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Ground penetrating radar (GPR) is a powerful tool for detecting objects buried underground. However, the interpretation of the
acquired signals remains a challenging task since an experienced user is required to manage the entire operation. Particularly
difficult is the classification of the material type of underground objects in noisy environment. This paper proposes a new feature
extraction method. First, discrete wavelet transform (DWT) transforms A-Scan data and approximation coefficients are extracted.
Then, fractional Fourier transform (FRFT) is used to transform approximation coefficients into fractional domain and we extract
features. The features are supplied to the support vector machine (SVM) classifiers to automatically identify underground objects
material. Experiment results show that the proposed feature-based SVM system has good performances in classification accuracy
compared to statistical and frequency domain feature-based SVM system in noisy environment and the classification accuracy of
features proposed in this paper has little relationship with the SVMmodels.

1. Introduction

For its rapid, continuous, nondestructive, efficient, conve-
nient, and high-resolution properties, GPR is widely used in
national defense, airport construction, railways, and high-
ways [1–5]. However, the interpretation of the large amount
of acquired and stored GPR data requires a human operator
with high skill and experience. In addition, the signals
reflected from objects are corrupted with noise that cannot
be completely removed. Hence, these problems lead to the
growing request for the development of accurate and fast
automated subsurface object detection and identification
techniques in noisy environment. In recent years, a large
number of scholars have proposed a variety of methods of
automatic target recognition.

Torrione et al. used histograms of oriented gradients
(HOG) features to detect landmines and suggest that other
techniques from computer vision might also be successfully
applied to target detection in GPR data [6]. Phase profile
was used in detection and location of targets underground
because phase profile is a function of depth [7]. A time-
frequency feature extractionmethod based onWigner distri-
bution is proposed [3] and can detect and recognize diseases

which have different compositions and shapes. Wahab et al.
proposed a new hyperbola fitting technique to estimate the
radius of buried utility (pipes and cables) [8]. GPR signal
explanation model is established based on the support vector
machine and the dyadic wavelet transform (DyWT) theory in
[9]. It is applied in railway diseases detection and the results
are effective. Ko et al. used principal component analysis
(PCA) and Fourier coefficients as features to detect and
identify landmines in different environments [10]. Principal
components from PCA, Fourier coefficients, and singular
values from singular value decomposition are three features
which are used to detect landmines in various burial con-
ditions [11]. Most of the above methods concentrate on the
detection and localization of buried objects. However, very
fewworks have been completed on thematerial identification
of underground objects [12].

The basic motivation of proposing a novel feature extrac-
tion method is to improve automatic material classification
accuracy in noisy environment and testify the results have
little relationship with the SVM models. In this paper, the
novel features, statistical features, and frequency domain
features extracted from A-Scan data combined with SVM
classifiers for material identification are tested. First of all,
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Figure 1: One of the simulation models.

we used synthetic data to test them. The synthetic B-Scan
(320 A-Scans composed of B-Scan in this paper) data are
created by finite-difference time-domain (FDTD) method.
The synthetic GPR data after mean filtering is corrupted by
different intensity of white Gaussian noise, which denotes
different levels of noisy environment. Then, we test them on
laboratory data in which we do not know the noise. From
the experiments results we can see the good performances
of the features proposed in this paper combined with SVM
classifiers.

2. Forward Simulation

The evaluation of different feature-based approaches studied
in this paper is firstly performed using different generated
GPR data synthesized by using the electromagnetic simulator
“GprMax2D” [13]. GprMax2D was implemented using the
FDTD numerical technique. An approximate solution for
Maxwell’s equations is directly obtained in the time domain
by discretizing it in both space and time through an iterative
process.

In our simulations, several parameters have to be set
for the transmission and acquisition system. Parameters for
FDTD simulation are listed in Table 1.

