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The automatic radioscopic inspection of industrial parts usually uses reference basedmethods.Thesemethods select, as benchmark
for comparison, image data from good parts to detect the anomalies of parts under inspection. However, parts can vary within the
specification during the production process, which makes comparison of older reference image sets with current images of parts
difficult and increases the probability of false rejections. To counter this variability, the reference image sets have to be updated.This
paper proposes an adaptive reference image set selection procedure to be used in the assisted defect recognition (ADR) system in
turbine blade inspection. The procedure first selects an initial reference image set using an approach called ADRModel Optimizer
and then uses positive rate in a sliding-time window to determine the need to update the reference image set. Whenever there is a
need, the ADRModel Optimizer is retrained with new data consisting of the old reference image sets augmented with false rejected
images to generate a new reference image set. The experimental result demonstrates that the proposed procedure can adaptively
select a reference image set, leading to an inspection process with a high true positive rate and a low false positive rate.

1. Introduction

Thehighly competitivemanufacturing industry has demand-
ed higher quality and lower manufacturing costs for the past
several decades.These requirements have led to great techno-
logical advances of automation in manufacturing processes
[1, 2]. One of the critical components of any manufacturing
process is part inspection. Part inspection consists of tasks of
measuring varied attributes of the parts, such as dimensions,
shape, mass, locations, and sizes of machining operations,
to ensure that they meet required quality standards [3].
Part inspection usually employs methods of nondestructive
evaluation (NDE) in order not to induce damage to the
inspected parts and affect their future usefulness. NDE
methods include diverse techniques, like radiographic X-
ray imaging, and penetrate testing and eddy-current testing.
Among these techniques, radiographic X-ray imaging is the
most commonly used for locating abnormal features that
are located inside the manufactured parts, for example, the
aluminum wheels, steering gears of cars, and the turbine
blades of jet engines [4, 5].

A variety of methods have been developed for automated
anomaly detection of industrial parts via computer-aided
analysis of the X-ray images [6]. These methods can be
divided into two categories: reference- and nonreference-
based methods [7]. The methods in the latter category,
nonreference-based methods, are often used when the refer-
ence images are unavailable [7]. Various kinds of defects or
anomalies are defined, and methods such as expert systems,
artificial neural networks, or general filters are used to
differentiate them from the characteristics of the normal
images [8–12]. Due to the difficulty of defining all possible
defects or anomalies, the application of thesemethods is quite
limited. When reference images are available, methods in
the first category, the reference-based methods are usually
utilized since the reference images or their statistics can be
chosen as the benchmark. A test image is compared with the
benchmark, and if significant differences exist, then the test
image is classified as anomalous [5, 6, 13–15].

The reference-based methods allow a set-actual com-
parison which is not possible with the nonreference-based
methods and are efficient for detecting low contrast defects
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Figure 1: Diagram of ADR system defect recognition process.

[16]. The performance of the reference-based methods relies
heavily on the reference images [2]. However, parts can vary
within the specification during the production process [16].
For example, for the aluminum die casting, abrasions and
wear are commonduring the lifetime of amold, and also sand
cleaning of the molds leads to variations in wall thickness.
These subtle variations are visible in the X-ray images. This
makes the comparison of older reference image sets with
current images under inspection difficult.

In this paper, we propose an adaptive reference image set
selection procedure. It first selects an initial reference image
set using the ADR Model Optimizer [2] based on feature
extraction of output images from ADR and then uses the
performance metric based on the positive rate (callout rate)
in a sliding-time window to determine the need to update
the reference image set. Whenever there is a need, a new
reference image set is generated by retraining the ADRModel
Optimizer with a new set of image data consisting of older
reference image sets and falsely rejected images.

The rest of the paper is organized as follows. In Section 2,
a brief description of the ADR system is given, and the
ADR Model Optimizer is described in detail, which is a
nonadaptive approach to select a reference model image set
from a large defect-free image set for ADR. In Section 3,
the adaptation problem of the reference model image set
selection is stated. Section 4 presents the proposed procedure,

which adaptively selects a referencemodel image set forADR.
Section 5 discusses the experimental results, and Section 6 is
the conclusion part.

