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Game theory has been a tool of choice for modeling dynamic interactions between autonomous systems. Cognitive radio ad
hoc networks (CRAHNs) constituted of autonomous wireless nodes are a natural fit for game theory-based modeling. The game
theory-based model is particularly suitable for “collaborative spectrum sensing” where each cognitive radio senses the spectrum
and shares the results with other nodes such that the targeted sensing accuracy is achieved. Spectrum sensing in CRAHNs,
especially when used in emergency scenarios such as disaster management and military applications, needs to be not only accurate
and resource efficient, but also adaptive to the changing number of users as well as signal-to-noise ratios. In addition, spectrum
sensing mechanism must also be proactive, fair, and tolerant to security attacks. Existing work in collaborative spectrum sensing
has mostly been confined to resource efficiency in static systems using request-based reactive sensing resulting in high latencies.
In this paper, evolutionary game theory (EGT) is used to model the behavior of the emergency CRAHNS, providing an efficient
model for collaborative spectrum sensing. The resulting implementation model is adaptive to the changes in its environment such
as signal-to-noise ratio and number of users in the network. The analytical and simulation models presented validate the system
design and the desired performance.

1. Introduction

As wireless nodes become more autonomous and the
network architecture more decentralized as in the case of
ad hoc networks, game theory has become a powerful tool
to understand the results of repeated interactions that may
occur in such networks [1]. Evolutionary game theory (EGT)
is a branch of noncooperative game theory-based on the
principle of “Survival of the Fittest” and has been applied to
model the evolution of stable solutions [2].

Cognitive radio ad hoc networks (CRAHNs) comprise
of cognitive radios (CRs) connected in an ad hoc manner.
CRs need to have the capability to access any spectral band
based on availability (dynamic spectrum access (DSA)) in
order to share the spectrum with the primary or licensed
users (PUs). Spectrum sensing is an essential feature required
to implement DSA [3]. In CRAHNs, spectrum sensing
may be performed in a collaborative manner to improve
reliability under hidden node and fading conditions. How-
ever, collaborative spectrum sensing consumes additional

resources (such as energy from the battery-powered radios
and bandwidth) to sense the spectrum and communicate
the sensing information to other users. Process of spectrum
sensing also affects the “Quality of Service” of the underlying
applications due to the latencies associated with spectrum
sensing, allocation, and handover [4]. When CRAHNS are
used in emergency networks such as military and disaster
management applications, it is especially important that
the results from spectrum sensing mechanism are accurate.
Accuracy of the sensing results is very important since miss-
ing the presence of the legacy PU would cause interference
to the PU and to the CR (also referred to as secondary
user, SU) itself, thus resulting in the communication failure.
Accuracy also includes the probability of false alarm that
depicts an event of missed opportunity which may be crucial
in emergency situations. Since CRAHNs are dynamic, that
is, number of users as well as environmental conditions
such as signal-to-noise ratios (SNRs) may change frequently,
the collaborative spectrum sensing mechanism must be
able to adapt to such variations. Equally important are the
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requirements of resource efficiency and fairness in energy
consumption in the battery operated hand held devices for
the sustenance of the network. In addition, the protocols for
emergency networks need to be proactive to avoid latencies
in the packet deliveries [5]. CRAHNs are vulnerable to data
falsification attacks and they need to be tolerant to such
attacks [6]. Data falsification attack is where some SUs send
false local spectrum sensing results to the fusion center,
causing the fusion center to make a wrong spectrum sensing
decision.

In this paper, a collaborative spectrum sensing mech-
anism is presented that meets the various performance
requirements of emergency CRAHNs outlined above.
Development of this model involves visualizing the network
system at three levels of abstraction, that is, policies,
behavior, and implementation as suggested in [5]. The first
level of abstraction, based on policies, defines the hierarchy
and authentication issues among the users which are typical
of the emergency situations. The second level of abstraction
based on the behavior of networks defines “what the system
needs to do?”. Finally the third level or the implementation
involves “How the solution is realized?”. Figure 1 illustrates
the various levels of abstraction involved in the system design
process. In this work, the behavioral model (second level) has
been developed based on evolutionary game theory, where
CRs are visualized as autonomous agents [7].

