
Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2012, Article ID 879626, 10 pages
doi:10.1155/2012/879626

Research Article

Improved Algorithm for ODCT Computation of
a Running Data Sequence

S. Akhter, V. Karwal, and R. C. Jain

ECE Department, Jaypee Institute of Information Technology, Noida 201307, India

Correspondence should be addressed to S. Akhter, shamim.akhter@jiit.ac.in

Received 23 May 2012; Revised 16 October 2012; Accepted 3 November 2012

Academic Editor: Chi Ko

Copyright © 2012 S. Akhter et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fast windowed update algorithms capable of independently updating the odd discrete cosine transform (ODCT) and odd discrete
sine transform (ODST) of a running data sequence are analytically developed. In this algorithm, to compute the ODCT coefficients
of a real-time sequence, we do not require the ODST coefficients. Similarly, the ODST coefficients of the shifted sequence can be
calculated without using ODCT coefficients. The running input data sequence is sampled using a rectangular window. However,
this idea can be easily extended for other windows. The update algorithm derived herein can be used to compute the transform
coefficients of the shifted sequence as new data points are available. The complexity of developed algorithm is O(N). The validity
of algorithm is tested by MATLAB simulations.

1. Introduction

The DCT transform [1] has been extensively used in various
digital image coding schemes and image compression stan-
dards. It is known that in most practical cases, the DCT-
based schemes outperform in terms of compression ratio.
In any real-time data processing system, a new data point
is input at every sampling instant. One method to find the
DCT can be to compute it for the entire data vector or
data matrix. Although this looks easy, it is a cumbersome
task. Another method is to reduce the dataset and then
compute DCT coefficients for a smaller dataset. Hence, a
part of incoming data stream is sampled using window
of size N , and its transform coefficient is computed. An
example is a tapped delay line adaptive filter [2]. In this
case as new samples arrive, the transform of the updated
data is computed. One computationally attractive method
given by Yip and Rao [3] uses the shift property of the
discrete transform wherein the transform of the shifted data
can be obtained from respective transforms (both DCT and
DST) of the unshifted data plus the data points shifting in,
That is, the transform of the updated sequence is obtained
without having to perform complete N-point transform at
every instant of time. However, this scheme of Yip and Rao

[3] had a drawback of dependency between DCT and DST
coefficients.

Update algorithm initially developed was limited to one-
point update at a time [3, 4]. Later algorithms for r-point,
1 ≤ r ≤ N−1, and update for DCT, and DST were developed
[5, 6] but all these algorithms needed simultaneous update of
DCT and DST coefficients, that is, to compute the updated
DCT coefficients, the DST coefficients need to be calcu-
lated simultaneously and vice versa. Thereafter, independent
update algorithms were developed in [5] based on second-
order shift properties of DCT and DST coefficients, these
algorithms were limited to one-point update for even discrete
cosine transform (EDCT) and even discrete sine transform
(EDST). This concept was extended to include r new points
at a time for EDCT/EDST in [7–9]. The DCT and DST
transforms of type I–IV form a group of-so-called even
DCT/DST. These transforms are very well studied and a
number of efficient implementation techniques exist in the
literature.

Another group of transforms, namely, DCT/DST V–
VIII, are called “Odd” DCT/DST. Not much work has been
reported in developing efficient implementation techniques
for odd DCT/DST computation [10]. In this paper, we
give an efficient algorithm for real-time computation of

2 Journal of Electrical and Computer Engineering

transform coefficients capable of independently updating
odd DCT and odd DST coefficients. We have derived r-point
independent update algorithm for independently processing
ODCT and ODST coefficients in the presence of rectangular
window. The algorithms are analytically derived and the
results verified with MATLAB simulations for various differ-
ent values of sequence length N and different data points.
Our interest in this work is based on new application of
odd DCT/DST-VI/VII transforms with a possible application
in ISO/IEC/ITU-T high efficiency video coding (HEVC)
standards [10].

To compute the transform of an infinite input sequence,
first a suitable sequence of length N is extracted. To calculate
the effect of inclusion of r new points, update algorithms
can be used for fast computation of transform coefficient
of the updated sequence. In this paper, we have derived the
update algorithms for ODCT type-II and ODST type-II that
have the capability of independently updating the ODCT
and ODST coefficients. These algorithms would be useful in
applications where we need only the ODCT coefficients or
only the ODST coefficients. These algorithms provide lower
complexity implementation as compared to the previously
available algorithms as we do not need to calculate and store
values of both ODST and ODCT coefficients.

The ODCT-II and ODST-II of input signal f (x) of length
N is defined by

C(k) = 2√
2N − 1

Pk

N−1∑

x=0

Px+1 f (x) cos
2x + 1
2N − 1

kπ

for k = 0, 1, . . . ,N − 1,

S(k) = 2√
2N − 1

N−2∑

x=0

f (x) sin
2x + 1
2N − 1

kπ

for k = 1, . . . ,N − 1,

(1)

where

Pj = 1√
2

, for j = 0 or N

1, otherwise.
(2)

C(k) and S(k) are the ODCT and ODST coefficients,
respectively.