2. Overview of ADR and the Model Optimizer

2.1. ADR. ADR is a reference-based X-ray inspection system
used for anomaly detection of turbine blades of jet engines
from different perspectives (views) [5]. The diagram of the
ADR system for defect recognition process for a single view
is shown in Figure 1. The system consists of two phases: a
modeling phase and an evaluation phase [5]. In the modeling
phase, a nonparametric Parzen-windows approach is used
to build a statistical model at each pixel based on the low-
level features extracted from a set of aligned and normalized
referencemodel images from defect-free blades.Themodel is
defined as

M = (𝑝𝑗(𝑢, V), 𝑝
𝛼
𝑗 (𝑢, V), 𝐼𝑇(𝑢, V), 𝐼0(𝑢, V), 𝑄𝑗, 𝑆𝑗, 𝜎𝑗), (1)

where 𝑝𝑗(𝑢, V) is the defect probability at pixel (𝑢, V), 𝑝
𝛼
𝑗 (𝑢, V)

is the defect prior at pixel based on domain knowledge,
𝐼𝑇(𝑢, V) is a template image chosen from the good parts and
used for spatial alignment, 𝐼0(𝑢, V) is the baseline image for
appearance normalization, 𝑗 is the defect index, 𝑄𝑗 is the
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(a) Trailing edge view (b) Root view

Figure 2: Callout images of ADR with markings for blade type A. The blue marking represents less material, and the red represents excess
material.
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Figure 3: Schematic diagram of ADRModel Optimizer.

probability threshold separating normal from abnormal vari-
ations, 𝑆𝑗 is the minimum defect size, and 𝜎𝑗 is the standard
deviation of the Gaussian kernel. Low-level image features
like the intensity value are extracted, and a nonparametric
statistical distribution 𝑝𝑗(𝑢, V) is created for each feature at
pixel (𝑢, V). For the pixelswith probabilities over the threshold
𝑄𝑗, 8-connected component algorithm is used, and only
regions larger than size 𝑆𝑗 are assumed to be defects. In the
evaluation phase, a test image is preprocessed by the same
operations including registration and normalization as in
the modeling phase. Low-level features of the preprocessed
test image are then extracted, and the probability of each
pixel being normal or abnormal is calculated and compared
with the built statistical models. Pixels are called out if the
probability is over threshold 𝑄𝑗 and the defect area size is
larger than 𝑆𝑗 and they are marked as blue and red in the
output image, representing less material and excess material,
respectively, as illustrated in Figure 2.

2.2. ADR Model Optimizer. ADR uses a reference-based
method for anomaly detection of turbine blades. A reference

model image set is selected from good parts, and statistical
models created from the reference model image set are
established as the benchmark, with which the images of
turbine blades under inspection are compared. The selection
of the reference model image set is critical.

ADR Model Optimizer is an automatic approach we
developed [2] to select a static referencemodel image set from
a large defect-free image set. Figure 3 gives the schematic
diagram of ADRModel Optimizer.

As shown in Figure 3, given an anomaly-free image set 𝑇,
the approach selects a model image set 𝑀12 from 𝑇 in two
steps, where 𝑀12 = 𝑀1 ∪ 𝑀2. 𝑀1 and 𝑀2 are two model
image sets to be selected in Steps 1 and 2, respectively, with
the corresponding sizes 𝑛(𝑀1), 𝑛(𝑀2) ≪ the size of set 𝑛(𝑇).

Step 1. The selection of the model set, 𝑀1, as shown in
Figure 3 is as follows.

(1) Randomly select a set of model images, 𝑀0, where
𝑀0 ⊂ 𝑇.

(2) Feed𝑀0 into ADR as the model set, and use 𝑇 as the
test set.
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(3) Run ADR to inspect every image in 𝑇. The images
considered as anomalous by ADRwould be called out
with indications marked in the callout images. Define
the callout image set as 𝑃out1.