This paper is organized as follows. Section 2 outlines the
current state-of-the-art in the area of collaborative spectrum
sensing in CRAHNs. Section 3 describes the emergency
CRAHN system model and network utility function defined
in this work. Section 4 presents the core of this work that
involves modeling the behavior of the SUs in evolutionary
game framework. A reward system is proposed that will allow
the network to evolve to a stable state. Section 5 presents the
application of the model to an adaptive spectrum sensing
scheme for emergency CRAHN. Conclusions are presented
in Section 6.

2. Related Work

Related work has been presented in two subsections, Collab-
orative Spectrum Sensing and Game Theory.

2.1. Collaborative Spectrum Sensing. In fading channel con-
ditions, the local spectral sensing decisions may be less
reliable due to time variant nature of the channels as well as
hidden node conditions. However, combining information
from multiple sources provides spatial diversity resulting in
more reliable global information on the spectral behavior
of the PU. This combining of information is called data
fusion which may use “hard decisions” or “soft decisions”
from individual SUs. Log likelihood ratio test- (LLRT-) based
data fusion has been shown to be optimally provide the
reliability information for measurements from each CR, that
is, probability of detection (Pd) and probability of false alarm
(Pf ) are available. Collaborative sensing, where different CRs
in the network cooperate with each other and share their
spectrum sensing results, has been presented in detail in
[8, 9]. It has been shown that the targeted error bound can
be met without requiring all the CRs in the network to sense
the spectrum all the time. The number of CRs that should
be sensing and sharing the information at a time will depend
upon various factors such as network size and average SNR
conditions.

The fundamental components of collaborative spectrum
sensing include local sensing technique employed by the
CRs, data fusion technique used at the central coordinator,
and control channel used for communication as well as
reporting and choice of collaborators (i.e., who should
sense). A collaborative spectrum sensing system is vulnerable
to attacks in which malicious CRs report false detection
results. Techniques to improve the security of collaborative
sensing have been investigated [10], where the suspicion
level of SUs is based on their past reports. Trust values and
consistency values are calculated to eliminate the malicious
users’ influence on the PU detection results.

Much of the work in the literature in this area did
not consider dynamic SNR conditions or changing network
size, which is typical of an ad hoc network. In addition,
these sensing mechanisms use request-based reactive sensing,
which has higher latencies compared to proactive sensing.

2.2. Game Theory. For over two decades, game theory has
been applied to networking problems including routing,
pricing, flow control, and quality of service, to name a few
[11, 12]. Game theory is a mathematical analysis technique
applicable to scenarios involving intelligent players compet-
ing for limited resources. Principles of game theory have been
applied in wireless networking at various layers [5]. Most of
the work on game theory for CRs has been focused towards
interference management, frequency allocation, and MAC
scheduling [11, 12].

In a spectrum sensing game, players involved are the SUs
capable of detecting white spaces. Electromagnetic spectrum
is the limited resource that the players of the game, that
is, SUs, are competing for. Each SU would like to have
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more information about the spectral occupancy and to be
able to gather this from the information broadcasted by its
peers and by self-sensing. The SU must expend considerable
amount of energy sensing the spectrum and broadcasting
the information, while listening to information broadcasted
by others over the common channel is relatively free. Thus,
for each player in this game (SU), the need to contribute
towards the global decision process conflicts with its own
desire to save energy. Using information from others is a
much more attractive option for the players making it a
classic freeloading game [10]. Each SU would prefer using
information shared by others since it comes at no extra
cost. So long as the number of nonsensing users is small,
it will not affect the overall performance of the system, but
it will affect individual SU performance. The unfair load
distribution may lead to poor spectral knowledge and failure
of the group goal of maintaining the spectrum occupancy
information accuracy with minimal energy consumption. To
control the behavior, the rules of the system can be designed,
such that free loading is avoided [10]. From spectral sensing
point of view, the sense or sleep dilemma has been fitted into
an evolutionary game framework [13, 14].

