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For mobile radar, offset biases and attitude biases influence radar measurements simultaneously. Attitude biases generated from the
errors of the inertial navigation system (INS) of the platform can be converted into equivalent radar measurement errors by three
analytical expressions (range, azimuth, and elevation, resp.). These expressions are unique and embody the dependences between
the offset and attitude biases. The dependences indicate that all the attitude biases can be viewed as and merged into some kind of
offset biases. Based on this, a unified registration model (URM) is proposed which only contains radar “offset biases” in the form of
system variables in the registration equations, where, in fact, the “offset biases” contain the influences of the attitude biases. URM
has the same form as the registration model of stationary radar network where no attitude biases exist. URM can compensate radar
offset and attitude biases simultaneously and has minor computation burden compared with other registration models for mobile
radar network.

1. Introduction

With the increasing demands of the navigation accuracy in
military and civilian applications, it is vitally important to
fuse all the information from different sensors to obtain
accurate target location estimate and comprehensive attribute
information. However, before the benefits of multisensor
integration can be realized, the sensor registration problem
(or alignment) must be addressed. Sensor registration refers
to the process of estimating sensor systematic biases (SBs)
and compensating sensor measurements. If no registration is
made, when raw measurements of different sensors are sent
to the fusion center and transformed to a common reference
frame, two kinds of adverse consequences would occur
besides inaccurate location estimation: (1) data disassocia-
tion; (2) redundant tracks. In order to overcome the adverse
influences mentioned above, a lot of registration methods
were developed [1] based on stationary radar networks,
and SBs in consideration only include range, gain of range,
azimuth, and elevation biases referred to as offset biases
(OBs).

Different from stationary radars, mobile radars are fixed
onmobile carriers, in terms of installationmethods, there are
two kinds of platforms to fix radar: (1) gyrostabilized plat-
forms (GSP) which can steadily follow systems referenced on
local ENU (East-North-Up) frame [2]; (2) “unstabilized”GSP,
namely, UGSP, directly fixed on platform and rotates with the
platform simultaneously. GSP radar directly provides target
coordinates (TCs) in the ENU reference frame. UGSP radar
measurements are made in the measurement frame which
should be converted to ENU frame by using attitude angles
given by INS [3]. The common characteristic for both kinds
of mobile radars is that they all need real-time attitude angle
information to rectify radar sensitive axes influenced due to
platform rotation. However, these attitude angles are biased
because the accumulated errors in the inertial measurement
units (IMU) of INS are referred to as attitude biases (ABs).
Typically, when formulating 3D radar registration equations,
both OBs and ABs are simultaneously selected as the state
variables. If the system is unobservable (US), some of the
biases cannot be estimated. Since both kinds of biases have
the same influences on radar measurements (RMs), their
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dependencies should be analyzed first. If both kinds of
biases are dependent, they should be combined to form new
variables to make the system observable.

The concept of observability analysis (OA) first intro-
duced formobile radar registration (MRR) by Bar-Shalom [4]
is not appropriate because the criterion he used is applied for
linear time invariant system; however, the practical system is
time varying. Then Herman and Poore [5] and Kragel et al.
[6] gave registrationmodel by using the least squares method
and used the singular value decomposition (SVD) of the
coefficientmatrix (CM) of the registration equations. Possible
dependencies among all biases are analyzed qualitatively
according to magnitudes of different column vector elements
in the unitary matrix obtained from SVD. These criteria use
the singularity of matrix to identify the observability of the
system (OoS) and US easily in an optimal situation because
when dependent variables are contained in the system, CM
of the registration equations is singular. However, in practice,
especially in noisy circumstances, CM is usually nonsingular
even if variables are linearly dependent because small noises
in radar measurements can easily make the singular CM
nonsingular. In this situation,CM is obviously ill-conditioned
and the misjudgement will result in poor Kalman filter
(KF) estimation results [7]. So, in noisy circumstances or
variables with slowly varying linear dependent coefficients in
the registration equations, this SVD criterion can only give
the qualitative instead of the exact dependent relations among
different variables. Besides the methods above, the optimized
bias estimation model (OBEM) was proposed by Wang et al.
[8], where it was verified that when the azimuth and yaw
biases are combined as one variable, the registration model
is observable. The attitude bias conversion model (ABCM)
[7] is proposed to explicitly establish nonlinear registration
equations using linear dependencies among all biases. Both
models can be improved with deeper understanding of the
relationships between OBs and ABs.

The linearization-caused estimate errors were analyzed
in [7], where it was proved that these errors are minor
and can be omitted for MRR model. So, in this paper, the
linearized registration model and KF are still used as the
basic method to obtain the bias estimates. From the control
theory perspective of view, for nonlinear control system with
zero input control items, the linearized model can be used
directly to construct observability matrix (OM) to analyze
the OoS [9]. Furthermore, Wang et al. [8] converted the
ABs of the platform into radar measurement errors (MEs)
by three analytical expressions.These expressions contain the
TCs as well as the ABs as variables. Since the variations of
the TCs between two consecutive observation instances are
small compared with TCs, each expression can be divided
into invariant and variant parts, respectively. The invariant
part which is the majority in magnitude represents the
dependencies between ABs and OBs, which can be proved
by OM criterion. The variant part which is the minority
in magnitude can be viewed as noise. These expressions
are also deterministic and unique, which manifest that the
dependencies between ABs and OBs are unavoidable and the
MRR models are always US. Based on the analyses above
we know that if the invariant parts converted from the ABs

merge into radar OBs, the system will be observable. At
the same time, if the minor variant parts are viewed as
noises, then all the ABs will be absent in the MRR model,
and this model has the same form as that of the stationary
radar network. So we call this model the unified registration
model (URM) because it can unify the stationary and mobile
radar network registration model into one frame. It should
be noted that the only difference when URM is used for
stationary and mobile radar registration is that for the latter
the process noise variances will be enlarged because of the
additional noises caused by the variant parts. Compared with
other MRR models, URM proposed in this paper has the
least number of variables (only has “OBs” as variables) and
minor computation burden.The estimates of the “OBs” in fact
contain the estimates of ABs, and they can be used directly
as OBs to compensate radar raw measurements. Usually the
estimates of equivalent range and azimuth biases are accurate.
Though many merits of URM, the equivalent elevation bias
estimates are poor and need further improvement.

In order the simplify modeling, analysis, and assessment,
other sources of biases in radar network such as sensor loca-
tion bias errors and the timing biases are not discussed. It is
assumed that both radars have accurate position information
of themselves, and they are synchronized within the same
sampling intervals.

Organization. In Section 2, a basic mathematical model for
MRR is discussed. Observability analyses based on the basic
model are described in Section 3. In Section 4, the detailed
URM description based on observability analyses is pre-
sented and the variable attitude bias situation is discussed in
Section 5. Simulation results with Cramer-Rao lower bounds
(CRLBs) are given in Section 6. Finally, in Section 7, the final
remarks of this study are given.