One of the established simulation models is shown in
Figure 1. The dimensions are 2.5 × 0.8m. The model consists
of three layers: 0.05-meter-thick air (𝜀

𝑟
= 1.0, 𝜎 = 0), 0.25-

meter-thick concrete (𝜀
𝑟
= 6.0, 𝜎 = 0.01), and 0.5-meter-

thick dry sand (𝜀
𝑟
= 3.0, 𝜎 = 0.01). One cylinder is embedded

in the model. Center coordinates of the cylinder are (0.95m,
0.35m) and the radius is 0.1m.

There are four models with the same parameters except
the material of cylinders. As metal, air, stone, and polyvinyl
chloride polymer (pvc) are common materials of objects in
subsurface, in this paper the cylinders’ materials embedded
in the four models are the four materials, respectively. The
parameters of the four materials of cylinders are listed in
Table 2.

Table 1: Parameters for FDTD simulation.

Time window 12 ns
Antenna central frequency 900MHz
Antenna separation 0.025m
Excitation waveform Ricker Wavelet
Trace interval 0.005m
Number of traces 320

Table 2: Parameters of the four materials.

Name Relative permittivity 𝜀
𝑟

Conductivity 𝜎 (S/m)
pec (metal) 14 2.23𝑒7

Air 1.0 0.01
Stone 5.0 0.01
pvc 3.3 1.34

To save computation time and storage space, only 320
traces that can display the target signal completely are taken
and the other 162 traces are removed. The simulation results
are shown in Figure 2. The results show that there is a
hyperbolic curve in every B-Scan datum. However, the shape
of the hyperbolic curve is different more or less. For example,
the curvature of the four hyperbolic curves, grey value
of hyperbolic curve, and the distance between vertices of
hyperbolic curve are different.

If the shapes have big difference we can classify them
artificially. On the contrary, we hardly classify them with
manpower when the shapes are similar (e.g., Figures 2(c) and
2(d)). In addition, particularly difficult is their classification
in noisy environment. Thus, it is important to find an
automatic and high accuracy recognition method instead of
manpower in noisy environment.

3. Feature Extraction

3.1. Flow Chart. In the process of feature extraction, we first
use DWT to transform A-Scan data and extract approx-
imation coefficients. Then, FRFT is applied to transform
approximation coefficients into fractional domain. Finally,
fractional domain-envelope curve is extracted and we extract
feature to construct feature vector. The flow chart of feature
extraction is shown in Figure 3.

3.2. Data Preparation. As is known to all, echoes from
ground surface are the strongest signals that can decrease the
quality of GPR image and interfere with the identification
of objects, but they can be removed by mean filtering [14].
Hence, to get rid of the interference of echoes from ground
surface we apply mean filter to every B-Scan datum in
Figure 2. Figure 4 is the result of Figure 2(a) after mean
filtering. From Figure 4 we can see the echoes from ground
surface are removed and the hyperbolic curve is more
obvious. Besides, the received data in practice contains a
lot of other noise which cannot be removed completely and
can be regarded as white Gaussian noise to some extent. As
the data after the mean filtering hardly contain the noise, to
simulate the reality we add different amplitude from 10 dBW
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Figure 2: Simulation results of different models.
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Figure 3: Flow chart of feature extraction.

to 50 dBW of white Gaussian noise to B-Scan data after mean
filtering. Figure 5 shows that the 35 dBW white Gaussian
noise is added to Figure 4. Meanwhile, the mean amplitude
of object’s signal is 30 dBW.

3.3. Extraction Approximation Coefficients. In this paper, we
use DWT extraction approximation coefficients. If the func-
tion being expanded is a sequence of numbers, like samples
of a continuous function 𝑓(𝑥), the resulting coefficients are
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Figure 4: Figure 2(a) after mean filtering.
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Figure 5: 35 dBWwhite Gaussian noise is added to Figure 2(a) after
mean filtering.

called the discrete wavelet transform (DWT) of 𝑓(𝑥). The
DWT transform pair is defined as

𝑊
𝜑
(𝑗
0
, 𝑘) =

1

√𝑀

∑

𝑥

𝑓 (𝑥) 𝜑
𝑗0 ,𝑘

(𝑥) , (1)