Evolutionary game theory originates from the biological
model of survival of the fittest and helps designers to model
the behavior of autonomous agents trying to follow the
strategy which has the maximum payoff. In an evolutionary
game, actions of the SUs are based on the belief factor
when the game is played repeatedly. The strategies may
change between generations and this change is based on the
comparison between the payoffs for the group following a
certain strategy and average system payoff. Any strategy that
results in higher than average system payoff will be followed
by the majority of the population, ultimately becoming the
winning strategy. This behavior is modeled by “Replicator
Dynamics” [15]. In [13, 14], the behavior dynamics of
SUs is modeled and explored with the goal of throughput
maximization using a reactive spectrum sensing scheme with
“OR” in based data fusion, meant for civilian networks. It is
assumed that sensing activity is limited to a few subbands
and data communication takes place over other subbands.
In other words, sensing and communication can occur
concurrently over different frequency bands. In comparison
with [13, 14], our focus is on fairness with respect to energy
consumption, while maintaining stability in a scenario where
the entire spectrum, that is, all the subbands, are sensed by
the SUs in the allocated quiet period. As per the standard [4],
these quiet periods are a must and are synchronized such that
all SUs observe silence during this time. As a result, when
the SU is not sensing, it is not transmitting data instead it
is sleeping or saving energy. We discuss a proactive spectrum
sensing mechanism using LLRT based data fusion [16, 17]
for emergency networks. Fairness with respect to energy
consumption among the CRs is also maintained.

It is intuitive that whenever the incentives to contribute
do not occur naturally like in a public good game [11],
artificial incentives must be offered in the form of award for
good behavior or penalty for misbehavior. In this paper, we
show that without such an incentive, the spectrum sensing
game will reduce to a public good game, where the stable

solution is for all SUs to sleep. It is possible to reach
an evolutionary stable solution that achieves the network
objective and is fair to all SUs by incorporating an award
system. The amount of award required depends upon the
energy expended by the SUs for sensing/broadcasting and the
constitution of the population at the time. For a large enough
reward, a stable solution can be reached.

3. System Model

The system under consideration consists of N cognitive
radios connected in an ad hoc manner as shown in Figure 2.
Each radio is assumed to be sensing a common spectral
band of bandwidth B split into r spectral bands centered at
frequencies [ f1, f2, . . . , fr], respectively. The SUs are assumed
to be closely clustered, as a result the distance between the
SUs is much smaller than the distance from a typical PU
[13, 14]. PU signal detection at different SUs is influenced by
independently fading Rayleigh channel. Hence, the effective
SNR at the SUs is assumed to be exponentially distributed
with an average SNR γ. The number of SUs in the network
or size of the network N is dynamic, typical of an ad
hoc network. The PU spectral usage pattern is represented
by on/off Markov model, with on/off periods of a known
distribution [18]. The local sensing results are sent via
an error free common control channel [19]. To facilitate
spectrum sensing, the group observes a so-called quiet
period periodically [20]. During this period, all SUs must
refrain from communication over all the frequency bands of
interest. The only options available to the SUs during the
quiet time are to sense the spectrum or to sleep, that is,
conserve energy. Table 1 depicts the terminology used in this
paper.

Due to their varying physical locations, each SU provides
a unique local “snap-shot” of the spectral occupancy, which
is used to make a combined (fused) global decision about
spectral occupation. The success of any spectral sensing
technique is measured in terms of probability of detection
(Pd) and probability of false alarm (Pf ). For the rest of the
discussion, probability of detection and false alarm associ-
ated with local decisions made by ith SU are represented as
Pdi and Pf i. The probabilities of detection and false alarm
associated with global decision are represented by Qd(k) and
Qf (k), respectively, where k is the number of inputs fused to
achieve the global decision.

One of the SUs (by taking turns or the first one in the
network) assumes the status of spectrum coordinator that
performs the following functions.

(a) Fuse the spectral decision data received over the
common control channel from all the sensing SUs
in the network to obtain the global decision about
spectral occupancy. Techniques like “AND”, “OR”,
and “Majority Logic” may be used for data fusion [8].
Data fusion using optimal fusion using log-likelihood
ratio test (LLRT) [16, 17] is used in this work due
to its superior performance and ability to thwart
malicious attacks.
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Table 1: Terminology table.

Notation Description

r Number of spectral bands to be sensed

k Number of sensing SUs in a given time epoch

γ Group SNR

Pd Average probability of the detection of the group

Pf Average probability of false alarm of the group

N Network size (integer)

Qdk
Probability of detection of fused data obtained by
fusing k inputs

Qf k
Probability of false alarm of fused data obtained by
fusing k inputs

m
Size of majority, depends on average Pd and Pf of
the group.