Modifying the original equations of ODCT and ODST to
include a sequence pointer n [5], we get

C(n, k) = 2√
2N − 1

Pk

N−1∑

x=0

Px+1 f (n−N + x) cos
2x + 1
2N − 1

kπ,

(3)

S(n, k) = 2√
2N − 1

N−2∑

x=0

f (n−N + x) sin
2x + 1
2N − 1

kπ. (4)

The input data f (x) in the above expressions is indexed from
f (n−N) to f (n− 1).

This paper is organized as follows. In Section 2, the r-
point independent update algorithm is derived analytically
for the ODST independent ODCT-II, in the presence of

rectangular window. ODCT independent ODST-II update
algorithm can be derived similarly and results is given for
brevity. In Section 3, MATLAB implementation is discussed
followed by Section 4 where comparison of computational
complexities is given in terms of number of multiplications
and additions followed by Section 5 that lists the conclusion.

2. Derivation of the r-Point Update Algorithm
for Independent ODCT-II

Let C(n + r, k) for k = 0, 1, . . . ,N − 1 represent the updated
ODCT-II coefficients including the effect of r new data
points. From (3), we get

C(n + r, k) = 2√
2N − 1

Pk

N−1∑

x=0

Px+1 f (n−N + x + r)

× cos
2x + 1
2N − 1

kπ.

(5)

Defining a = 2/
√

2N − 1 and fragmenting the summation
into two parts, x = 0 to N − r − 1 and x = N − r to N − 1
yields,

C(n + r, k) = aPk

N−1−r∑

x=0

Px+1 f (n−N + x + r)

× cos
2x + 1
2N − 1

kπ

+ aPk

N−1∑

x=N−r
Px+1 f (n−N + x + r)

× cos
2x + 1
2N − 1

kπ.

(6)

The term Px+1 is equal to unity in the first summation term
for the given range. Substituting y = x + r in first term and
i = x + r −N in the second term, we get

C(n + r, k)

= aPk

N−1∑

y=r
f
(
n−N + y

)
cos

(
2
(
y − r

)
+ 1

2N − 1
kπ

)

+aPk
r−1∑

i=0

Pi−r+N+1 f (n + i) cos
(

2(i− r + N) + 1
2N − 1

kπ
)
.

(7)

Breaking the 1st term into two summations, we get

C(n + r, k)

= aPk

N−1∑

y=0

f
(
n−N + y

)
cos

(
2
(
y − r

)
+ 1

2N − 1
kπ

)

− aPk

r−1∑

y=0

f
(
n−N + y

)
cos

(
2
(
y − r

)
+ 1

2N − 1
kπ

)

+ aPk

r−1∑

i=0

Pi−r+N+1 f (n + i) cos
(

2(i− r + N) + 1
2N − 1

kπ
)
.

(8)

Journal of Electrical and Computer Engineering 3

Therefore,

C(n + r, k)

= aPk

N−2∑

y=0

f
(
n−N + y

)
cos

(
2
(
y − r

)
+ 1

2N − 1
kπ

)

+ aPk(−1)k f (n− 1) cos
2πrk

2N − 1

− aPk

r−1∑

y=0

f
(
n−N + y

)
cos

(
2
(
y − r

)
+ 1

2N − 1
kπ

)

+ aPk

r−1∑

i=0

Pi−r+N+1 f (n + i) cos
(

2(i− r + N) + 1
2N − 1

kπ
)
.

(9)

Introducing term Py+1 in the first summation since it is equal
to unity for the given range, we get

C(n + r, k)

= aPk

N−2∑

y=0

Py+1 f
(
n−N + y

)
cos

(
2
(
y − r

)
+ 1

2N − 1
kπ

)

+ aPk(−1)k f (n− 1) cos
2πrk

2N − 1

− aPk

r−1∑

y=0

f
(
n−N + y

)
cos

(
2
(
y − r

)
+ 1

2N − 1
kπ

)

+ aPk

r−1∑

i=0

Pi−r+N+1 f (n + i) cos
(

2(i− r + N) + 1
2N − 1

kπ
)
.

(10)

After modifying the 1st summation term, we have

C(n + r, k)

= aPk

N−1∑

y=0

Py+1 f
(
n−N + y

)
cos

(
2
(
y − r

)
+ 1

2N − 1
kπ

)

+ aPk(−1)k
(

1− 1√
2

)
f (n− 1) cos

2πrk
2N − 1

− aPk

r−1∑

y=0

f
(
n−N + y

)
cos

(
2
(
y − r

)
+ 1

2N − 1
kπ

)

+ aPk

r−1∑

i=0

Pi−r+N+1 f (n + i) cos
(

2(i− r + N) + 1
2N − 1

kπ
)
.