2. Basic Registration Model

Consider the 𝑖th radar, where 𝑖 = {1, 2}, which is installed
on the 𝑖th moving carrier through three-axis gyrostabilized
platform. The geographic coordinates of the 𝑖th platform are
latitude 𝐿𝑠

𝑖
, longitude 𝑅𝑠

𝑖
, and altitude𝐻

𝑖
, which are known

in real-time. Figure 1 provides an illustration of satellite-
borne radar [10], where the gyrostabilized platform of the
satellite can steadily track local ENU frame through three sets
of IMUs and servo motors in east, north, and up directions,
respectively. After initial alignment, when the attitude of the
satellite changes, IMUs of each axis can sense this change and
convert it to electric signal to drive the corresponding servo
motor to rotate in the opposite directions; then the platform
frame can catch up with the ENU frame in real-time.

However, for bias errors in IMUs, rectified axes of the
gyrostabilized platform have a set of Eulerian angles with
corresponding axes of ENU frame. These angles are ABs.
Since radar is fixed on the platform, the sensitive axes of radar
will rotate with the platform in ENU frame, and ABs of the
platform can be passed on to RMs; these ABs together with
radar OBs make radar measurement deviate from its true
coordinates.
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Figure 1: The diagram of mobile radar installed on the gyrostabilized platform.

Usually, ABs are defined as yaw bias Δ𝜙, pitch bias Δ𝜂,
and roll bias Δ𝜓, respectively [11], which can be seen in
Figure 2(a). For ENU frame, its origin 𝑜 is located at the center
of the gyrostabilized platform; three mutually orthogonal
axes 𝑥, 𝑦, and 𝑧 refer to the directions of east, north, and
up, respectively. The plane xoy is horizontal. We define the
output Cartesian coordinates of the gyrostabilized platform
as the platform frame.Theplatform framehas the same origin
with ENU; Figure 2(a) shows the conversion process from
the platform frame to ENU, where 𝑥

𝑝
, 𝑦

𝑝
, and 𝑧

𝑝
denote

𝑥, 𝑦, and 𝑧 axes of the platform frame, respectively, and
the axes drawn in dashed lines are the intermediate axes.
As shown in Figure 2(a), the transformation of TCs from
the platform frame to ENU is accomplished by first rotating
about the 𝑦-axis of the platform frame by the roll angle Δ𝜓,
then rotating about the intermediate 𝑥-axis by the pitch angle
Δ𝜂, and rotating about the final 𝑧-axis by the yaw angle Δ𝜙.
Customarily, the polarity definitions of Δ𝜙 and Δ𝜓 abide by
the left-hand rule, and Δ𝜂 abides by the right-hand rule.

Figure 2(b) depicts radar measurement in the platform
frame, where radar 𝑖 is located at the origin 𝑜 and 𝑇

𝑡

denotes the true target location. 𝑇

𝑚
denotes the ghost target

influenced by the azimuth bias only and𝑇
𝑚
denotes the ghost

target influenced by all the biases. 𝑜
𝑝
, 𝑜

𝑚
, and 𝑜

𝑚
denote

the corresponding projections on the platform frame 𝑥
𝑝
𝑜𝑦

𝑝

plane, respectively. 𝑜
𝑒
denotes the projection of the true target

on the horizontal plane of the ENU frame.Themeasurements
of target from the 𝑖th radar include the range 𝑟

𝑖
, azimuth 𝜃

𝑖

(the true north corresponds to 𝜃 = 0, and the clockwise
direction denotes the increment of 𝜃), and elevation 𝜀

𝑖
, which

contain the true target position information (such as the true
range 𝑟

𝑖𝑡
, azimuth 𝜃

𝑖𝑡
, and elevation 𝜀

𝑖𝑡
), radar OBs (such as

the range bias Δ𝑟
𝑖
, the gain of range 𝑘

𝑟𝑖
which arise from (or

in) atmospheric refraction [12], azimuth Δ𝜃
𝑖
, and elevation

Δ𝜀
𝑖
. Polarity definitions ofΔ𝜃

𝑖
andΔ𝜀

𝑖
are identical to 𝜃 and 𝜀,

resp.), ABs of the gyrostabilized platform, and random MEs
(such as the range error 𝛿

𝑟𝑖
, azimuth 𝛿

𝜃𝑖
, and elevation 𝛿

𝜀𝑖
).

RandomMEs are zero-mean Gaussian with known standard
deviations. Figure 2(b) also shows that since the existence of
ABs, the true target azimuth and elevation in platform frame
are different from those in the ENU frame.

Themain objective forMRR is to simultaneously estimate
OBs and ABs using both radars’ raw measurements. As
shown in Figure 3, the mathematical registration models are
established through the following process: (1) radar OBs,
randomMEs, and equivalent MEs caused by ABs included in
the raw measurements are removed to obtain the true target
coordinates (TTCs) in the ENU frame; (2) the conversion
from ENU to ECEF frame is used to obtain TTCs in the
common reference frame; (3) the registration equations can
be established according to the fact that TTCs obtained from
two different RMs are equal when they are converted to the
common reference frame; (4) bias estimations (BEs) can be
obtained by using different estimation algorithms. Initially
all OBs and ABs are assumed constants and later as varying
biases. The following are the main procedures.

Let the column vectors

X
𝑖 𝑝 (𝑘) = [𝑥𝑖 𝑝 (𝑘) , 𝑦𝑖 𝑝 (𝑘) , 𝑧𝑖 𝑝(𝑘)]

𝑇

,

X
𝑖 ENU (𝑘) = [𝑥𝑖 ENU (𝑘) , 𝑦𝑖 ENU (𝑘) , 𝑧𝑖 ENU(𝑘)]

𝑇
,

X
𝑖 ECEF (𝑘) = [𝑥𝑖 ECEF (𝑘) , 𝑦𝑖 ECEF (𝑘) , 𝑧𝑖 ECEF(𝑘)]

𝑇

(1)
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Figure 2: (a) Conversion from the platform frame to ENU and (b) measurement in platform frame.
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Figure 3: The flow chart for MRR.

represent the true rectangular coordinates of the target at the
observation instance 𝑘 in the platform frame, ENU frame,
and ECEF frame, respectively [13], of the 𝑖th sensor. The
superscript “𝑇” denotes matrix or vector transposition.These
column vectors are also nonlinear vector functions. Sensor
measurements, OBs, ABs, and random MEs are included in
each element of the vectors.

Usually, all OBs and random MEs are small in magni-
tudes, in order to simplify the development of registration
equations below; X

𝑖 𝑝 (𝑘) can be approximated by first-order
Maclaurin series about OBs and randomMEs as

X
𝑖 𝑝 (𝑘) ≈ X

𝑖 (𝑘) + A
𝑖 (𝑘)𝛽𝑖 (𝑘) + C

𝑖 (𝑘)w𝑖 (𝑘) , (2)

where

𝛽
𝑖
(𝑘) = [Δ𝑟𝑖, 𝑘𝑟𝑖, Δ𝜃𝑖, Δ𝜀𝑖]

𝑇
,

w
𝑖 (𝑘) = [𝛿𝑟𝑖 (𝑘) , 𝛿𝜃𝑖 (𝑘) , 𝛿𝜀𝑖 (𝑘)]

𝑇
,

X
𝑖 (𝑘) = [𝑥𝑖 (𝑘) , 𝑦𝑖 (𝑘) , 𝑧𝑖 (𝑘)]

𝑇
= X

𝑖 𝑝 (𝑘)
 𝛽𝑖(𝑘)=0
w𝑖(𝑘)=0

,

A
𝑖 (𝑘) =

𝜕X
𝑖 𝑝 (𝑘)

𝜕𝛽
𝑖
(𝑘)

 𝛽𝑖(𝑘)=0w𝑖(𝑘)=0

,

C
𝑖 (𝑘) =

𝜕X
𝑖 𝑝 (𝑘)

𝜕w
𝑖 (𝑘)

 𝛽𝑖(𝑘)=0w𝑖(𝑘)=0

.

