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Compressed sensing (CS) based methods have recently been used to reconstruct magnetic resonance (MR) images from
undersampled measurements, which is known as CS-MRI. In traditional CS-MRI, wavelet transform can hardly capture the
information of image curves and edges. In this paper, we present a new CS-MRI reconstruction algorithm based on contourlet
transform and alternating direction method (ADM). The MR images are firstly represented by contourlet transform, which can
describe the images’ curves and edges fully and accurately.Then theMR images are reconstructed by ADM, which is an effective CS
reconstruction method. Numerical results validate the superior performance of the proposed algorithm in terms of reconstruction
accuracy and computation time.

1. Introduction

CS is a new sampling and compression theory. It utilizes
the sparseness of a signal in a particular domain and can
reconstruct the signal from significantly fewer samples than
Nyquist sampling, which has been the fundamental principle
in signal processing for many years [1–3]. Due to the above
advantages, CS has received considerable attentions in many
areas, one of which is MRI reconstruction [4, 5]. MRI is safer,
more frequent, and accurate for clinical diagnosis. However,
conventional MRI needs to spend much time scanning body
regions, causing the expensive cost and the nonidealized
space resolution. In themeantime, the physiological property
in the tested bodywillmake the image blurry anddistortional.
Therefore, under the premise of guaranteeing the image qual-
ity, speeding up theMRI compression and reconstruction has
been the powerful impetus to promote the development of
MRI techniques.

For CS-MRI, there are two key points that need further
investigation. The first one is sparse transform. In MRI
reconstruction, the MR images themselves are not sparse but
have sparse representations in some transform domains. In
traditional CS-MRI, wavelet transform is commonly used
as a sparse transform [6, 7]. However, as the limitations of

direction, wavelet transform can hardly capture the infor-
mation of image curves and edges fully and accurately.
In contrast, curves and edges are mainly features of MR
images. Therefore, more effective sparse transform should be
considered for CS-MRI. Contourlet transform, also known
as Pyramid Directional Filter Bank (PDFB), is put forward
to make up for the inadequacy of the wavelet transform [8].
Contourlet transform can describe the image’s contour and
directional texture information fully and accurately since it
realizes any directional decomposition at each scale. Further-
more, contourlet is constructed directly in a discrete domain
and has low computing complexity. Thus, contourlet trans-
form can be easily implemented for MR images [9, 10].

The second one is the reconstruction algorithm. In recent
years, a number of algorithms have been put forward for the
signal reconstruction in CS, for example, interior-point algo-
rithm [11], iterative shrinkage/thresholding algorithm (ISTA)
[12], fast iterative shrinkage/threshold algorithm (FISTA)
[13], Sparse Reconstruction by Separable Approximation
(SpaRSA) [14]. But not all of these algorithms are suitable for
CS-MRI since the dimensions of the MR images are huge.
Alternating directionmethod (ADM) is an efficientCS recon-
struction algorithm that has a faster convergence speed than
some traditional methods [15]. Meanwhile, ADM is able to
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solve large-scale CS problem since all the iterations of ADM
only contain the first-order information of the objective
function, which have low computing complexity.

In this paper, we present a new CS-MRI reconstruction
algorithm based on contourlet transform and ADM. The
proposed algorithm can recover the curves and edges of aMR
image more precisely and suit large-scale MRI reconstruc-
tion.

The organization of the rest of this paper is as follows:
in Section 2, we first introduce CS-MRI model briefly and
then present our new algorithm. Numerical results will
demonstrate the effectiveness of the proposed algorithm in
Section 3. Finally, we conclude the paper in Section 4.

2. ADM for Contourlet-Based CS-MRI

2.1. Contourlet-Based CS-MRI Model. The basic problem of
CS is to recover a signal x from underdetermined linear mea-
surement y = Φx where y ∈ R𝑚, x ∈ R𝑛, andΦ ∈ R𝑚×𝑛, 𝑚 <

𝑛. This underdetermined linear system has infinite solutions
when seen from the aspect of algebra. However, according to
the CS theory, under the assumption that x is sparse, x can be
reconstructed by the following optimization problem:

min
x ‖x‖

0

s.t. y = Φx,
(1)

where ‖x‖
0
is the ℓ

0
normwhichmeans the nonzero numbers

of x.
Problem (1) is difficult to solve since it is NP-hard. It can

be relaxed as the following convex problem:

min
x ‖x‖

1

s.t. y = Φx,
(2)

where ‖x‖
1
= ∑
𝑖
|𝑥
𝑖
| is the sum of absolute values of x.

Problem (2) is a convex optimization problem and can be
solved by many algorithms.