(11)

Expanding the first summation term yields

C(n + r, k)

= aPk

N−1∑

y=0

Py+1 f
(
n−N + y

)
cos

(
2y + 1

)
kπ

2N − 1
cos

2rkπ
2N − 1

+aPk
N−1∑

y=0

Py+1 f
(
n−N + y

)
sin

(
2y + 1

)
kπ

2N − 1
sin

2rkπ
2N − 1

+ aPk(−1)k
(

1− 1√
2

)
f (n− 1) cos

2rkπ
2N − 1

− aPk

r−1∑

y=0

f
(
n−N + y

)
cos

(
2
(
y − r

)
+ 1

2N − 1
kπ

)

+ aPk

r−1∑

i=0

Pi−r+N+1 f (n + i) cos
(

2(i− r + N) + 1
2N − 1

kπ
)
.

(12)

first term can be written as C(n, k) cos(2rkπ/(2N − 1)).
Modifying the 2nd term in summation from y = 0 to N − 1
as y = 0 to N − 2, we get

C(n + r, k)

= C(n, k) cos
2rkπ

2N − 1

+ aPk

N−2∑

y=0

Py+1 f
(
n−N + y

)

× sin

(
2y + 1

)
kπ

2N − 1
sin

2rkπ
2N − 1

+ aPk(−1)k
(

1− 1√
2

)
f (n− 1) cos

2πrk
2N − 1

− aPk

r−1∑

y=0

f
(
n−N + y

)
cos

(
2
(
y − r

)
+ 1

2N − 1
kπ

)

+ aPk

r−1∑

i=0

Pi−r+N+1 f (n + i) cos
(

2(i− r + N) + 1
2N − 1

kπ
)
.

(13)

It can be observed in 2nd term that Py+1 is unity for y = 0 to
N − 2. Using (4), this term can be rewritten as follows:

C(n + r, k)

= C(n, k) cos
2rkπ

2N − 1
+ PkS(n, k) sin

2rkπ
2N − 1

+ (−1)kaPk

(
1− 1√

2

)
f (n− 1) cos

2rkπ
2N − 1

4 Journal of Electrical and Computer Engineering

− aPk

r−1∑

y=0

f
(
n−N + y

)
cos

(
2
(
y − r

)
+ 1

2N − 1
kπ

)

+ aPk

r−1∑

i=0

Pi−r+N+1 f (n + i) cos
(

2(i− r + N) + 1
2N − 1

kπ
)
.

(14)

Replacing

Ar = cos
2rkπ

2N − 1
, Br = sin

2rkπ
2N − 1

. (15)

Putting y = r − x − 1 in the 1st summation term, and i =
r − x − 1 in the 2nd summation term, we get

C(n + r, k)

= ArC(n, k) + BrPkS(n, k)

+ (−1)kaPkAr

(
1− 1√

2

)
f (n− 1)

− aPk

r−1∑

x=0

f (n−N − 1 + r − x) cos
2x + 1
2N − 1

kπ

+ aPk(−1)k
r−1∑

x=0

PN−x f (n− 1 + r − x) cos
2xkπ

2N − 1
.

(16)

Rewriting the last summation term from x = 1 to r − 1 and
adding x = 0th term, we get,

C(n + r, k)

= ArC(n, k) + BrPkS(n, k)

+ (−1)kaPkAr

(
1− 1√

2

)
f (n− 1)

− aPk

r−1∑

x=0

f (n−N − 1 + r − x) cos
2x + 1
2N − 1

kπ

+ aPk(−1)k
r−1∑

x=1

PN−x f (n− 1 + r − x) cos
2xkπ

2N − 1
.

+ aPk(−1)kPN f (n− 1 + r)
(17)

PN−x in the 5th term is equal to unity for the given range
of summation. Rewriting the 5th term with the summation
limits changed from x = 1 to r − 1 as x = 0 to r − 1 and
subtracting x = 0th term, we get

C(n + r, k)

= ArC(n, k) + BrPkS(n, k)

− aPk

r−1∑

x=0

f (n−N − 1 + r − x) cos
2x + 1
2N − 1

kπ

+ aPk(−1)k
r−1∑

x=0

f (n− 1 + r − x) cos
2xkπ

2N − 1

+ (−1)kaPkAr

(
1− 1√

2

)
f (n− 1)

+ (−1)kaPk

(
1√
2
− 1
)
f (n− 1 + r).

(18)

The expression given in (18) shows that for finding ODCT
coefficient of r-point updated signal, we require both ODCT
and ODST coefficients of previous data points. We need
a way to derive ODST independent update equation. For
making independent ODCT update, we calculate C(n− r, k)
as follows, which is ODCT coefficient of r-point update of
previous data points:

C(n− r, k) = 2√
2N − 1

Pk

N−1∑

x=0

Px+1 f (n−N + x − r)

× cos
2x + 1
2N − 1

kπ.

