheduler. In schedulers 5
and 7, 𝑈# is much higher than 𝑈

󸀠 of scheduler 3.

25

Line of time utility
Line of cost utility

30 35 40

Unit of time or cost

U
til

ity

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5: Time and cost utility lines for cost sensitive user tasks.

4.3. Experiments for Cost Sensitive User Utility Model. In
order to select the parameters of time utility and cost utility
functions for cost sensitive user tasks, we also normalize them
and get the following two equations. Figure 5 describes the
curves of the following two equations:

𝑈𝑡 = −(
1

63
) × 𝑡 +

61

63
,

𝑈𝑐 =
8

(ln (𝑐 − 20) × 5)
.

(30)

From Figure 6 we can see that the predicted total utility
𝑈
󸀠 in scheduler 5 is the highest, and if we schedule tasks on

scheduler 5, we would have the highest actual total utility𝑈#.
So if user tasks have different time and cost requirements, we
can choose different computing nodes to execute them and
make the total utilitymaximal. In addition, after rescheduling
the tasks, all tasks have higher actual total utility 𝑈# than
predicted utility𝑈󸀠 and actual total utility𝑈, which validates
the effectiveness of our proposed algorithm.

4.4. Comparison Experiments. In this experiment, we
selected 10 simulating tasks and compared our algorithm
with both Min-Min and Max-Min algorithms. The Min-
Min algorithm schedules minimum task to the quickest
computing node every time, and the Max-Min algorithm
schedules maximum task to the quickest computing node
every time. We implemented two algorithms for both time
sensitive and cost sensitive user tasks and denoted them as
MaxUtility-Time and MaxUtility-Cost. The experimental
result is in Figure 7.

In Figure 7, the total utilities of MaxUtility-Time and
MaxUtility-Cost algorithms are higher than the other two
algorithms and are also stable; both Min-Min and Max-Min
algorithms have lower total utilities, and their values fluctuate
very much. Both Min-Min and Max-Min algorithms only
consider the running time of tasks and ignore requirements of

Journal of Electrical and Computer Engineering 7

Uc

Ut U

U
󳰀

U#

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
til

ity

3 5 71

Scheduler

Figure 6: Utility distribution of cost sensitive user tasks.

MaxUtility-Time
MaxUtility-Cost

Min-Min
Max-Min

2 3 4 5 6 7 8 9 101

Scheduler

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
ta

l u
til

ity

Figure 7: Comparison result for different algorithms under simu-
lating tasks.

both time and cost, whichmakes them get lower total utilities
and fluctuate very much. In particular, when running tasks
8, 9, and 10, total utility of the Max-Min algorithm drops
quickly. The reason is that it schedules long-running tasks to
computing nodes with high performance, which makes the
utility very low.

5. Conclusion

In this paper, we introduced utility into the cloud envi-
ronment, quantified the satisfaction of users to services as
utility, and proposed utility oriented queuing model for task
scheduling. We classified utility into time and cost utility,

rescheduled tasks according to their remaining time, and
minimized the total utility by constraints. With the proposed
model, we can reschedule remaining tasks dynamically to get
the maximum utility. We validated our proposed model by
lots of experiments.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] A. Beloglazov and R. Buyya, “Energy efficient resource man-
agement in virtualized cloud data centers,” in Proceedings of the
10th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing, pp. 826–831, IEEE, Melbourne, Australia, May
2010.

[2] C. S. Yeo and R. Buyya, “Service level agreement based alloca-
tion of cluster resources: handling penalty to enhance utility,”
in Proceedings of the IEEE International Conference on Cluster
Computing (CLUSTER ’05), pp. 1–10, Burlington, Mass, USA,
September 2005.

[3] J. N. Silva, L. Veiga, and P. Ferreira, “Heuristic for resources
allocation on utility computing infrastructures,” in Proceedings
of the 6th International Workshop on Middleware for Grid
Computing (MGC ’08), pp. 93–100, ACM, Leuven, Belgium,
December 2008.

[4] G. Song and Y. Li, “Utility-based resource allocation and
scheduling in OFDM-based wireless broadband networks,”
IEEE Communications Magazine, vol. 43, no. 12, pp. 127–134,
2005.