𝑊
𝜓
(𝑗, 𝑘) =

1

√𝑀

∑

𝑥

𝑓 (𝑥) 𝜓
𝑗,𝑘
(𝑥) , for 𝑗 ≥ 𝑗

0
, (2)

where 𝑓(𝑥), 𝜑
𝑗0 ,𝑘

(𝑥), and 𝜓
𝑗,𝑘
(𝑥) are functions of the discrete

variable 𝑥 = 0, 1, 2, . . . ,𝑀−1, 𝑓(𝑥) is the preparation A-Scan
data in Section 3.2 and Figure 6 is one A-Scan trace of void
that 10 dBW white Gaussian noise is added to Figure 4, 𝜓(𝑥)
is wavelet function, and𝜑(𝑥) is scaling function.Normally, we
let 𝑗
0
= 0 and select𝑀 (the length of the discrete samples of

𝑓(𝑥)) to be a power of 2 (i.e.,𝑀 = 2
𝐽) so that the summations

are performed over 𝑥 = 0, 1, 2, . . . ,𝑀−1, 𝑗 = 0, 1, 2, . . . , 𝐽−1,
and 𝑘 = 0, 1, 2, . . . , 2

𝑗

− 1. The transform itself is composed
of𝑀 coefficients, the minimum scale is 0, and the maximum
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Figure 6: A-Scan trace of void.

scale is 𝐽−1.The coefficients defined in (1) and (2) are usually
called approximation and detail coefficients, respectively.
In practice we select a wavelet from ready-made wavelets
for a particular problem. Here we chose a wavelet called
Daubechies wavelet. The approximation coefficients can be
extracted from (1).

3.4. Fractional Domain-Envelope Curve Extraction. The frac-
tional Fourier transform (FRFT) [15] can transform approxi-
mation coefficients into fractional domain.

The fractional Fourier transform, a generalization of the
Fourier transform (FT), serves as a useful and powerful
analyzing tool in optics, communications, signal processing
[16], and so forth.

The FRFT of a signal 𝑓(𝑡) ∈ 𝐿2(R) is defined as

𝐹
𝛼
(𝑢) = ∫

R

𝑓 (𝑡) 𝜅
𝛼
(𝑢, 𝑡) 𝑑𝑡, (3)

where 𝑓(𝑡) is approximation coefficients and the transform
kernel is given by

𝜅
𝛼
(𝑢, 𝑡)

=

{
{

{
{

{

𝐴
𝛼
𝑒
𝑗((𝑢
2
+𝑡
2
)/2)cot𝛼−𝑗𝑢𝑡csc𝛼

, 𝛼 ̸= 𝑘𝜋,

𝛿 (𝑡 − 𝑢) , 𝛼 = 2𝑘𝜋,

𝛿 (𝑡 + 𝑢) , 𝛼 = (2𝑘 − 1) 𝜋,

(4)

where 𝐴
𝛼
= √(1 − 𝑗cot𝛼)/2𝜋, 𝛼 = 𝑝𝜋/2, and 𝑝 is order of

FRFT. Although 𝑝 can take any real number, the period of
FRFT is 4. Hence, we usually only consider 𝑝 ∈ [0, 4]. The 𝑢
axis is regarded as the fractional domain.

In this paper, we only consider the case of 𝑝 ∈ [0, 2] and
set the interval of neighbor 𝑝 as 0.05, since the definition can
easily be extended outside the interval [0, 𝜋] by noting that
𝐹
2𝑛𝜋 is the identity operator for any integer 𝑛 and that the

FRFT operator is additive in index; that is, 𝐹𝛼1+𝛼2 = 𝐹
𝛼1
𝐹
𝛼2 .

The FRFT depends on a parameter 𝛼 and can be interpreted
as a rotation by an angle 𝛼 in the time-frequency plane [17].
Whenever 𝑝 = 1, that is to say, 𝛼 = 𝜋/2, (3) reduces to the FT.
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The fractional domain-envelope curve can be extracted:

𝑦 = max (𝑎𝑏𝑠 (𝐹
𝛼
(𝑢))) . (5)

The envelope curve of the fourmaterials can be seen from
Figure 7. It is indicated that the different materials have big
difference. Hence, it is possible to extract features from the
envelope curve to classify material of underground objects.