(19)

Substituting y = x − r in the above equation yields

C(n− r, k)

= aPk

N−r−1∑

y= −r
Py+r+1 f

(
n−N + y

)
cos

(
2
(
y + r

)
+ 1

2N − 1
kπ

)
.

(20)

Breaking the summation into two terms, we get

C(n− r, k)

= aPk

N−r−1∑

y=0

Py+r+1 f
(
n−N + y

)
cos

(
2
(
y + r

)
+ 1

2N − 1
kπ

)

+ aPk

−1∑

y=−r
Py+r+1 f

(
n−N + y

)
cos

(
2
(
y + r

)
+ 1

2N − 1
kπ

)
.

(21)

Changing the first summation limit to y = 0 to N − r−2, and
adding y = (N − r − 1)th term, we get,

C(n− r, k)

= aPk

N−r−2∑

y=0

Py+r+1 f
(
n−N + y

)
cos

(
2
(
y + r

)
+ 1

2N − 1
kπ

)

+ aPk

−1∑

y=−r
Py+r+1 f

(
n−N + y

)
cos

(
2
(
y + r

)
+ 1

2N − 1
kπ

)

+ aPk
1√
2
f (n− r − 1)(−1)k.

(22)

Py+r+1 is unity in the range of 1st summation as well as in 2nd
summation. Introducing Py+1 in the first term which is unity
in the given range, we get,

C(n− r, k)

= aPk

N−r−2∑

y=0

Py+1 f
(
n−N + y

)
cos

(
2
(
y + r

)
+ 1

2N − 1
kπ

)

+ aPk

−1∑

y=−r
f
(
n−N + y

)
cos

(
2
(
y + r

)
+ 1

2N − 1
kπ

)

+ aPk
1√
2
f (n− r − 1)(−1)k.

(23)

Journal of Electrical and Computer Engineering 5

Changing the summation of the first term from y = 0 to N −
r − 1 and subtract y = (N − r − 1)th term, we get

C(n− r, k)

= aPk

N−r−1∑

y=0

Py+1 f
(
n−N + y

)
cos
(

2y + 2r + 1
2N − 1

kπ
)

+ aPk

−1∑

y=−r
f
(
n−N + y

)
cos

(
2
(
y + r

)
+ 1

2N − 1
kπ

)

+ aPk f (n− r − 1)
(

1√
2
− 1
)

(−1)k.

(24)

Solving further yields

C(n− r, k)

= aPk

N−1∑

y=0

Py+1 f
(
n−N + y

)
cos

2y + 1 + 2r
2N − 1

kπ

− aPk

N−1∑

y=N−r
Py+1 f

(
n−N + y

)
cos

(
2
(
y + r

)
+ 1

2N − 1
kπ

)

+ aPk

−1∑

y=−r
f
(
n−N + y

)
cos

(
2
(
y + r

)
+ 1

2N − 1
kπ

)

+ aPk f (n− r − 1)
(

1√
2
− 1
)

(−1)k.

(25)

Expanding 1st term, substituting y = N − x − 1 in the 2nd
term and y = −(1 + x) in the 3rd term, we have

C(n− r, k)

= aPk

N−1∑

y=0

Py+1 f
(
n−N + y

)
cos

2y + 1
2N − 1

kπ cos
2rkπ

2N − 1

− aPk

N−1∑

y=0

Py+1 f
(
n−N + y

)
sin

2y + 1
2N − 1

kπ sin
2rkπ

2N − 1

− aPk

r−1∑

x=0

PN−x f (n− 1− x)

× cos
(

2(N − 1− x + r) + 1
2N − 1

kπ
)

+ aPk

r−1∑

x=0

f (n−N − 1− x) cos
(

2x + 1− 2r
2N − 1

kπ
)

+ aPk f (n− r − 1)
(

1√
2
− 1
)

(−1)k.

(26)

Using the definition of ODCT and ODST as given in (3)
and (4) and substituting Ar = cos(2rkπ/(2N − 1)), Br =
sin(2rkπ/(2N − 1)) yields

C(n− r, k)

= ArC(n, k)− PkBrS(n, k)

+ aPk f (n− r − 1)
(

1√
2
− 1
)

(−1)k

− (−1)kaPk
r−1∑

x=0

PN−x f (n− 1− x)

×
(
Ar cos

2xkπ
2N − 1

+ Br sin
2xkπ

2N − 1

)

+ aPk

r−1∑

x=0

f (n−N − 1− x)

×
(
Ar cos

2x + 1
2N − 1

kπ + Br sin
2x + 1
2N − 1

kπ
)
.