M
Observation interval as an integer number of time
epochs

Rk Risk factor

K
Minimal number of SUs required to maximize the
network utility Jk

Ps opt Desired probability of sensing equal to K/N

Ps av
Average probability of sensing, averaged over M time
epochs

Jk
Network utility function with k active (sensing)
users

JPs av
Network utility function with each SU sensing with
probability Ps av

ηk Resource efficiency

Ik Certainty factor = 1− Rk

α
Weightage given to the accuracy and resource
efficiency ηk .

Pdi Average probability of detection of the of ith SU

Pf i Average probability of false alarm of the ith SU

(b) Monitor probability of detection (Pdi) and prob-
ability of false alarm (Pf i) for each SU. The Pdi

and Pf i of each SU are estimated by the spectrum
coordinator using the counting rule by comparing
the local sensing results with global or fused results
[21].

It needs to be noted that the choice of the coordinator
could be policy based or as in [22] where a cabinet of
leaders are used to ease the overhead on the choice of a
leader. This does not impact the system model. To achieve
a targeted accuracy for the network, represented by Qd(k)
and Qf (k), it is sufficient if some K out of N users sense
the spectrum in each quiet period. This value of K depends
upon the local SNR conditions and the system requirements
for accuracy [23, 24]. The rest (N − K) SUs can sleep during
this quiet period and conserve the energy. Global probability
of detection (Qd) and probability of false alarm (Qf ) using
decisions from k SUs is shown in (1) and (2) [8]. Since each
SU is represented by the average Pd, Pf value, m out of k
majority logic rule is used for fusion, where m depends on
the average Pd, Pf as

Qd(k) =
k∑

i=m

(
k
i

)
Pi
d(1− Pd)k−i, (1)

Qf (k) =
k∑

i=m

(
k
i

)
Pi
f

(
1− Pf

)k−i
. (2)

Bayesian risk function R(k) defines the risk associated with
making a wrong decision [17] as

R(k) = CFQf (k) + CM(1−Qd(k)). (3)

CF is the cost associated with false alarm and CM is the cost
associated with missed detection. As the number of sensing
users or k increases, R(k) is expected to decrease approaching
zero. Cumulative information gain is defined as I(k) = 1 −
R(k).

Goal of the network as a group is to obtain accurate
information with the least number of SUs sensing. It is also
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assumed that only the SU that have sensed the spectrum in a
particular time epoch will broadcast the sensing information
in that time epoch. This ensures the minimal utilization of
energy for sensing and minimal bandwidth overhead for
broadcasting. The smaller the number of sensing users, the
higher the resource efficiency at the cost of low information
gain and vice versa. At this point, we define a function called
network utility that underlines how efficiently the network
obtains information about spectral occupancy as

Jk = αIk + (1− α)η(k) where 0 ≤ α ≤ 1, η(k) = N − k

N
.

(4)

Network utility function with k active (sensing users) is
defined as the weighted average of information gain and the
resource efficiency (either energy consumption or bandwidth
overhead) of the network. It can be seen that Jk is a convex
function of k with a peak at K beyond which any gain in
information is offset by energy spent. Figure 3 shows the
behavior of Jk and Ik for different values of k and average
SNR. Location of the maxima of the network utility function
K depends upon the weighting coefficient α, average SNR
conditions, and the network size (N).

The situation of k users sensing at a time in a network
of size N can be represented as each SU sensing with
probability k/N , defined as sensing probability (Ps). Figure 4
shows the behavior of J as a function of Ps, α, N , and
Pd. With increasing N , the sensing probability to achieve
the maximum utility is lower as the sensing effort to be
put by each SU reduces. Increasing Pd (for constant Pf ) or
decreasing Pf (for constant Pd) is equivalent to improvement
in average SNR, resulting in reducing the sensing effort
required by each SU for a targeted sensing performance.