(4) Based on the indication features of𝑃out1, including the
indication size, types, and locations, select 𝑀1 from
𝑃out1.

Step 2. The selection of the model set, 𝑀2, as shown in
Figure 3 is as follows.

Replace themodel set𝑀0 with𝑀1. Repeat (2), (3), and (4)
in Step 1. Note that the callout image set in this step is defined
as𝑃out2, and based on the features of𝑃out2,𝑀2 is selected from
𝑃out2.

The final selected model image set is𝑀12, where𝑀12 =
𝑀1U𝑀2.

From [2], we see that the ADRModel Optimizer can find
a model set with an optimal size in two steps to ensure a
low false positive rate with acceptable true positive rate. It is
validated that the approach can be applied to different types
of blades and varied views of each blade type.

3. Problem Statement

The X-ray image data of turbine blades can vary within the
specification over time during the production process. To
adapt to the variation, the reference model image set should
not be static but should be updated as needed. The problem

is formulated to choose performance metrics to measure
and detect the variation and develop methods of revising
the current model set when significant variation has been
detected. The revising method should involve as little human
intervention as possible and find a new model set which can
lower the false rejection (false positive) rate and maintain an
acceptable true positive rate.

4. Proposed Procedure

The framework of the proposed procedure to adaptively select
reference model image sets is illustrated in Figure 4.

The procedure first selects an initial reference model set
MOA.UseMOA forADR to inspect the image data generated
after point A, and use the callout rate in a sliding window
(CR STW) to measure the variation of the image data. If
CR STW > a set threshold Thr, then update the reference
model image set MOA to be MOB.

For the selection of MOA, through human analysis of the
image data generated from time pointO to pointA, obtain the
defect-free image data. Feed the defect-free image data into
the ADRModel Optimizer, and generate the initial reference
model set MOA.

For the selection of the updated referencemodel setMOB,
through human analysis of the callout image data from point
A to B, get new defect-free image data. Feed the new defect-
free image data augmented with the old reference model set
MOA into the ADR Model Optimizer, and generate the new
reference model set MOB.
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The following will discuss the performance metric of the
image data variation CR STW and the update method in
detail.

4.1. Callout Rate in a Sliding Window. Image data can vary
within the specification during the production process. The
false positive (false rejection) rate in a sliding-time window
(FPR STW) in a time window can be used to measure the
variation. However, it is difficult to obtain FPR STW in
practice since FPR STW equals the number of false positive
images divided by the number of defect-free images, and the
identification of the entire defect-free image set in the sliding-
time window is the prerequisite for calculating FPR STW. To
counter this, FPR STW can be replaced by the callout rate
in the sliding-time window (CR STW). FPR STW is usually
approximately proportional to CR STW since, among the
callout images, themajorities are false positive images and the
number of true positive images is very limited.

For CR STW, the size of the time window should be
carefully selected. If it is too small, then CR STW will only
reflect a short-period image data change. If the time window
size is too big, thenCR STWcannot reflect the change timely.
The size of the time window depends on the specific situation
and can be obtained through extensive experiments.

4.2. Model Set Update Method. When significant variation
of the image data is detected, the reference model image set
needs to be updated.Theproposedupdatemethod is based on
the ADR Model Optimizer. For the ADR Model Optimizer,
all the image data collected need to be analyzed by human
experts to obtain the defect-free image data. With the defect-
free image data, the ADR Model Optimizer is trained to
obtain the referencemodel set. For the updatemethod, not all
the image data but only those callout (rejected) images need
to be analyzed by human experts to obtain the falsely rejected
(false positive) images.Those false positive images are defect-
free ones and represent normal variations. Using the false
positive images data augmented with the old reference model
image set, the ADRModel Optimizer is retrained to generate
a new reference model image set.

5. Experimental Results and Discussion

This proposed procedure for reference model image sets
selection has been validated by X-ray images from trailing
edge view for turbine blades of blade type “A” through
extensive experiments.