(3)

According to the polarity definition of ABs and the rota-
tion transformation order, the transition from the platform
frame to ENU is given by [7]

X
𝑖 ENU (𝑘) = T

𝑖 𝑝2ENU (𝑘)X𝑖 𝑝 (𝑘) , (4)

whereT
𝑖 𝑝2ENU denotes the rotationmatrix from the platform

frame to ENU, which is an orthogonal matrix; that is,
𝑇−1

𝑖 𝑝2ENU = 𝑇
𝑇

𝑖 𝑝2ENU = 𝑇𝑖 ENU2𝑝, and [8]

T
𝑖 𝑝2ENU =

[

[

𝑡
11 𝑖

𝑡
12 𝑖

𝑡
13 𝑖

𝑡
21 𝑖

𝑡
22 𝑖

𝑡
23 𝑖

𝑡
31 𝑖

𝑡
32 𝑖

𝑡
33 𝑖

]

]

, (5a)

𝑡
11 𝑖

= cos (Δ𝜓
𝑖
) cos (Δ𝜙

𝑖
) − sin (Δ𝜓

𝑖
) sin (Δ𝜂

𝑖
) sin (Δ𝜙

𝑖
) ,

(5b)

𝑡
12 𝑖

= cos (Δ𝜂
𝑖
) sin (Δ𝜙

𝑖
) , (5c)

𝑡
13 𝑖

= − sin (Δ𝜓
𝑖
) cos (Δ𝜙

𝑖
) − cos (Δ𝜓

𝑖
) sin (Δ𝜂

𝑖
) sin (Δ𝜙

𝑖
) ,

(5d)

𝑡
21 𝑖

= − cos (Δ𝜓
𝑖
) sin (Δ𝜙

𝑖
) − sin (Δ𝜓

𝑖
) sin (Δ𝜂

𝑖
) cos (Δ𝜙

𝑖
) ,

(5e)

𝑡
22 𝑖

= − cos (Δ𝜂
𝑖
) cos (Δ𝜙

𝑖
) , (5f)

𝑡
23 𝑖

= sin (Δ𝜓
𝑖
) sin (Δ𝜙

𝑖
) − cos (Δ𝜓

𝑖
) sin (Δ𝜂

𝑖
) cos (Δ𝜙

𝑖
) ,

(5g)
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𝑡
31 𝑖

= sin (Δ𝜓
𝑖
) cos (Δ𝜂

𝑖
) , (5h)

𝑡
32 𝑖

= sin (Δ𝜂
𝑖
) , (5i)

𝑡
33 𝑖

= cos (Δ𝜓
𝑖
) cos (Δ𝜂

𝑖
) . (5j)

Similarly, (5a) can be approximated by the first-order
Maclaurin series about ABs as

T
𝑖 𝑝2ENU ≈ I + Δ

𝑖 (𝑘) , (6)

where I is a 3 × 3 identity matrix, and

Δ
𝑖 (𝑘) =

[

[

0 Δ𝜙
𝑖
−Δ𝜓

𝑖

−Δ𝜙
𝑖
0 −Δ𝜂

𝑖

Δ𝜓
𝑖
Δ𝜂

𝑖
0

]

]

. (7)

Substituting (2) and (6) into (4) and omitting the higher
order terms, (4) can be expanded as

X
𝑖 ENU (𝑘)

≈ [I + Δ
𝑖 (𝑘)] [X𝑖 (𝑘) + A

𝑖 (𝑘)𝛽𝑖 (𝑘) + C
𝑖 (𝑘)w𝑖 (𝑘)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≈X𝑖(𝑘)+A𝑖(𝑘)𝛽𝑖(𝑘)+C𝑖(𝑘)w𝑖(𝑘)+Δ𝑖(𝑘)X𝑖(𝑘)

, (8a)

X
𝑖 ENU (𝑘) + [−A𝑖 (𝑘)𝛽𝑖 (𝑘) − C

𝑖 (𝑘)w𝑖 (𝑘) − Δ𝑖 (𝑘)X𝑖 (𝑘)]

≈ X
𝑖 (𝑘) .

(8b)

Comparing (8a) and (8b) with (2), it is obvious that target
location errors caused by ABs can be expressed by the last
term of the left hand side of (8b). Omitting the subscript “i”
and time stamp “𝑘,” the errors can be written as

[

[

𝑒
𝑥

𝑒
𝑦

𝑒
𝑧

]

]

= −ΔX=−[
[

0 Δ𝜙 −Δ𝜓

−Δ𝜙 0 −Δ𝜂

Δ𝜓 Δ𝜂 0

]

]

[

[

𝑥

𝑦

𝑧

]

]

, (9)

where 𝑒
𝑥
, 𝑒

𝑦
, and 𝑒

𝑧
denote the errors caused by ABs in 𝑥, 𝑦,

and 𝑧 coordinates, respectively.
Then, the equivalent range MEs caused by ABs can be

expressed as [8]

Δ𝑟
𝑐
(Δ𝜙, Δ𝜂, Δ𝜓) = √(𝑥 + 𝑒

𝑥
)
2
+ (𝑦 + 𝑒

𝑦
)
2

+ (𝑧 + 𝑒
𝑧
)
2

− √𝑥2 + 𝑦2 + 𝑧2.

(10)

Substituting (9) into (10) and selecting ABs in (10) as
variables, the first-order Maclaurin series expansion of (10)
can be written as

Δ𝑟
𝑐
(Δ𝜙, Δ𝜂, Δ𝜓) = 0 + 𝑜 (Δ𝜙, Δ𝜂, Δ𝜓) . (11)

Similarly, the equivalent azimuth measurement error is

Δ𝜃
𝑐
= −Δ𝜙 +

𝑦𝑧Δ𝜓 − 𝑥𝑧Δ𝜂

𝑥2 + 𝑦2
+ 𝑜 (Δ𝜙, Δ𝜂, Δ𝜓) . (12)

The equivalent elevation measurement error is

Δ𝜀
𝑐
=
−𝑥Δ𝜓 − 𝑦Δ𝜂

√𝑥2 + 𝑦2
+ 𝑜 (Δ𝜙, Δ𝜂, Δ𝜓) . (13)

Since errors caused by ABs are equivalent to MEs, then
TTCs in ENU frame can be written out directly without using
rotation transformation as