In [17], we have known that FRFT can be interpreted as
a rotation by an angle 𝛼 in the time-frequency plane. That is
to say, FRFT provides a signal comprehensive description of
the whole process from time domain to frequency domain.
In addition, with the 𝑝 from 0 to 1, the FRFT display signal
changes gradually from time domain to frequency domain
of all variation characteristics. 𝑝 from 0 to 1 and 𝑝 from 1 to
2 are symmetrical. The reason why different materials have
different envelope curvesmay be that variation characteristics
are different from timedomain to frequency domain. Figure 8
shows the DWT-FRFT of air.

3.5. Feature Vector Construction. In this paper, wewill extract
four features from envelope curve to construct feature vector.
These features’ calculation in MATLAB is as follows:

(a) the maximum of envelope curve:

Max = max (𝑦) ; (6)

(b) the average value of envelope curve:

Average = mean (𝑦) ; (7)

(c) the variance of envelope curve:

𝜎
2

=

1

𝑁 − 1

𝑁

∑

𝑖=1

(𝑦
𝑖
− Average) , (8)

where 𝑦
𝑖
is the 𝑖th element in the vector 𝑦 of length𝑁;

from Section 3.3 we can see 𝑁 = 41 (𝑝 ∈ [0, 2] and
set the interval of neighbor 𝑝 as 0.05);

(d) the kurtosis of envelope curve:

𝑘 =

𝑚
4
(𝑦)

𝑚
2
(𝑦)

− 3, (9)

where 𝑚
4
(𝑦) and 𝑚

2
(𝑦) are the fourth moment and

second moment of 𝑦, respectively.

The kurtosis is used to reflect the envelope curve of the
top tip forms or flat level. Due to the sharpness of the envelope
curves being different, the kurtosis is different.

According to the above, we can construct feature vector:

𝑉 = [Max,Average, 𝜎2, 𝑘] . (10)
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4. Experimental Results

SVMwas designed originally for solving binary classification
problem. However, to solve a multiclass SVM problem,
two approaches can be used, either by creating several
binary classifiers or by using a larger multiclass optimization
problem. However, it is more expensive computationally to
solve a multiclass optimization problem in one step than a
binary problem using the same data size. In this paper, the
major multiclass SVM methods, for example, one-against-
one method, based on constructing binary classifiers, are
used. It generates 𝑘(𝑘−1)/2 classifiers; each classifier is trained
on data from two classes. Many approaches can then be
applied for material classification; the one used in this study
is the voting approach using “Max Wins” strategy.

4.1. The Basic Concept of SVM Algorithm. Suppose that each
class training set 𝑋 consists of 𝐿 feature vectors 𝑥

𝑖
∈ R𝑑 (𝑖 =

1, 2, . . . , 𝐿) with feature space dimension 𝑑. Each vector
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represents one of two classes 𝑦
𝑖
∈ {−1, 1}. The linear SVM

works by finding an optimal hyperplane between two classes
that maximizes the separating margin. For nonlinearly sepa-
rable data, a kernel method issued tomap the data in a higher
dimensional feature space, that is, Φ(𝑋) ∈ R𝑑, to become
linearly separable and apply the linear SVM algorithm. The
optimal hyperplane (𝜔∗ ⋅ Φ(𝑥) + 𝑏