Problems (1) and (2) are under the assumption that x
is sparse. However, in many applications, the signal itself is
not sparse but has a sparse representation in some transform
domains. For example x = Ψ𝜃, where x is the original signal
which is not sparse and 𝜃 is the sparse coefficient with respect
to the sparse transform matrix Ψ. In this case, CS model
should be y = Φ𝜃 = ΦΨ

∗x = Ax, where Ψ∗ denotes the
inverse of Ψ. The optimization problem should be changed
as follows:

min
x

󵄩
󵄩
󵄩
󵄩

Ψ
∗x󵄩󵄩󵄩
󵄩1

s.t. y = Ax.
(3)

2.2. ADM for Contourlet-Based CS-MRI. In this subsection,
we solve (3) by ADM.We first introduce an auxiliary variable
r and transform (3) into an equivalent problem:

min
x,r

{

󵄩
󵄩
󵄩
󵄩

Ψ
∗x󵄩󵄩󵄩
󵄩1 : Ax + r = y, ‖r‖ ≤ 𝛿} . (4)

The augmented Lagrangian function of problem (4) is
given by

min
x,r

{𝑓 (x, r) = 󵄩󵄩󵄩
󵄩

Ψ
∗x󵄩󵄩󵄩
󵄩1 − 𝜆

T
(Ax + r − y)

+

𝛽

2

󵄩
󵄩
󵄩
󵄩

Ax + r − y󵄩󵄩󵄩
󵄩

2
: ‖r‖ ≤ 𝛿} ,

(5)

where 𝜆 ∈ R𝑚 is a Lagrangian multiplier and 𝛽 > 0 is a
penalty parameter.

If we fix x = xk, 𝜆 = 𝜆k; that is,

𝑓 (xk, r) = 󵄩󵄩󵄩
󵄩
󵄩

Ψ
∗xk󵄩󵄩󵄩

󵄩
󵄩1 − (𝜆

k
)

T
(Axk + r − y)

+

𝛽

2

󵄩
󵄩
󵄩
󵄩
󵄩

Axk + r − y󵄩󵄩󵄩
󵄩
󵄩

2
.

(6)

The objective function 𝑓(xk, r) is only connected with r; then
(5) is equivalent to

min
r
{𝑓 (xk, r) : ‖r‖ ≤ 𝛿} . (7)

For problem (7), since (𝑑/𝑑r)𝑓(xk, r) = −(𝜆k)T+𝛽(Axk +
r − y)T = 0, we have r = 𝜆k/𝛽 − (Axk − y). The minimization
of (7) with respect to r is shown by

rk+1 = Ρ
𝐵𝛿
(

𝜆
k

𝛽

− (Axk − y)) , (8)

where Ρ
𝐵𝛿

is the projection onto the set B
𝛿
: {r ∈ R𝑚 : ‖r‖ ≤

𝛿}.
Then we fix r = rk+1, 𝜆 = 𝜆𝜅; that is,

𝑓 (x, rk+1) = 󵄩󵄩󵄩
󵄩

Ψ
∗x󵄩󵄩󵄩
󵄩1 − (𝜆

k
)

T
(Ax + rk+1 − y)

+

𝛽

2

󵄩
󵄩
󵄩
󵄩
󵄩

Ax + rk+1 − y󵄩󵄩󵄩
󵄩
󵄩

2
.

(9)

The objective function 𝑓(x, rk+1) is only relevant to x;
then problem (5) is equivalent to

min
x
𝑓 (x, rk+1) . (10)

Equation (10) is equivalent approximately to

min
x
󵄩
󵄩
󵄩
󵄩

Ψ
∗x󵄩󵄩󵄩
󵄩1 +

𝛽

2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

Ax + rk+1 − y − 𝜆
k

𝛽

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

.
(11)
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Require: A, y, r0, x0,𝜆0, 𝛽 > 0, 𝛾 > 0, Γ > 0.
Ensure: x
while “stopping criterion is not met” do

rk+1 = Ρ
𝐵𝛿
(

𝜆
k

𝛽

− (Axk − y));

xk+1 = Shrink(xk − Γgk , Γ
𝛽

Ψ
∗

);

𝜆
k+1

= 𝜆
k
− 𝛾𝛽 (Axk+1 + rk+1 − y);

end while

Algorithm 1

Let ℎ(x) = (𝛽/2)‖Ax + rk+1 − y − 𝜆k/𝛽‖2; then

ℎ (x) =
𝛽

2

[

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

Axk + rk+1 − y − 𝜆
k

𝛽

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (2AT
(Axk + rk+1 − y − 𝜆

k

𝛽

))

T

+

1

2

(x − xk)
T
2ATA (x − xk)]

= 𝛽 [(gk)
T
(x − xk) + 1

2

󵄩
󵄩
󵄩
󵄩
󵄩

A (x − xk)󵄩󵄩󵄩
󵄩
󵄩

2
]

= 𝛽 [(gk)
T
(x − xk) + 1

2Γ

󵄩
󵄩
󵄩
󵄩
󵄩

x − xk󵄩󵄩󵄩
󵄩
󵄩

2
] ,

(12)

where gkΔAT
(Axk + rk+1 − y − 𝜆

k
/𝛽) is the gradient of

quadratic items about (12), Γ > 0 is a parameter, and the first
equation of (12) is based on the Taylor expansion.Then (11) is
equivalent to

min
x
{

󵄩
󵄩
󵄩
󵄩

Ψ
∗x󵄩󵄩󵄩
󵄩1 + 𝛽((g

k
)

T
(x − xk) + 1

2Γ

󵄩
󵄩
󵄩
󵄩
󵄩

x − xk󵄩󵄩󵄩
󵄩
󵄩

2
)} . (13)