(27)

Adding (18) and (27) results in

C(n + r, k)

= 2ArC(n, k)− C(n− r, k)

+ aPk(−1)k
(

1√
2
− 1
)

× [f (n− 1− r)− f (n− 1)Ar + f (n− 1 + r)
]

+ aPk

r−1∑

x=0

[
f (n−N − 1− x)Ar− f (n−N − 1 + r − x)

]

× cos
2x + 1
2N − 1

kπ

+ aPk(−1)k

×
r−1∑

x=0

[
f (n− 1 + r − x)− PN−x f (n− 1− x)Ar

]

× cos
2xkπ

2N − 1

− aPkBr(−1)k
r−1∑

x=0

PN−x f (n− 1− x) sin
2xkπ

2N − 1

+ aPkBr

r−1∑

x=0

f (n−N − 1− x) sin
2x + 1
2N − 1

kπ

for k = 0, 1, . . . ,N − 1,
(28)

where C(n − r, k) represent the ODCT coefficients of the
previous time-step sequence, C(n, k) represents the ODCT
coefficients in the current time step sequence, and C(n+ r, k)
represents ODCT coefficients of r-point updated sequence.

6 Journal of Electrical and Computer Engineering

Equation (28) yields ODCT-II independent update equa-
tion that is independent of the ODST coefficients hence it
can be used for fast computation of ODCT coefficients in the
presence of r new data points. The above derived algorithm
can be used to compute the ODCT transform for any value
of sequence length N and value of r ranging from 1 to N − 1.
From (28), it can be easily seen that while computing the
ODCT coefficients of updated sequence, we require ODCT
coefficients of the two previous times-step sequence.

Therefore, there will be two stages for computing coef-
ficients for updated sequence. One is the preprocessing stage
where we calculate coefficients of two previous time-step data
points using the conventional definition of the transform,
and the second is the update stage where update algorithm
is used to calculate coefficients of the shifted sequence. Once
the pre-processing stage is over, the algorithm enters into
update stage and the last two time-step coefficients are saved
in C(n − r, k) and C(n, k). The algorithm remains in update
stage thereafter. The conventional definitions are to be used
only once in pre-processing stage and thereafter update
algorithm is used each time new data points are shifted in
the input sequence.

The signal point f (n−N−1−x) represents the oldest data
points shifted out and f (n−N − 1 + r − x) represents recent
data shifted out. The signal point f (n−1+r−x) indicates the
newest data points shifted in and f (n − 1 − x) shows earlier
data entered into. Analogous ODCT-II independent ODST-
II fast update algorithms in the presence of r new data points
for 1 ≤ r ≤ N − 1 can be similarly derived and the final
result is listed below. The detailed derivation of ODST-II fast
update algorithm is excluded for brevity as

S(n + r, k)

= 2ArS(n, k)− S(n− r, k)− a(−1)kBr f (n− 1)

+ a
r−1∑

x=0

[
f (n−N − 1 + r − x) + f (n−N + x − r)

]

× sin
2x + 1
2N − 1

kπ

− a(−1)k
r−1∑

x=1

[
f (n− 1 + r − x) + f (n− 1− r + x)

]

× sin
2xkπ

2N − 1
for k = 1, . . . ,N.

(29)

S(n− r, k) is the ODST coefficients of the previous time-step
sequence, S(n, k) is the ODST coefficients in the current time
step, and S(n+r, k) represents the updated ODST coefficients
in the presence of r-points shifted in. In (29), the signal
points f (n − N − 1 + r − x) represent recent data shifted
out and f (n − N − r + x) represent the oldest data points
shifted out. The signal point f (n − 1 + r − x) indicates data
point shifted in the previous time-step and f (n − 1 − r + x)
indicates newest data point shifted in.

Start

input data points

New
point(s)

New
point(s)

Yes

No

Yes

No

Yes

No

Print ODCT
coefficients
Cold(k)

Update the signal and compute the ODCT of the updated

Print ODCT
coefficients

C(K)

Use update algorithm to compute the ODCT of the
updated signal and save it as Cnew(k)

New
data

Print ODCT
coefficients
Cnew(k)

Stop

signal and store it as C(k)

Overwrite Cold(k) with C(k) and C(k) withCnew(k)

Calculate ODCT of input sequence and store in Cold(k)

Enter value of N , r,

Figure 1: Flow chart of independent update algorithm.

Steps for computing ODCT r-point independent update
are given in Figure 1. Signal f (x − r)represents the initial
data points, f (x) is the signal after r-point shift and f (x +
r) represents the signal after another r-point shift.

Independent update algorithm can be implemented in
two major steps: one is the pre-processing step wherein
we use the conventional ODCT definitions to compute the
transforms and once we have the transform of two time
steps then we can use the independent update algorithm,
analytically derived earlier in this section. The pre-processing
step is used only once to compute the two time-step
transforms then the algorithm enters the update stage and
remains in this stage thereafter.

(a) Preprocessing Step. Compute the ODCT coefficients
values of f (x−r) and f (x) from the definition and save these
values as Cold(k) and C(k), respectively.