∗

), characterized by the
weight vector 𝜔∗(normal to the hyperplane), and the bias
𝑏
∗ can be identified by solving the following optimization
problem:

min
𝜔,𝑏,𝜉𝑖

1

2

‖𝜔‖
2

+ 𝐶

𝐿

∑

𝑖=1

𝜉
𝑖
,

s.t. 𝑦
𝑖
(𝜔, Φ (𝑥) + 𝑏) ≥ 1 − 𝜉

𝑖
, 𝜉
𝑖
≥ 0,

(11)

where 𝜉
𝑖
is called slack variables used to account for non-

separable data and the parameter 𝐶 is added to control the
tradeoff between the slack variable penalty and the width of
the margin. Using a Lagrange functional, this optimization
problem can be reformulated in (12), where the Lagrange
multipliers (𝛼) can be calculated by using dual optimization:

max
𝛼

𝐿

∑

𝑖=1

𝛼
𝑖
−

1

2

𝐿

∑

𝑖=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
Φ(𝑥
𝑖
)Φ (𝑥

𝑗
) ,

s.t.
𝐿

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0, 0 ≤ 𝛼

𝑖
≤ 𝐶, 𝑖 = 1, 2, . . . , 𝐿,

(12)

where 𝜔 = ∑
𝐿

𝑖=1
𝛼
𝑖
𝑦
𝑖
Φ(𝑥
𝑖
).

Theproblem formulated in (12) is a convex quadratic opti-
mization problem, and 𝛼 can be obtained using the quadratic
optimization problem solver. The final discriminant func-
tion is identified by 𝜔

∗

𝑏
∗ and can be known, and hence,

the support vector set representing the nonzero Lagrange
multipliers can be identified. From the optimization problem
formulated in (12), it is clear that the mapped data appear as
an inner product only. From Mercer’s theorem, it is known
that, for any two points 𝑥

𝑖
and 𝑥

𝑗
and a certain mapping

function Φ(𝑥), a kernel function can be used to evaluate
the inner product of the mapped points without knowing
the mapping function; for example, Φ(𝑥

𝑖
)Φ(𝑥
𝑗
) = 𝐾(𝑥

𝑖
, 𝑥
𝑗
).

Thus, the linear classifier is changed to a nonlinear classifier
by substituting the inner product in the optimization problem
by the kernel evaluation. One of the most common kernel
functions used is the Gaussian function given

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = exp (𝛾 󵄩󵄩󵄩󵄩

󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2

) , (13)

where 𝛾 parameter controls the Gaussian kernel width.

4.2. SVMModel Building and Training. FromFigure 2 we can
obtain 320 traces (A-Scans) in each B-Scan datum, but not
all of them are reflected from the cylinder embedded in the
model. Hence, 40 traces from 153 to 192 which are echoes of
the cylinder are selected in each model and the total number
of useful traces in the four models is 160. All the selected A-
Scan data should be prepared in advance in Section 3.2.

In training of the SVMclassifier which is LIBSVM-Faruto
Ultimate Version [18], we uniformly select 10, 20, 40, and 80
traces, respectively, from the 160 traces as training samples
to obtain four SVMmodels.The others are testing data. First,
statistical feature vector [12], frequency domain feature vector
[19], and DWT-FRFT feature vector proposed in this paper
are extracted, respectively. 𝑋

𝑖
denotes a feature vector. Then,

a tag 𝑌
𝑖
(𝑌 = {1, 2, 3, 4}) is assigned to each feature vector to

indicate the type of each material. Thus, each A-Scan datum
can be expressed by a vector𝑇

𝑖
= {𝑌
𝑖
, 𝑋
𝑖
}. Finally, the different

number of training samples is used for training SVMclassifier
and we get different SVMmodels.

In addition, the SVM efficiency depends on the kernel’s
type selection, the kernel’s parameters, and soft margin
parameter 𝐶. RBF is selected as the kernel function for the
SVMmodel. Best combination of𝐶 and 𝛾 is selected by a grid
search with growing sequences of 𝐶 and 𝛾.

4.3. Automatic Classification Results andDiscussion. Now the
trained SVM models are ready for classification of GPR data
of different material objects. In this section, several tests are
done to examine the classification accuracy of DWT-FRFT
feature-based SVM system of different models for identifying
different materials of underground objects. The classification
accuracy can be computed by

𝑅 =

𝑘

𝑀

, (14)

where 𝑘 is the number of correct classifications and 𝑀 is
total test data. The performances of statistical features and
frequency domain features in underground objects material
identification using SVM classifiers are also studied and
compared.