A total of 13440 images generated in 122 days are
used, including 3 categories: 9835 defect-free images, 235
images with strong indications, and 3370 images with weak
indications. The images with strong indications correspond
to turbine blade parts that cause safety issues for the jet
engines and should be discarded. The images with weak
indications correspond to parts with minor anomalies that
can be used for the jet engines. Performance metrics used
include the callout rate (CR), false positive rate (FPR), and
true positive rate (TPR) of the images with strong indications
and TPR of the images with weak indications, respectively, in
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a sliding-time window. Note that for proprietary information
protection the ADR system is tuned arbitrarily, not in the best
operating point, and that the results of CR, TPR, and FPR of
ADR are not actual number in the production line.

Figure 5 shows the distribution of the number of images
generated by day for each category. From Figure 5, we see
the number of images generated varies each day.The number
of images with strong indications is small compared to the
number of the defect-free and the oneswithweak indications.

TheADR inspection starts with an initial referencemodel
image setMOA. Figure 6 shows the performance of the initial
reference model image set, with CR, FRP, and TPR of the
images with strong indications (S set) and TPR of the images
with weak indications (W set), respectively, in a sliding-time
window of 15 days.The initial referencemode image setMOA
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is selected on Day 37 with about 3000 defect-free images
gathered.

As shown in Figure 6, the callout rate observed in a
sliding-timewindowof 15 days (CR STW, the red-filled-circle
line) changes after the model MOA has been selected on
Day 37. The false positive rate observed in the same time
window (FPR STW, the purple-up-triangle line) has similar
change trend like CR STW as expected. For the images with
strong indications, the true positive rate in the time window
(TPR STW, the green-filled-diamond line) fluctuates over
time but is acceptable for this view of the blade type. For
the images with weak indications, TPR STW (the green-
filled- pentagram line) is not high, but the images with
weak indications correspond to blades with minor anomalies
which can be used for jet engines and are not as much
concerned as the images with strong indications and will
not be discussed. Note that TPR STW for images with weak
indications does not exist between Day 51 and Day 66 due to
no images with weak indications generated during this time
interval which is also shown in Figure 5.

From Figure 6, we see CR STW is above the set threshold
(the red dashed line) on Day 100, indicating significant parts
variation occurs and the reference model image set needs to
be updated. We see FPR STW is above 20% (the blue dashed
line) on Day 103, which also reflects the significance of parts
variation near Day 100 as expected.

Figure 7 shows the callout rate observed in a sliding-time
window of 15 days before and after the update of the reference
model image set on Day 100 (point B). From Figure 7,
we see that after updating the model set CR STW (the
blue-diamond-filled line) decreased below the set threshold
(the red dashed line). The corresponding FPR STW and
TPR STW for the images with strong indications are shown
in Figure 8.

As shown in Figure 8, after the model set is updated, the
FPR STW is decreased below 10%, and TPR STW for the
images with strong indications remains in an acceptable level,
illustrating the effectiveness of the model update method.

The above experiments use a time window of 15 days
to observe the variations of the performance metrics. We
investigate the selection of the sliding-time window sizes.
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Figure 9 shows the performance of FPR STW for window
sizes of 1, 5, 15, and 25 days with the initial model set MOA.

From Figure 9, if the observing window size is too small,
like 1 day or 5 days, the FPR is oversensitive. If thewindow size
is 25 days, FPR is much stable, not sensitive enough to reflect
the parts’ variations timely. To make a trade-off, we select the
sliding-time window size to be 15 days. More experiments are
needed to determine the optimal window size heuristically.

6. Conclusions

We proposed a procedure to adaptively select reference
model image sets for the reference-based inspection system
of turbine blades, ADR. The procedure defines callout rate
in a sliding-time window as the performance metric for
parts variation. If this metric is above the set threshold,
then the old reference model image set will be updated.
The update method involves little human intervention and
could generate a new reference model image set with much
lower false positive rate than the old set with an acceptable
true positive rate of images with strong indications. The
proposed procedure might be extended to other reference-
based inspection systems for reference data selection.
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