(b) Update Step. This involves the computation of ODCT
coefficients of r-point shifted data, f (x + r), using update
algorithm listed in (28).

Step 1. Using the values of Cold(k) and C(k) (computed in
part (a)) and the new data pointed shifting in, we compute
the ODCT coefficients of the new r-point shifted data using
(28) and save it as Cnew(k).

Step 2. Overwrite Cold(k) with C(k), and C(k) with Cnew(k).

Journal of Electrical and Computer Engineering 7

root2 = sqrt(2.0);N = 8,r = 2,sign = −1;
root 2N = sqrt(2.0 ∗ N − 1.0);a = 2.0/root 2N;

for k = 0: N − 1;

if (mod(k, N)==0)
pk = 1.0/root2;

else pk = 1.0;

end;

M = N + N − 1;

theta = 2 ∗ r ∗ k ∗ pi/M;Ar = cos(theta);Br = sin(theta);

sign = −sign;
p1 = 0.0;p2 = 0.0;p3 = 0.0;p4 = 0.0;p5 = 0.0

for x = 0 : r − 1;

angle1 = (x + x + 1) ∗ k ∗ pi/M;

angle2 = (x + x) ∗ k ∗ pi/M;

sin 1 = sin(angle1);

sin 2 = sin(angle2);

cos 1 = cos(angle1);

cos 2 = cos(angle2);

if (x==0)
pk1 = 1.0/root2;

else

pk1 = 1.0;

end;

p1 = p1 + pk1 ∗ (fnew(r − x)) ∗ sin 2;

p2 = p2 + (fold(r − x)) ∗ sin 1;

p3 = p3 + (−fold(2 ∗ r − x) + Ar ∗ fold(r − x)) ∗ cos 1;

p4 = p4 + (fnew(2 ∗ r − x) − pk1 ∗ Ar ∗ fnew(r − x)) ∗ cos 2;

end;

p5 = (1.0/sqrt(2.0) − 1) ∗ sign ∗ (f(N) − fnew(r) ∗ Ar + fnew(2 ∗ r));

term1 = a ∗ pk ∗ (−sign ∗ Br ∗ p1 + Br ∗ p2 + p3 + sign ∗ p4 + p5);

CNEW(k + 1) = 2 ∗ Ar ∗ C(k + 1) − Cold(k + 1) + term1

end;

Algorithm 1

Repeat the update step for each time new r-point data is
entered.

The flow chart for this algorithm is given in Figure 1.
Similarly, the ODCT independent ODST independent
update algorithm can be implemented in the presence of
rectangular window.

3. MATLAB Implementation

The independent update algorithms derived in (28) and (29)
for ODCT and ODST, respectively, were tested in MATLAB
for different values of N and r. The code snippet is given in
Algorithm 1 for r = 2 and N = 8.

In the program shown in Algorithm 1 program Cold(k)
represents the oldest ODCT coefficient of input signal say
F = [1 2 3 4 5 6 7 8]. Two new data points “9” and “10”
are shifted in, are the modified data array becomes F =
[3 4 5 6 7 8 9 10] and its coefficients are denoted by C(k).
This is the pre-processing stage. When two new data points
“11” and “12” are shifted in, the coefficients Cnew(k) of the
shifted sequence are calculated using the update algorithm
derived in (28). Array “fold” is used for storing the four data
points shifting out and array “fnew” is used for storing the
four new data point shifting in.

After simulating the program shown in Algorithm 1,
CNEW value calculated using the update algorithm is found to
be the same as that computed from definition of ODCT for
the shifted sequence F = [5 6 7 8 9 10 11 12]. This verifies
the algorithm.

Similarly, the code for ODST-II independent update
algorithm was written to test the correctness of the derived
algorithm.

4. Performance Analysis

The computation of running ODCT and ODST based on
independent update algorithm is expected to provide certain
advantages over simultaneous update algorithm proposed
by Murthy and Swamy [2], and Sherlock and Kakad [6]
for EDCT/EDST. The comparison is done on the basis of
total number of operations (multiplications and additions)
used for the computation of transform coefficients for r-
point updated data. If ODCT-II is to be computed for
N = 8 using basic definition as given by (3), then
it requires 46 multiplication and 56 addition operations.
Similarly for ODST-II computation from definition requires
33 multiplication and 38 addition operations.

8 Journal of Electrical and Computer Engineering

The expression for simultaneous update of ODST-II is
given below

S(n + r, k)

= ArS(n, k)− BrC(n, k)

+ a
r−1∑

x=0

f (n−N − 1 + r − x) sin
2x + 1
2N − 1

kπ

− a(−1)k
r−1∑

x=0

f (n− 1 + r − x) sin
2xkπ

2N − 1

for k = 1 to N − 1.

(30)

Computation of ODST coefficients of the updated sequence,
for sample length N = 8, using simultaneous update
algorithm requires 14r + 7 multiplications and 14r additions.
The above values are computed after expanding (30) for
different values of r. We have done analysis for r = 1 and
2, and it can be extended for other values of r also.