Figures 9(a)–9(d) are the classification accuracy of the
three features using different trained SVM models in noisy
environment, respectively. From this comparative study, it
is inferred that no matter which one SVM model is used,
the DWT-FRFT feature-based SVM system outperforms the
other two on the whole. On the other hand, it is indicated
that the DWT-FRFT feature is more robust against noise
effects than the other two. However, one drawback is that the
classification accuracy is lower than statistical feature-based
SVM system when the noise intensity is about 25 dBW. This
may be because, in feature extraction, only the approximation
coefficients are extracted, while the useful information in
detail coefficients is removed. Besides, the smaller the noise
intensity is, the more the useful information in detail coeffi-
cients will be discarded. In addition, when the noise intensity
is above 40 dBW, the classification accuracywill be below 50%
and the credibility is not enough. Thus, it is not important
which accuracy is high when the noise intensity is above
40 dBW.

As is known to all, the number of training samples
should be as little as possible if the classification accuracy is
similar. Figures 10(a)–10(c) show the results of performances
comparison holding the same feature using different SVM
models.

As can be seen from Figure 10(a), we can find that the
classification accuracy curves of DWT-FRFT feature-based
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Figure 9: Classification accuracy of three features combined with SVMmodel.

different SVM models are intensive. It is indicated that the
classification accuracy has little relationship with the number
of training samples.That is to say, we can select fewer samples
to train SVM and can obtain satisfactory results. Although
Figure 10(a) is not as intensive as Figure 10(c), the biggest
difference of classification accuracy is less than 10% except
some one point (e.g., the noise intensity is 40 dBW).

4.4. Experiments with Laboratory Data. In order to verify
the performance of DWT-FRFT feature-based SVM system
for material classification, experiments are realized on the
laboratory data. The GPR system used in this work is

LTD-2200 system (900MHz, 1024 samples per scan, 190
traces, and trace spacing 0.015m).

There are three different materials objects and they are
buried in the same position of a 3m × 9m × 1m bunker,
respectively. The depth of objects is 0.3m. The bunker is
filled with uniform sand and the surface is flat. The size of
the objects is similar (0.5-meter-long, 0.2-meter-thick). The
three objects are copper, stone, and soil, respectively.The raw
radargram of copper is shown in Figure 11. 30 traces from 80
to 109 are reflected from object.

First of all, the raw data of three objects is preprocessed
by mean filter and the result of radargram of copper is shown
in Figure 12. From Figure 12 we can see the signal of object
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(b) Frequency domain feature
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Figure 10: The influence of SVMmode.

is more obvious and the echoes from ground surface are
removed.

Then, the traces reflected from the three objects are
selected and we can obtain 90 useful traces. Statistical
feature, frequency domain feature, and DWT-FRFT feature
are extracted from the traces, respectively. We uniformly
select 9, 15, and 30 traces as training samples to obtain three
SVMmodels and the others are testing data, respectively.The
results of classification are shown in Table 3. From Table 3,
it can be seen that compared to the other two feature-
based SVM systems DWT-FRFT feature-based SVM system
for material classification performs well in classification
accuracy. In addition, the classification accuracy has little
relationship with the number of training samples.

Table 3: Results of classification.

9 training
samples

15 training
samples

30 training
samples

Statistical feature 88.8889% 85.3333% 88.3333%
Frequency domain
feature 83.9506% 85.3333% 88.3333%

DWT-FRFT feature 95.0617% 92.0000% 90.0000%

5. Conclusion

A novel DWT-FRFT feature-based SVM system for material
classification of the underground objects from GPR data
proposed in this paper is proved from the experiments of
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Figure 12: Preprocessing result of raw radargram of copper.

synthetic and the laboratory data to perform well in classi-
fication accuracy in noisy environment and the relationship
with the number of training samples. From the experimental
results we can see that, compared to the statistical feature and
frequency domain feature-based SVM system, the proposed
feature shows encouraging performances in terms of mate-
rial classification. In addition, a good performance can be
achieved concerning the SVMmodels.
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[4] D. Gómez-Ortiz and T. Mart́ın-Crespo, “Assessing the risk of
subsidence of a sinkhole collapse using ground penetrating
radar and electrical resistivity tomography,” Engineering Geol-
ogy, vol. 149-150, pp. 1–12, 2012.