Problem (13) is equivalent approximately to

min
x
{Ψ
∗

(‖x‖1 +
𝛽

2ΓΨ
∗

󵄩
󵄩
󵄩
󵄩
󵄩

x − (xk − Γgk)󵄩󵄩󵄩
󵄩
󵄩

)} , (14)

which has a close form solution by shrinkage (or soft
thresholding) formula

xk+1 = Shrink(xk − Γgk, Γ
𝛽

Ψ
∗

) . (15)

Finally, we update the multiplier 𝜆 through

𝜆
k+1

= 𝜆
k
− 𝛾𝛽 (Axk+1 + rk+1 − y) , (16)

where 𝛾 > 0 is a constant.
Now, we present alternating direction method for prob-

lem (3) as Algorithm 1.

Table 1: Comparisons of different algorithms.

PSNR (dB) CPU time (s)
Algorithm 1 with Contourlet 48.28 4.52
SparseMRI 36.71 16.17
ICOTA 45.79 15.46
FICOTA 46.93 7.79
SpaRSA 38.46 14.52
Algorithm 1 with wavelet 42.27 4.21

3. Numerical Experiments

In this section, we present numerical results to illustrate the
performance of the proposed algorithm for MRI reconstruc-
tion. All experiments are made by using MATLAB 7.8.0 on
the PC with Intel Core 3.4GHz and 4G memory.

We compare the proposed Algorithm 1 with the state-
of-the-art MRI reconstruction algorithms: SparseMRI [5],
ICOTA [9], FICOTA [10], and SpaRSA [14]. SparseMRI is
based on conjugate gradient (CG), ICOTA is based on con-
tourlet transform and ISTA, FICOTA is based on contourlet
transform and FISTA, and SpaRSA is an effective algorithm
to solve the CS problem.We also compare the reconstruction
performance of contourlet and wavelet. We quantify the
reconstruction performance by peak signal to noise ratio
(PSNR) and CPU time. PSNR is defined as

PSNR = 10log
10
(

255

2

MSE
) , (17)

where MSE = (1/𝑚𝑛)∑

𝑚−1

𝑖=0
∑

𝑛−1

𝑗=0
(𝐼ori(𝑖, 𝑗) − 𝐼rec(𝑖, 𝑗))

2, 𝐼ori
and 𝐼rec are the original image and reconstructed image,
respectively, and𝑚, 𝑛 are the size of the images.

In the following experiments, we choose the measure-
ment matrix Φ as a partial Fourier transform matrix with 𝑚
rows and 𝑛 columns and define the sampling ratio as𝑚/𝑛.The
MR scanning time is less if the sampling ratio is lower. We
use the variable density sampling strategy just as the previous
works in papers [4, 5, 9, 10], which randomly choose more
Fourier coefficients from low frequencies and less coefficients
from high frequencies.

In the first experiment, we use the MR image as
Figure 1(a) shows, and the variable density sampling pattern
as Figure 1(b) shows. For wavelet transform,we useDaubech-
ies wavelet with 4 vanishing moments, and contourlet trans-
formwith decomposition [5,4,4,3], just the same as paper [9].

Figure 1 shows the reconstructed images using different
algorithms. Table 1 summarizes the comparisons of different
algorithms. From Table 1 we can see that Algorithm 1 with
contourlet transform outperforms Algorithm 1 with wavelet
transform in terms of PSNR, although its running time
is slightly slower, and Algorithm 1 outperforms other algo-
rithms in terms of both PSNR and CPU time.

In the second experiment, we illustrate the reconstruction
performance of each algorithm as the sampling rate varies
from 0.1 to 0.9.

Figure 2 shows the variations of PSNR and CPU time of
CS-MRI reconstruction versus sampling rates for different
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Comparison of CS-MRI reconstruction results obtained from different algorithms. (a) Original MR image. (b) Variable density
sampling pattern with sampling rate 0.2. ((c)–(h)) Reconstructed result from Algorithm 1 with contourlet transform, SparseMRI, ICOTA,
FICOTA, SpaRSA, and Algorithm 1 with wavelet transform.
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Figure 2: Comparison of CS-MRI reconstruction results obtained from different algorithms with different sampling rates. The results are
average of 50 runs. (a) PSNR versus sampling rate. (b) CPU time versus sampling rate.



Journal of Electrical and Computer Engineering 5

algorithms. Figure 2(a) shows that PSNR of Algorithm 1 with
contourlet is better than other algorithms with sampling
growing. Furthermore, Figure 2(a) also shows that the advan-
tage of contourlet becomes less obvious with the increase
of sampling rate. Figure 2(b) indicates that Algorithm 1 with
contourlet is slightly slower than Algorithm 1 with wavelet
but is much faster than other algorithms.

4. Conclusion

In this paper, we propose a novel algorithm based on
contourlet transform and the classic alternating direction
method to solve CS-MRI problem. The proposed algorithm
has low computational complexity and is suitable for large
scale problem. Our numerical results show that the proposed
algorithm compares favorably with these algorithms referred
to in terms of PSNR and CPU time.
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