For r = 1,

S(n + 1, k) = A1S(n, k)− BrC(n, k)+a f (n−N) sin
πk

2N − 1
.

(31)

Computing the ODST coefficients S(1) to S(7) using (31)
requires 21 multiplication and 14 addition operations.
Similarly for r = 2, we have

S(n + 2, k)

= A2S(n, k)− B2C(n, k)

+ a
[
f (n−N + 1) sin

πk

2N − 1
+ f (n−N) sin

3πk
2N − 1

]

− a(−1)k f (n) sin
2πk

2N − 1
.

(32)

Computing the ODST coefficients S(1) to S(7) using (32)
requires 35 multiplication and 28 addition operations. In
general we require 14r + 7 multiplication and 14r addition
operation for computing all ODST coefficients for any value
of r.

Similarly, computational requirement for simultaneous
ODCT-II coefficients computation using (18) can be derived
and analysis for r = 1 and 2 are discussed below.

For r = 1,

C(n + 1, k)

= A1C(n, k) + B1PkS(n, k)

− aPk f (n−N) cos
πk

2N − 1
+ (−1)kaPk

1√
2
f (n)

+ (−1)kaPk

(
1− 1√

2

)
f (n− 1)A1.

(33)

Table 1: Comparison of power consumption.

Type
Multiplications

(Pcm)
Additions

(Pca)

From definition 368 448
From simultaneous update algorithm 305 320
From independent update algorithm 201 320

Table 2: Comparison of multiplication operations required.

r Simultaneous update Independent update algorithm

1 8N 5N
2 12N 7N
3 16N 9N

For computing the ODCT coefficients C(0) to C(7) using
(33), we require 37 multiplication and 32 addition opera-
tions. Similarly for r = 2, we have

C(n + 2, k)

= A2C(n, k) + B2PkS(n, k)− aPk f (n−N + 1)

× cos
πk

2N − 1

+ (−1)kaPk
1√
2
f (n + 1) + (−1)kaPk f (n) cos

2πk
2N − 1

+ (−1)kaPk

(
1− 1√

2

)
f (n− 1)A2 − aPk f (n−N)

× cos
3πk

2N − 1
.

(34)

Computing the ODCT coefficients C(0) to C(7) using (34)
requires 51 multiplication and 48 addition operations. In
general, for computing ODCT coefficients, we require 14r
+ 23 multiplication and 16r + 16 addition operation. It is
to be noted that simultaneous update requires both ODCT
and ODST coefficients to be updated simultaneously, so
overall requirement is 28r + 30 multiplications and 30r + 16
additions plus multiplications and additions operations that
are required during the pre-processing stage.

Multiplication and addition operation required for
ODCT-II independent update algorithm are given below.

For r = 1,

C(n + 1, k)

= 2A1C(n, k)− C(n− 1, k) + aPk(−1)k
1√
2
f (n)

+ aPk(−1)k
(

1√
2
− 1
)
f (n− 2)− aPk(−1)k

×
(√

2− 1
)
f (n− 1)A1

+ aPk cos
kπ

2N − 1

[
f (n−N − 1)− f (n−N)

]

for k = 0, 1, . . . ,N − 1.

(35)

Journal of Electrical and Computer Engineering 9

Table 3: Comparison of memory requirement.

r
Coefficient Input sequence Transform domain data Total memory requirement

Simultaneous
update

Independent
update

Simultaneous
update

Independent
update

Simultaneous
update

Independent
update

Simultaneous
update

Independent
update

1 6N 5N N + 1 N + 2 2N 2N 9N + 1 8N + 2

2 10N 7N N + 2 N + 4 2N 2N 13N + 2 10N + 4

3 14N 9N N + 3 N + 6 2N 2N 17N + 3 12N + 6

In general, we require 14r + 25 multiplications and 32r +
16 additions for independent update algorithm for ODCT
computation.

The comparative analysis for power consumption for
different approaches for ODCT/ODST computation is given
below. To compute ODCT-II coefficient of r-point shifted
data using the definition requires using 46 multiplications
and 56 additions operation, r times. For example, to compute
ODCT coefficient for N = 8 data point using conventional
definition for 7 time shifted data points requires 46 multipli-
cations and 56 additions, eight times. If power consumption
by one multiplication operation is Pcm and that by one
addition operation is Pca, then total power consumed by
multiplications is 368Pcm and that by additions is 448Pca.

For the same sample length of N = 8 and for
the same set of ODCT/ODST coefficient computation,
r = 7 and hence simultaneous update algorithm require
using 121 multiplications and 128 additions for ODCT
update and 105 multiplications and 98 additions for ODST
update. Additional 79 multiplications and 94 additions are
required during the pre-processing stage for calculating the
ODCT/ODST coefficients from definition. Hence power
consumed by multiplications is 305Pcm and that by additions
is 320Pca.