X
𝑖 ENU (𝑘) = 𝛾𝑟𝑖 (𝑘) ×

{

{

{

sin [𝛾
𝜃𝑖 (𝑘)] cos [𝛾𝜀𝑖 (𝑘)]

cos [𝛾
𝜃𝑖 (𝑘)] cos [𝛾𝜀𝑖 (𝑘)]
sin [𝛾

𝜀𝑖 (𝑘)]

}

}

}

, (14a)

𝛾
𝑟𝑖
(𝑘) = 𝑟𝑖 (𝑘) − Δ𝑟𝑖 − 𝑘𝑟𝑖𝑟𝑖𝑡 (𝑘) − Δ𝑟𝑐𝑖 (𝑘) − 𝛿𝑟𝑖 (𝑘) , (14b)

𝛾
𝜃𝑖 (𝑘) = 𝜃𝑖 (𝑘) − Δ𝜃𝑖 − Δ𝜃𝑐𝑖 (𝑘) − 𝛿𝜃𝑖 (𝑘) , (14c)

𝛾
𝜀𝑖 (𝑘) = 𝜀𝑖 (𝑘) − Δ𝜀𝑖 − Δ𝜀𝑐𝑖 (𝑘) − 𝛿𝜀𝑖 (𝑘) . (14d)

Substituting (11)–(13) into (14a) and omitting time stamp
“k” for brevity, (14a) produces

𝛾
𝑟𝑖
= 𝑟

𝑖
− Δ𝑟

𝑖
− 𝑘

𝑟𝑖
𝑟
𝑖𝑡
− 𝛿

𝑟𝑖
, (15a)

𝛾
𝜃𝑖
= 𝜃

𝑖
− Δ𝜃

𝑖
+ Δ𝜙

𝑖
−
𝑦
𝑖
𝑧
𝑖
Δ𝜓

𝑖
− 𝑥

𝑖
𝑧
𝑖
Δ𝜂

𝑖

𝑥2
𝑖
+ 𝑦2

𝑖

− 𝛿
𝜃𝑖
, (15b)

𝛾
𝜀𝑖
= 𝜀

𝑖
− Δ𝜀

𝑖
+
𝑥
𝑖
Δ𝜓

𝑖
+ 𝑦

𝑖
Δ𝜂

𝑖

√𝑥2
𝑖
+ 𝑦2

𝑖

− 𝛿
𝜀𝑖
. (15c)

The transition of TTCs from ENU to ECEF frame is given
by Zhou et al. [14] as

X
𝑖 ECEF (𝑘) = X

𝑖𝑠 (𝑘) + T
𝑖 (𝑘) × X

𝑖 ENU (𝑘) , (16)

where X
𝑖𝑠
denotes the 𝑖th radar ECEF coordinates converted

from its geographic coordinates, andT
𝑖
is the rotationmatrix.

Both variables are only correlated with radar geographic
coordinates at time 𝑘.

Since

X
1 ECEF (𝑘) = X

2 ECEF (𝑘) . (17)

substituting (14a) and (16) into (17), the first-order linearized
registration model can be approximated in the form of

Z (𝑘) = H (𝑘)𝛽 (𝑘) + C (𝑘)w (𝑘) , (18)

where 𝛽𝑇 = [𝛽𝑇
1
,𝛽𝑇

2
] denotes the state vector consisting of all

OBs andABs of both radars.w𝑇 = [w𝑇

1
,w𝑇

2
] is a column vector

which contains both radars’ measurement noises.

3. Observability Analysis

Assuming a constant bias registration model, for which the
state equations can be described as

𝛽 (𝑘 + 1) = I𝛽 (𝑘) , (19)

I denotes the corresponding unit matrix.
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First-order linearized equivalent measurement equations
are assumed to have the similar form of (18).

According to dynamic equations (18) and (19), the𝑁-step
random OM can be written as [8]

M (𝑘, 𝑘 − 𝑁 + 1) =

𝑘

∑
𝑖=𝑘−𝑁+1

IH𝑇
(𝑖)C (𝑖)R−1

(𝑖)C𝑇
(𝑖)H (𝑖) I⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

H𝑇(𝑖)C(𝑖)R−1(𝑖)C𝑇(𝑖)H(𝑖)

,

(20)

where 𝐸{w(𝑘)w𝑇(𝑘)} = R(𝑘) and 𝐸{𝑥} denotes the expecta-
tion of “𝑥.”𝑁 is a positive integer which is unrelated to 𝑘.R(𝑖)
in (20) is a constant matrix at different time because the RNs
have the same variances at different time.

The system is observable (OS) when OM is positive
definite [15]. In the following three cases, the observability of
the different system is analyzed, respectively.

Condition 1. When C (𝑖) is a constant matrix then two
of the column vectors in the coefficient matrix H (𝑖) are
proportional—US.

Proof. Without loss of generality, assuming that column
vectors h

1 (𝑖) and h
2 (𝑖) (𝑖 = 𝑘 − 𝑁 + 1, . . . , 𝑘) are first

and second column vectors in H (𝑖), respectively, and satisfy
h
1 (𝑖) /h2 (𝑖) = 𝑎, where the proportionality factor 𝑎 is a

constant, then OM can be written as

M (𝑘, 𝑘 − 𝑁 + 1) =

𝑘

∑
𝑖=𝑘−𝑁+1

H𝑇
(𝑖)CR−1C𝑇H (𝑖) . (21)

Assuming thatm (𝑖) = H𝑇
(𝑖)CR−1C𝑇H (𝑖) and k1 (𝑖) and

k
2 (𝑖) are the first and second rowvectors inm (𝑖), respectively,
then it is obvious that k

1 (𝑖) /k2 (𝑖) = 𝑎 as follows:

v
1 (𝑘 − 𝑁 + 1) + v

1 (𝑘 − 𝑁 + 2) + ⋅ ⋅ ⋅ + v
1 (𝑘)

v
2 (𝑘 − 𝑁 + 1) + v

2 (𝑘 − 𝑁 + 2) + ⋅ ⋅ ⋅ + v
2 (𝑘)

= 𝑎; (22)

that is, the first and second row vectors of OM M are
proportional and the proportionality factor is 𝑎. Then M =

0—US.

Condition 2. When C(𝑖) or H(𝑖) is time-varying then the
system is observable or—OS.

Proof. In this case, m (𝑖) = H𝑇
(𝑖)C (𝑖)R−1C𝑇

(𝑖)H (𝑖) is an
𝑛 × 𝑛 matrix, and the rank of m (𝑖) is 3 because the rank of
H (𝑖) is 3. Since C (𝑖) orH (𝑖) is different in each time, when

𝑁 ≥ [
𝑛

3
] , (23)

where the symbol [𝑥] denotes the nearest integer greater than
or equal to𝑥, the rank of∑𝑘

𝑖=𝑘−𝑁+1
m (𝑖) is equal to𝑁, andOM

M is positive definite—OS.

Condition 3. When C (𝑖) and the proportionality factor of
two column vectors in H (𝑖) vary slowly between different
observation time, though OS, they can be tackled as US.