[5] W. Shao, A. Bouzerdoum, S. L. Phung, L. Su, B. Indraratna,
and C. Rujikiatkamjorn, “Automatic classification of ground-
penetrating-radar signals for railway-ballast assessment,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 49, no. 10,
pp. 3961–3972, 2011.

[6] P. A. Torrione, K. D. Morton Jr., R. Sakaguchi, and L. M.
Collins, “Histograms of oriented gradients for landmine detec-
tion in ground-penetrating radar data,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 52, no. 3, pp. 1539–1550,
2014.

[7] V. Mikhnev, M.-K. Olkkonen, and E. Huuskonen, “Subsurface
target identification using phase profiling of impulse GPR data,”
in Proceedings of the 14th International Conference on Ground
Penetrating Radar (GPR ’12), pp. 376–380, Shanghai, China,
June 2012.

[8] W. A. Wahab, J. Jaafar, I. M. Yassin, and M. R. Ibrahim,
“Interpretation of Ground Penetrating Radar (GPR) image for
detecting and estimating buried pipes and cables,” in Proceed-
ings of the IEEE International Conference on Control System,
Computing and Engineering (ICCSCE ’13), pp. 361–364,Mindeb,
December 2013.

[9] J.-B. Wu, M. Tian, and H.-L. Zhou, “Feature extraction and
recognition based on SVM,” in Proceedings of the 4th Inter-
national Conference on Wireless Communications, Networking
and Mobile Computing (WiCOM ’08), pp. 1–4, Dalian, China,
October 2008.

[10] K. H. Ko, G. Jang, K. Park, and K. Kim, “GPR-based landmine
detection and identification using multiple features,” Interna-
tional Journal of Antennas and Propagation, vol. 2012, Article
ID 826404, 8 pages, 2012.

[11] K. Park, S. Park, K. Kim, and K. H. Ko, “Multi-feature
based detection of landmines using ground penetrating radar,”
Progress in Electromagnetics Research, vol. 134, pp. 455–474,
2013.

[12] M. S. El-Mahallawy and M. Hashim, “Material classification of
underground utilities fromGPR images usingDCT-based SVM
approach,” IEEE Geoscience and Remote Sensing Letters, vol. 10,
no. 6, pp. 1542–1546, 2013.



10 Journal of Electrical and Computer Engineering

[13] A. Giannopoulos, “Modelling ground penetrating radar by
GprMax,” Construction and Building Materials, vol. 19, no. 10,
pp. 755–762, 2005.

[14] A. M. Zoubir, I. J. Chant, C. L. Brown, B. Barkat, and C. Abey-
nayake, “Signal processing techniques for landmine detection
using impulse GPR,” IEEE Sensor Journal, vol. 2, no. 1, pp. 41–
51, 2002.

[15] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional
Fourier Transform with Applications in Optics and Signal Pro-
cessing, John Wiley & Sons, New York, NY, USA, 2000.

[16] X.-C. Si and J.-F. Chai, “Feature extraction and auto-sorting
to envelope function of rotation angle 𝛼 domain of radar
signals based on FRFT,” Journal of Electronics & Information
Technology, vol. 31, no. 8, pp. 1892–1897, 2009.

[17] L. B. Almeida, “Fractional fourier transform and time-
frequency representations,” IEEE Transactions on Signal Pro-
cessing, vol. 42, no. 11, pp. 3084–3091, 1994.

[18] http://www.ilovematlab.cn/thread-47819-1-1.html.
[19] W. Al-Nuaimy, Y. Huang, M. Nakhkash, M. T. C. Fang, V. T.

Nguyen, andA. Eriksen, “Automatic detection of buried utilities
and solid objects with GPR using neural networks and pattern
recognition,” Journal of Applied Geophysics, vol. 43, no. 2–4, pp.
157–165, 2000.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