Similarly, for the same sample length of N = 8 and
for the same set of ODCT coefficient computation r = 6,
independent update algorithm requires 201 multiplications
and 320 additions. Hence power consumed by multiplica-
tions is 201Pcm and that by additions is 320Pca. Table 1 shows
the power consumed during addition and multiplication
operation, for N = 8 and r = 7. The computation of running
ODCT and ODST based on independent update algorithm
provides advantage over the simultaneous update for dif-
ferent value of r. Comparison for computational burden
between independent update algorithm and simultaneous
update algorithm for different value of r-point update is
given in Table 2.

From (31), for r = 1, ODST computation requires
3N multiplication and 2N addition operation. Similarly
from (33), for r = 1, ODCT computation requires 5N
multiplication and 4N addition operations. So we can
say that simultaneous update algorithm requires total 8N
multiplication and 6N addition operations. Similarly from
(35), we can see that ODCT independent update algorithm
for r = 1 requires 5N multiplication and 6N addition
operations. In general, the simultaneous update algorithm
requires (4r + 4)N multiplication operations while inde-
pendent update algorithm requires (2r + 3)N multiplication
operations, whereas the additions operation requirement

for both algorithms are (4r + 2)N. From Table 2, it can
be seen that independent update algorithm requires less
number of multiplications as compared to those required
for simultaneous update algorithm, and hence we have
less power consumption. Next we consider the memory
requirement. Memory is needed in both the algorithms to
store the following:

(a) the coefficients of the recursive equations,

(b) transform result,

(c) input signal samples.

Table 3 shows the memory requirement for both the update
algorithms. It can be seen that simultaneous update requires
more storage as compared to that required in independent
update, since in simultaneous update algorithm both ODCT
as well as ODST coefficients are to be stored. Thus it can
be concluded that independent update algorithm is better in
terms of storage requirement as compared to simultaneous
update algorithm.

5. Conclusion

The use of recursive method is very appropriate for machine-
based computation. The shift properties of DCT and DST
transforms gives a set of recursive equations that can be
used for updating DCT and DST coefficient of a running
data sequence. We have given an efficient algorithm for
computation of ODST-II and ODCT-II coefficients in the
presence of rectangular window. In the given algorithm, the
computation of ODCT coefficients does not require simul-
taneous computation of ODST coefficients. The recursive
equations are analytically derived and tested using MATLAB.
The algorithms developed in this paper are an improvement
over existing update algorithms as it provides indepen-
dence between ODCT and ODST coefficient’s computation,
thereby reducing computation and memory requirement.
The algorithm derived is tested for different values of sample
length N and r. The complexity of the analytically derived
independent update algorithms is of the order of O(N).

References

[1] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms,
Advantages, Applications, Academic Press, 1990.

[2] N. R. Murthy and M. N. S. Swamy, “On the computation of
running discrete cosine and sine transform,” IEEE Transactions
on Signal Processing, vol. 40, no. 6, pp. 1430–1437, 1992.

10 Journal of Electrical and Computer Engineering

[3] P. Yip and K. R. Rao, “On the shift property of DCT’s and
DST’s,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 35, no. 3, pp. 404–406, 1987.

[4] L. N. Wu, “Comments on ’On the shift property of DCT’s
and DST’s,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 38, no. 1, pp. 186–188, 1990.

[5] J. Xi and J. F. Chicharo, “Computing running DCT’s and
DST’s based on their second-order shift properties,” IEEE
Transactions on Circuits and Systems I, vol. 47, no. 5, pp. 779–
783, 2000.

[6] B. G. Sherlock and Y. P. Kakad, “Transform domain technique
for windowing the DCT and DST,” Journal of the Franklin
Institute, vol. 339, no. 1, pp. 111–120, 2002.

[7] B. G. Sherlock, Y. P. Kakad, and A. Shukla, “Rapid update of
odd DCT and DST for real-time signal processing,” in 14th
Signal Processing, Sensor Fusion, and Target Recognition, vol.
5809 of Proceedings of SPIE, pp. 464–471, Orlando, Fla, USA,
March 2005.

[8] V. Karwal, B. G. Sherlock, and Y. P. Kakad, “Windowed DST-
independent discrete cosine transform for shifting data,” in
Proceeding of the 20th International Conference on Systems
Engineering, pp. 252–257, Coventry, UK, September 2009.

[9] V. Karwal, Discrete cosine transform-only and discrete sine
transform-only windowed update algorithms for shifting data
with hardware implementation [Ph.D. thesis], University of
North Carolina at Charlotte, 2009.

[10] R. K. Chivukula and Y. A. Reznik, “Fast computing of
discrete cosine and sine transforms of type VI and VII,” in
34th Applications of Digital Image Processing, vol. 8135 of
Proceedings of SPIE, San Diego, Calif, USA, August 2011.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