According to the proof of Condition 2, though the system
is observable, the condition number of the coefficient matrix
H (𝑖) is very big because two column vectors in H (𝑖) are
proportional, and solutions of KF for the system are sensitive
to noises. Since KF is an iterative algorithm, in each compu-
tational cycle, the variables in the state vector corresponding
to both proportional column vectors in H (𝑖) should be
combined as one variable; then the system is observable,
and the dimension of the state vector can also be decreased.
Otherwise, if they are estimated separately, the solutions for
each variable are unbelievable. As for variations between
two different observation instances, if the magnitudes of the
variation are small, they can be viewed as noises. Based on
this, (19) can be modified as

𝛽

(𝑘 + 1) = 𝛽


(𝑘) + w𝛽 (𝑘 + 1) , (24)

where 𝛽 denotes the combined vector and w𝛽 denotes the
remaining minor noises caused by the independent parts.

4. Unified Registration Model

Since variations of TCs are usually small compared with their
coordinates, in MRR (18) derived from (15a), (15b), and (15c),
coefficients of ABs and OBs can be divided into two parts:
the invariant (or proportional) and variant parts which satisfy
Conditions 1 and 2, respectively. According to analyses made
for Condition 3, it is optimum to select the united biases as
state vector as

𝛽


𝑖
(𝑘) = [Δ𝑟𝑖, 𝑘𝑟𝑖, Δ𝜃



𝑖
(𝑘) , Δ𝜀



𝑖
(𝑘)]

𝑇

, (25)

where

Δ𝜃


𝑖
(𝑘) = Δ𝜃𝑖 − Δ𝜙𝑖 +

𝑦
𝑖 (𝑘) 𝑧𝑖 (𝑘) Δ𝜓𝑖

− 𝑥
𝑖 (𝑘) 𝑧𝑖 (𝑘) Δ𝜂𝑖

𝑥2
𝑖
(𝑘) + 𝑦2

𝑖
(𝑘)

,

(26)

Δ𝜀


𝑖
(𝑘) = Δ𝜀𝑖 −

𝑥
𝑖 (𝑘) Δ𝜓𝑖 + 𝑦𝑖 (𝑘) Δ𝜂𝑖

√𝑥2
𝑖
(𝑘) + 𝑦2

𝑖
(𝑘)

. (27)

According to above analyses, in (25) it is optimum to
select

Δ𝑟


𝑖
(𝑘) = Δ𝑟𝑖 + 𝑘𝑟𝑖𝑟𝑖𝑡 (𝑘) ; (28)

however, it is not the best although it decreases the dimension
of the state vector. The reason is that the constant models are
assumed for OBs and ABs, and coupling influences on the
radar rangemeasurement caused byABs are zeros (which can
be seen from (11)). The gross range bias only correlates with
the target range (𝑟

𝑖
) and is independent with TCs (𝑥

𝑖
, 𝑦

𝑖
, 𝑧

𝑖
). If

the range bias uses (28) as the state variable, its state equation
will be in the form of a constant plus a noise, which is
inaccurate compared to the model using (25). Moreover, it
will make the computation of the cross covariance of the state
vectors more complicated and the estimation accuracies will
be decreased (the simulation results made by authors have
verified the results; for the limitation of the article length, the
corresponding algorithm will not be given).
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Hence, it is preferable to estimate Δ𝑟
𝑖
and 𝑘

𝑟𝑖
individ-

ually. However, the estimation results for both variables
should be used simultaneously when rectifying radar raw
measurements. It is meaningless to evaluate their estimation
performance individually.

In the new state vector (25), variables Δ𝜃
𝑖
and Δ𝜀

𝑖
are

no longer constants; they are varying with different target
locations. Equations (26) and (27) can be differentiated
individually about the time argument as

𝑑 (Δ𝜃

) = 𝑑(

𝑦𝑧Δ𝜓 − 𝑥𝑧Δ𝜂

𝑥2 + 𝑦2
) =

𝑎
𝑥
𝑑𝑥 + 𝑎

𝑦
𝑑𝑦 + 𝑎

𝑧
𝑑𝑧

(𝑥2 + 𝑦2)
2

,

(29a)

𝑎
𝑥
= − (𝑥

2
+ 𝑦

2
) 𝑧Δ𝜂 − 2𝑥 (𝑦𝑧Δ𝜓 − 𝑥𝑧Δ𝜂) , (29b)

𝑎
𝑦
= (𝑥

2
+ 𝑦

2
) 𝑧Δ𝜓 − 2𝑦 (𝑦𝑧Δ𝜓 − 𝑥𝑧Δ𝜂) , (29c)

𝑎
𝑧
= (𝑥

2
+ 𝑦

2
) 𝑦Δ𝜓 − (𝑥

2
+ 𝑦

2
) 𝑥Δ𝜂, (29d)

𝑑 (Δ𝜀

) = 𝑑(

−𝑥Δ𝜓 − 𝑦Δ𝜂

√𝑥2 + 𝑦2
)

=
(−𝑦2Δ𝜓 + 𝑥𝑦Δ𝜂) 𝑑𝑥 + (−𝑥2Δ𝜂 + 𝑥𝑦Δ𝜓) 𝑑𝑦

(𝑥2 + 𝑦2)
3/2

.

(30)

The subscript “𝑖” which identifies different radars and
time stamp “𝑘” are omitted in (29a) and (30) for brevity.
Assume that velocities of the target in 𝑥, 𝑦, and 𝑧 directions
in radar 𝑖 ENU frame are mutually independent zero-mean
Gaussian white noises whose standard deviations are 𝜎V𝑥 , 𝜎V𝑦 ,
and 𝜎V𝑧 , respectively. According to (29a) and (30), 𝑑(Δ𝜃)
and𝑑(Δ𝜀) are zero-meanGaussian randomprocesses, whose
covariance can be written out as

𝜎
2

𝑑(Δ𝜃

)
= Var {𝑑 (Δ𝜃)}

= Var{
𝑎
𝑥
𝑇V

𝑥
+ 𝑎

𝑦
𝑇V

𝑦
+ 𝑎

𝑧
𝑇V

𝑧

(𝑥2 + 𝑦2)
2

}

=
𝑏
𝑥

2
𝑇
2
𝜎
2

V𝑥 + 𝑏𝑦
2
𝑇
2
𝜎
2

V𝑦 + 𝑏𝑧
2
𝑇
2
𝜎
2

V𝑧

(𝑥2 + 𝑦2)
4

,

(31a)

𝑏
𝑥
= (𝑥

2
− 𝑦

2
) 𝑧Δ𝜂 − 2𝑥𝑦𝑧Δ𝜓, (31b)

𝑏
𝑦
= (𝑥

2
− 𝑦

2
) 𝑧Δ𝜓 + 2𝑥𝑦𝑧Δ𝜂, (31c)

𝑏
𝑧
= (𝑥

2
+ 𝑦

2
) 𝑦Δ𝜓 − (𝑥

2
+ 𝑦

2
) 𝑥Δ𝜂, (31d)