[5] T. T. Huu and J. Montagnat, “Virtual resources allocation for
workflow-based applications distribution on a cloud infras-
tructure,” in Proceedings of the 10th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing (CCGrid
’10), pp. 612–617, IEEE, Melbourne, Australia, May 2010.

[6] Y. Yakov, “Dynamic resource allocation platform and
method for time related resources,” U.S. Patent Application
10/314,198[P], 2002.

[7] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-
theoretic method of fair resource allocation for cloud comput-
ing services,” The Journal of Supercomputing, vol. 54, no. 2, pp.
252–269, 2010.

[8] D. López-Pérez, X. Chu, A. V. Vasilakos, and H. Claussen,
“Powerminimization based resource allocation for interference
mitigation in OFDMA femtocell networks,” IEEE Journal on
Selected Areas in Communications, vol. 32, no. 2, pp. 333–344,
2014.

[9] X.Wang and J. F.Mart́ınez, “XChange: amarket-based approach
to scalable dynamic multi-resource allocation in multicore
architectures,” in Proceedings of the 21st IEEE International
Symposium onHigh Performance Computer Architecture (HPCA
’15), pp. 113–125, IEEE, Burlingame, Calif, USA, February 2015.

[10] L. Thomas and R. Syama, “Survey on MapReduce scheduling
algorithms,” International Journal of Computer Applications, vol.
95, no. 23, pp. 9–13, 2014.

[11] D. Cheng, J. Rao, Y. Guo, and X. Zhou, “Improving MapReduce
performance in heterogeneous environments with adaptive task
tuning,” in Proceedings of the 15th International Middleware

8 Journal of Electrical and Computer Engineering

Conference (Middleware ’14), pp. 97–108, ACM, Bordeaux,
France, December 2014.

[12] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo, “SAMR:
a self-adaptive mapreduce scheduling algorithm in heteroge-
neous environment,” in Proceedings of the 10th IEEE Inter-
national Conference on Computer and Information Technology
(CIT ’10), pp. 2736–2743, IEEE, Bradford, UK, July 2010.

[13] D.Moise, T.-T.-L. Trieu, L. Bougé, and G. Antoniu, “Optimizing
intermediate data management in MapReduce computations,”
in Proceedings of the 1st International Workshop on Cloud
Computing Platforms (CloudCP ’11), pp. 37–50, ACM, Salzburg,
Austria, April 2011.

[14] R. Buyya, D. Abramson, J. Giddy, andH. Stockinger, “Economic
models for resource management and scheduling in grid com-
puting,”Concurrency Computation Practice and Experience, vol.
14, no. 13–15, pp. 1507–1542, 2002.

[15] B. Xu, C. Zhao, E. Hu, and B. Hu, “Job scheduling algorithm
based on Berger model in cloud environment,” Advances in
Engineering Software, vol. 42, no. 7, pp. 419–425, 2011.

[16] S. Yeo and H.-H. S. Lee, “Using mathematical modeling in
provisioning a heterogeneous cloud computing environment,”
Computer, vol. 44, no. 8, Article ID 5740825, pp. 55–62, 2011.

[17] M. H. Rothkopf, “Scheduling with random service times,”
Management Science, vol. 12, no. 9, pp. 707–713, 1966.

[18] R. H. Möhring, A. S. Schulz, and M. Uetz, “Approximation in
stochastic scheduling: the power of LP—based priority policies,”
Journal of the ACM, vol. 46, no. 6, pp. 924–942, 1999.

[19] N. Megow, M. Uetz, and T. Vredeveld, “Models and algorithms
for stochastic online scheduling,” Mathematics of Operations
Research, vol. 31, no. 3, pp. 513–525, 2006.

[20] M. Scharbrodt, T. Schickinger, and A. Steger, “A new average
case analysis for completion time scheduling,” Journal of the
ACM, vol. 53, no. 1, pp. 121–146, 2006.

[21] X. Nan, Y. He, and L. Guan, “Optimal resource allocation for
multimedia cloud based on queuing model,” in Proceedings
of the 3rd IEEE International Workshop on Multimedia Signal
Processing (MMSP ’11), pp. 1–6, Hangzhou, China, November
2011.

[22] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation
using virtual machines for cloud computing environment,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24,
no. 6, pp. 1107–1117, 2013.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