𝜎
2

𝑑(Δ𝜀

)
= Var {𝑑 (Δ𝜀)} = Var {𝑐

𝑥
V
𝑥
+ 𝑐

𝑦
V
𝑦
}

= 𝑐
2

𝑥
Var {V

𝑥
} + 𝑐

2

𝑦
Var {V

𝑦
} = 𝑐

2

𝑥
𝜎
2

V𝑥 + 𝑐
2

𝑦
𝜎
2

V𝑦 ,

𝑐
𝑥
=
(−𝑦2Δ𝜓 + 𝑥𝑦Δ𝜂)𝑇

(𝑥2 + 𝑦2)
3/2

,

𝑐
𝑦
=
(−𝑥2Δ𝜂 + 𝑥𝑦Δ𝜓)𝑇

(𝑥2 + 𝑦2)
3/2

,

(32)

where T denotes radar scanning period. Var {𝑥} denotes the
variance of “𝑥.” The cross covariance can be written as

𝜎
2

𝑑(Δ𝜃

)𝑑(Δ𝜀


)
= 𝜎

2

𝑑(Δ𝜀

)𝑑(Δ𝜃


)
= 𝐸 {𝑑 (Δ𝜃


) 𝑑 (Δ𝜀


)}

= 𝐸 {𝑔
𝑥
V2
𝑥
+ 𝑔

𝑦
V2
𝑦
} = 𝑔

𝑥
𝜎
2

V𝑥 + 𝑔𝑦𝜎
2

V𝑦 ,

𝑔
𝑥
=
𝑏
𝑥
(−𝑦2Δ𝜓 + 𝑥𝑦Δ𝜂)𝑇2

(𝑥2 + 𝑦2)
7/2

,

𝑔
𝑦
=
𝑏
𝑦
(−𝑥2Δ𝜂 + 𝑥𝑦Δ𝜓)𝑇2

(𝑥2 + 𝑦2)
7/2

.

(33)

𝐸 {𝑥} denotes the expectation of “𝑥.” According to the state
vector (25), substituting (14a) and (16) into (17) and using the
first-order Maclaurin series expansion about OBs, ABs, and
random measurement noises, the registration equations can
be approximated as

ZURM (𝑘) = [T1 (𝑘)A1 (𝑘) , −T2 (𝑘)A2 (𝑘)]𝛽URM (𝑘)

+ [T
1 (𝑘)C1 (𝑘) , −T2 (𝑘)C2 (𝑘)] [

w
1 (𝑘)

w
2 (𝑘)

] ,

(34)

whereT
𝑖 (𝑘),A𝑖 (𝑘),C𝑖 (𝑘), andw𝑖 (𝑘) are completely the same

as (2), and

ZURM (𝑘) = X
2𝑠 (𝑘) − X

1𝑠 (𝑘) + T
2 (𝑘)X2 (𝑘) − T

1 (𝑘)X1 (𝑘) ,

𝛽URM (𝑘) = [𝛽


1
(𝑘)

𝑇

,𝛽


2
(𝑘)

𝑇

]
𝑇

.

(35)

According to the analyses above, each systematic bias can
be equivalent to a constant plus a zero-mean Gaussian white
noise. The dynamic equation for them can be written as

𝛽URM (𝑘 + 1) = 𝛽URM (𝑘) + w𝛽 (𝑘 + 1) , (36)

where

w𝛽 = [0, 0, 𝑤𝑑(Δ𝜃


1
)
, 𝑤

𝑑(Δ𝜀


1
)
, 0, 0, 𝑤

𝑑(Δ𝜃


2
)
, 𝑤

𝑑(Δ𝜀


2
)
]
𝑇

. (37)

The covariance matrix of w𝛽 can be written as

Q = diag ([Q𝛽
1

,Q𝛽
2

]) , (38)
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where diag (x) denotes a matrix whose diagonal elements are
composed of the vector x and the other elements of thematrix
are zeros, and

Q𝛽
𝑖

=
[
[
[

[

0 0 0 0

0 0 0 0

0 0 𝑞
33
𝑞
34

0 0 𝑞
43
𝑞
44

]
]
]

]

,

𝑞
33
=𝜎

2

𝑑(Δ𝜃


𝑖
)
, 𝑞

34
=𝜎

2

𝑑(Δ𝜃


𝑖
)𝑑(Δ𝜀



𝑖
)
,

𝑞
43
=𝜎

2

𝑑(Δ𝜀


𝑖
)𝑑(Δ𝜃



𝑖
)
= 𝑞

34
, 𝑞

44
=𝜎

2

𝑑(Δ𝜀


𝑖
)
.

(39)

The linearized registrationmodel is composed of (34) and
(36), which unites radar OBs and the equivalent radar MEs
caused by ABs as one variable. The system is observable and
the estimation results can compensate the influences of OBs
and ABs simultaneously. It also has the form of stationary
radar registration model which has no ABs to be considered,
and it is the extension of the latter. So, this model is called
URM. Figure 4 is the block diagram of URMwhichmanifests
that the only difference between mobile and stationary radar
registration when they use URM is that the former uses
additional Gaussian white noises as part of azimuth and
elevation biases.This is also the difference between URM and
OBEM [1] despite the fact that they use the same state vector
and equivalent measurement equations.

In the computation of the covariance matrix of the state
vector, the standard deviation of the target velocities and the
true ABs should be given previously. However, their true
values cannot be obtained in practice; then it is feasible
to use possible maximum values to replace them, which
will inevitably increase the estimation errors. In fact, from
(31a)–(33) the variances caused by the variations of the

target locations are very small in magnitude; therefore, these
approximations work reasonably well in practice.

5. Varying ABs Situation

Before this section, all OBs and ABs were assumed to be
constants. In this discussion they are extended as varying
biases. Despite the fact that many models such as constant or
one-order Gauss-Markov process have been used for biases
[4], we propose the more general model for varying bias 𝛽 as

𝛽 (𝑘) = 𝛽0 + 𝑓𝛽 (𝑘) + 𝜎𝛽 (𝑘) , (40)

where 𝛽
𝑜
represents the constant term, 𝑓

𝛽 (𝑡) represents the
slowly varying term with initial value zero, and 𝜎

𝛽
represents

Gaussian white RNs. For 𝑓
𝛽 (𝑡), since its form and polarity

are unknown and its values vary slowly, it is better to be
omitted in the state equations. For example, if the increasing
function is used as the state equation and actually 𝑓

𝛽 (𝑡)

is decreasing with time, the unmatched model will lead to
enlarged estimation errors. Hence, when establishing the
registration model, the state equation for any bias can be
written as

𝛽 (𝑘) = 𝛽0 + 𝜎𝛽 (𝑘) . (41)
Comparing with (41), (40) is only used to generate

simulation/measurement data in experiments.
For radarOBs, the random term𝜎

𝛽
can be easily classified

among random measurement noises (gain of the range bias
excepted). However, for ABs, according to (26) and (27), 𝜎

𝛽

should be converted as explained in URM. According to (41),
whenURM is applied for varying AB registration, the form of
the state equation remains unchanged; the covariancematrix,
however, will be changed.

Substituting (40) into (26) and (27), respectively, we have

Δ𝜃


𝑖
(𝑘) = Δ𝜃𝑖 − Δ𝜙𝑖

+

𝑦
𝑖 (𝑘) 𝑧𝑖 (𝑘) [Δ𝜓𝑖

+ 𝑓
Δ𝜓 (𝑘) + 𝜎Δ𝜓𝑖 (𝑘)] − 𝑥𝑖 (𝑘) 𝑧𝑖 (𝑘) [Δ𝜂𝑖 + 𝑓Δ𝜂 (𝑘) + 𝜎Δ𝜂𝑖 (𝑘)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≈[𝑦𝑖(𝑘)𝑧𝑖(𝑘)Δ𝜓𝑖−𝑥𝑖(𝑘)𝑧𝑖(𝑘)Δ𝜂𝑖]+[𝑦𝑖(𝑘)𝑧𝑖(𝑘)𝜎Δ𝜓𝑖 (𝑘)−𝑥𝑖(𝑘)𝑧𝑖(𝑘)𝜎Δ𝜂𝑖 (𝑘)]

𝑥2
𝑖
(𝑘) + 𝑦2

𝑖
(𝑘)

,

Δ𝜀


𝑖
(𝑘)≈ Δ𝜀𝑖 −

𝑥
𝑖 (𝑘) Δ𝜓𝑖 + 𝑦𝑖 (𝑘) Δ𝜂𝑖

√𝑥2
𝑖
(𝑘) + 𝑦2

𝑖
(𝑘)

−
𝑥
𝑖 (𝑘) 𝜎Δ𝜓𝑖 (𝑘) + 𝑦𝑖 (𝑘) 𝜎Δ𝜂𝑖 (𝑘)

√𝑥2
𝑖
(𝑘) + 𝑦2

𝑖
(𝑘)

.

(42)

Since RNs of attitude biases are independent, the additional
covariance caused by them can be written as

Δ𝜎
2

𝑑(Δ𝜃

)
= Var {𝑔

Δ𝜓𝑖
𝜎
Δ𝜓𝑖
(𝑘) + 𝑔Δ𝜂𝑖𝜎Δ𝜂𝑖 (𝑘)}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑔
2

Δ𝜓𝑖
𝜎
2

Δ𝜓𝑖
+𝑔
2

Δ𝜂𝑖
𝜎
2

Δ𝜂𝑖

,

𝑔
Δ𝜓𝑖

=
𝑦
𝑖 (𝑘) 𝑧𝑖 (𝑘)

𝑥2
𝑖
(𝑘) + 𝑦2

𝑖
(𝑘)
, 𝑔

Δ𝜂𝑖
=
−𝑥

𝑖 (𝑘) 𝑧𝑖 (𝑘)

𝑥2
𝑖
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𝑖
(𝑘)
,

Δ𝜎
2
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𝜎
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(1) Selecting the system state vector 

(2) Establishing the equivalent measurement 
equation by using (34)

Establishment of filter model

Kalman filter

Measurement:

Geographic coordinates

Radar 1 information

(3) The state equation 
(a) If radar i is stationary:

(b) If radar i is mobile:

Measurement:

Geographic coordinates

Radar 2 information
Estimates

Ls1Rs1H1

r2𝜃2𝜀2

Ls2Rs2H2

r1𝜃1𝜀1  = [T1 ,
T
2 ]

T
, where i = [Δri, kri, Δ𝜃i, Δ𝜀i]

T

̂

i(k + 1) = i(k)

i(k + 1) = i(k) + wi(k + 1)

Figure 4: The block diagram of URM.

Δ𝜎
2

𝑑(Δ𝜃

)𝑑(Δ𝜀


)
= 𝐸 {[𝑔

Δ𝜓𝑖
𝜎
Δ𝜓𝑖
(𝑘) + 𝑔Δ𝜂𝑖𝜎Δ𝜂𝑖 (𝑘)]

× [−ℎ
Δ𝜓𝑖
𝜎
Δ𝜓𝑖
(𝑘) − ℎΔ𝜂𝑖𝜎Δ𝜂𝑖 (𝑘)]}

= −𝑔
Δ𝜓𝑖
ℎ
Δ𝜓𝑖
𝜎
2

Δ𝜓𝑖
− 𝑔

Δ𝜂𝑖
ℎ
Δ𝜂𝑖
𝜎
2

Δ𝜂𝑖

=
𝑥
𝑖 (𝑘) 𝑦𝑖 (𝑘) 𝑧𝑖 (𝑘)

[𝑥2
𝑖
(𝑘) + 𝑦2

𝑖
(𝑘)]

3/2
(𝜎

2

Δ𝜂𝑖
− 𝜎

2

Δ𝜓𝑖
) .

(43)

Then just adding (43) to the corresponding terms of (38),
URM can be applied to varying ABs situation.

6. Simulation Results

Both URM and OBEM algorithms are tested and compared
in a simulated scenario where a common track is generated
for two radars which are installed on different ships. As for
AAM [1] (the acronym for “all augmented model,” where
all the OBs and ABs are augmented directly in the state
vector), it has been compared with OBEM in [1] and the
estimation performance is poorer than OBEM, especially for
the elevation biases. Hence, AAM is not compared here.

Assume that ship 1 and ship 2 are moving with the
constant velocity model, and the initial geographical coordi-
nates are [40∘, 116∘, 10m] and [40.75∘, 115.34∘, 10m], respec-
tively. Initial states of both ships in their native ENU
frame are [0,10m/s, 0,10m/s, 0,0]. State vector variables
are 𝑥-coordinate (east), V

𝑥
-velocity, 𝑦-coordinate (north),

V
𝑦
-velocity, 𝑧-coordinate (up), and V

𝑧
-velocity, respectively.

Same standard deviations of both ships’ process noise are
employed in 𝑥, 𝑦, and 𝑧 coordinates by 0.1m/s2, 0.1m/s2,
and 0m/s2, respectively. Fusion center locates at the initial
position of ship 1. The constant velocity model is also used
for the target. The initial state of the target in fusion cen-
ter is [60 km, −170m/s, 30 km, 30m/s, 5 km, 1m/s]. Stan-
dard deviations of the process noise in 𝑥, 𝑦, and 𝑧 coordinates
are set to 1m/s2, 1m/s2, and 0.1m/s2, respectively.

The geometry of radar and the target is shown in Figure 5.
The true systematic OBs of both radars are assumed to be
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Figure 5: The geometry of radar and target.

constant and equal as Δ𝑟
𝑖
= 300m, 𝑘

𝑟𝑖
= 0.01, and Δ𝜃

𝑖
=

Δ𝜀
𝑖
= 2∘, respectively.
Standard deviations of the random measurement noises

for both radars are 𝜎
𝑟𝑖
= 50m and 𝜎

𝜃𝑖
= 𝜎

𝜀𝑖
= 0.5∘,

respectively. ABs of both platforms are assumed to be equal
with the form of (40), where Δ𝜙

𝑖
= Δ𝜂

𝑖
= Δ𝜓

𝑖
= 1∘, and for

all ABs,𝑓
𝛽
is a linear increasing function with 1∘/ℎ slope.The

standard deviation of the RNs of all ABs is set equal to 0.1∘.
It is assumed that both radars are synchronized with the

same sampling intervals 𝑇 = 5 s. 200 scans of the target are
simulated and the number of the Monte Carlo runs is set to
100. Figures 6 and 7 contain all the simulation results.

In order to compute the covariance matrix of the state
vector 𝛽URM, it is assumed that the maximum magnitudes
are 2∘ for each attitude bias of both platforms, and the
standard deviation for velocities in 𝑥, 𝑦, and 𝑧 directions are
[200, 200, 20]m/s, respectively. Figure 6 depicts the RMSEs
of radar bias estimation results. Black solid lines represent
the estimation results of OBEM and the red dotted lines
represent URM. Thin lines represent radar 1 and thick lines
represent radar 2 and green lines represent CRLBs of biases.
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Figure 6: Root mean square errors (RMSEs) of radar gross BEs. (a) Range bias; (b) azimuth bias; (c) elevation bias.

Here, biases denote gross biases which contain radar OBs and
equivalent biases caused by ABs. In computation of RMSEs,
the true “gross biases” can be obtained by using (12) and
(13) with true values. From these figures, we infer that the
performance of URM is very close but superior to OBEM as
a whole. The RMSE of gross range bias estimation is about
100m, and the azimuth bias is about 0.1∘. However, the gross
elevation biases are poor with their RMSEs which are more
than 1∘.

Usually, for TCs, 𝑧 ≪ 𝑥, 𝑦, according to (12), the
pitch and roll biases are minor factors to gross azimuth bias
compared with the yaw bias, so they can be omitted and the
gross azimuth bias is almost constant. According to (31a),
the variance of the gross azimuth bias is small. Hence, the
estimation of the gross azimuth bias is good. On the contrary,
according to (13) and (32), the variance of the gross elevation
bias is big and its values are affected by TCs greatly which are
obtained from radar raw measurements and have big errors
especially when the target is far away from radar. So, the
estimation results for the elevation biases are poor.

Figure 7 is RMSEs of TCs in ECEF frame which are
obtained by using radar 1 raw measurements and measure-
ments rectified by BEs, respectively; the thick black line
represents RMSEs of the raw measurements; thin black lines

represent RMSEs of raw measurements rectified by OBEM;
red lines represent URM; and green lines represent the
raw measurements rectified by true values of all equivalent
biases obtained from (12) and (13). Simulation results show
that two methods are almost the same. We infer that lines
rectified by URM and OBEM are very close to lines rectified
by true bias values in 𝑥 and 𝑦 coordinates; however, 𝑧
coordinates have larger errors.This indicates that URMneeds
further improvement to improve the elevation bias estimation
accuracy.

It should be noted that since the derivations of the
model are first-order Taylor series approximations, which
corresponds to modeling of small biases applications, when
𝑘
𝑟𝑖
+Δ𝑟

𝑖
/𝑟

𝑖
, the sum of angle biases and randommeasurement

noises are on the order of 10−2; this approximated model
works well. In practice (or real world applications), this
condition is usually satisfied (e.g., Δ𝜃

𝑖
= 2∘ ≈ 0.03 rad).

7. Summary and Conclusion

For mobile radar, all the attitude biases can be converted
into radar measurement errors by three analytical equations
(range, azimuth, and elevation angles, resp.). The converted
measurement errors have similar influences with radar offset
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Figure 7: RMSE of the target location in xyz-coordinates after rectifying radar 1 measurements by BEs. (a) 𝑥-coordinates; (b) 𝑦-coordinates;
(c) 𝑧-coordinates.

biases on radar measurements. In fact, both kinds of biases
are dependent, whichwas proved in the paper. In otherwords,
we cannot simultaneously estimate offset and attitude biases
separately. Based on this, a unified registrationmodel (URM)
was proposed whose registration equations only contain
radar “offset biases” as state vector. However, these “offset
biases” contain the influences of the attitude biases. These
equivalent “offset bias” estimates can be used directly to
compensate the influences of the attitude and offset biases
on radar raw measurements simultaneously. Though URM
has the least number of state variables and minor computa-
tion burden compared with other mobile radar registration
model, URM is guaranteed to be observable. Simulation
results show that URM equivalent range and azimuth bias
estimates are well and close to the Cramer-Rao low bounds
(CRLBs) except that the equivalent elevation bias estimates
should be improved further.

Though the paper is about mobile 3D radar registration,
themethod and ideas in the paper will be helpful to design all
kinds of observation systems on mobile platform.

Appendix

Cramer-Rao Lower Bound of URM

The linearized equivalent measurement equation of (34) can
be simplified as

ZURM (𝑘) =H (𝑘)𝛽URM (𝑘) + C (𝑘)w (𝑘)

(𝑘 = 1, 2, . . . , 𝑁 − 1) .
(A.1)
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In order to get the lowest CRLB, 𝛽 can be viewed as
constants since their variations are small. Then the joint
probability density function (PDF) can be written as

𝑝 (Z
𝑘
;𝛽)

=
1

(2𝜋)
𝑘𝑛/2

∏
𝑘

𝑖=1
[

C (𝑖)RC (𝑖)𝑇

1/2

]

× exp{−1
2

𝑘

∑
𝑖=1

[(ZURM (𝑖) −H (𝑖)𝛽)
𝑇

× (C (𝑖)RC (𝑖)𝑇)
−1

× (ZURM (𝑖) −H (𝑖)𝛽)]} ,

(A.2)

where Z
𝑘
=[ZURM (1) ,ZURM (2) , . . . ,ZURM (𝑘)], which repre-

sents the equivalent measurements up to time k.
The Fisher information matrix (FIM) can be given as [16]

J (𝑚, 𝑛) = 𝐸{−
𝜕
2 ln𝑝(Z

𝑘
;𝛽)

𝜕𝛽
𝑚
𝜕𝛽

𝑛

𝛽=𝛽
𝑡

}

= 𝐸{

𝑘

∑
𝑖=1

[H (𝑖)
𝑇
(C (𝑖)RC𝑇

(𝑖))
−1

H (𝑖)]} ,

(A.3)

where 𝛽
𝑡
denotes the true bias values. However, the expec-

tation in (A.3) with respect to 𝑝 (Z(𝑖);𝛽) can hardly be
achieved since H(𝑖) and C(𝑖) are nonlinear functions of
radars’ raw measurements Z(𝑖) radars. The expectation can
be approximated by evaluating the mean of Monte-Carlo
simulations; that is, (A.3) can be approximated as

J (𝑚, 𝑛) ≈
∑

𝑀

𝑖=1
(∑

𝑘

𝑖=1
[H (𝑖)

𝑇
(C (𝑖)RC𝑇

(𝑖))
−1

H (𝑖)])

𝑀
.

(A.4)

CRLBs for each bias can be written as

CRLB𝛽
𝑚

= J−1 (𝑚,𝑚) . (A.5)

Equation (A.2) shows that when the biases 𝛽 are con-
stants, we can obtain the lowest CRLB. CRLBs plotted in
Figure 6 are calculated under this assumption. As shown in
Figure 6, MMSEs of the range and azimuth biases come close
to the corresponding CRLBs. As for the elevation biases,
their corresponding MMSEs are closer to CRLB curves
corresponding to nonconstant equivalent biases; however,
the calculated CRLBs correspond to the constant biases
assumption, which is the reason why the MMSEs deviate
relatively large from calculated CRLBs in Figure 6(c).
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