Equation (1) can be rewritten as

Qd = f
(
k,Pd,Pf

)
(5)

which essentially means that the combined Qd is a function
of local conditions and number of SUs sensing. For a targeted
accuracy Qd desired, the number active SUs K is a function of
Qd desired and average Pd/Pf is associated with the network as

K = g
(
Qd desired,Pd,Pf

)
. (6)

For a known Pdi , Pfi , and Qd desired, it K can be estimated that

K = min(k � Qd ≥ Qd desired). (7)

Knowing the value of K , energy efficient solution may
be implemented where only K out of N users senses the
spectrum in the quiet time and allowing the rest to sleep
and conserve energy. Of the N users, which K must senses
is an important question and has been dealt with in the
literature [25]. Since the SNR conditions, as well as network
size, are time varying, one of the solutions is to program
each SU to sense with probability Ps = K/N . On an
average, K SUs will sense in a given time epoch, satisfying
the requirements about spectral information and energy
consumption. Probability of sensing or Ps will be a function
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Figure 3: Network utility function J and cumulative information
gain versus k for different SNRs.

of the network size (N), weighting coefficient (α), and
average SNR (Pd and Pf ) as

Ps = f1(N , SNRav,α). (8)

Knowledge of these parameters will allow the SUs to program
their Ps such that the network utility is maximized. It should
be noted that since each SU is choosing to sense or not,
locally, the solution maintains fairness, that is, on average
each SU will expend energy equally. However, in mobile
ad hoc networks, both the size of network (N) and SNR
conditions are time variant. Each SU must be able to adjust
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its sensing profile (Ps) locally such that the network utility is
maximized. The local utility of an individual SU is defined as

Jik = αIk + (1− α)(1− Psi) 0 ≤ α ≤ 1, (9)

where Psi is the probability of sensing for the ith user. The
conflict mentioned earlier is clearly shown in this equation.
Reducing local sensing profile (Psi) will increase the resource
efficiency (second term in (9)), but with every reduction
in local Psi, the global information will suffer, effectively
reducing Ik and local utility.

So long as an average K out of N users sense the
spectrum, network utility will be maximized, which may
come at the cost of some SUs sensing more often than others.
Such a solution is not fair, as a result it is not stable and is not
advisable in emergency CRAHNs. We model this scenario
using game theory, where each SU is treated as a player that
makes a rational decision (in this case whether to sense or not
in a given quiet time period [20]), based on its local utility
function. The goal of a rational player is to maximize its own
utility. We use this model to finally derive an adaptive system
that will allow a network to reach the minimal probability
of sensing, such that the resulting network has maximal
network utility and is also fair to all its users. Evolutionary
game model is used to model the CRAHN to analyze the
performance of the network and find a strategy that gives
stable solution of maximum utility.

4. Evolutionary Game Model

An evolutionary game consists of a large number of players
playing a given game repeatedly among them. Actions of the
players are based on their beliefs. Inbuilt learning process
allows them to update their beliefs based on experience.
In the spectrum sensing game, it is assumed that each SU
is trying to achieve the highest payoff for itself and will
change its strategy based on the belief as to which strategy
will lead to higher payoff [2]. Discussion follows the cycle
of autonomous choice shown in Figure 5, where a one shot
game is first analyzed, followed by iterative game and then
the evolutionary model.

4.1. One Shot Game. One shot simultaneous game G is
defined as G = 〈T ,A,U〉, where T = {p1 p2 · · · pN} is the
set of players, A = {sense, sleep} is the action, space and U is
the vector of utility functions of each player. Payoff matrix for
one shot game between two players is depicted in Figure 6.
The utility function values x, y, and z in the action space
are

x = αI2,

y = αI1,

z = αI1 + (1− α),

w = (1− α).

(10)

The spectral information gained with two active SUs I2 is
expected to be greater than or at best equal to I1.

Case 1 (y ≤ x < z). The convergence is towards quadrants 2
and 3. If both players (p1, p2) are in “sense” state (quadrant
1), both players have motivation to move towards “sleep”
state. After playing the game once, action profile of players
p1 and p2 would be {sense, sleep} or {sleep, sense}.

Case 2 (x > z). The convergence is towards quadrant 1 where
both players would sense.

Case 3 (y < w). The game converges to quadrant 4 where the
best strategy for each SU is not to sense at all.

Arrows in Figure 6 indicate direction of preference of
choices leading to Nash equilibrium (NE) for Case 1. Quad-
rants 2 or 3 constitute the NE as neither player could get a
better payoff by changing its strategy unilaterally. This is also
Pareto Optimal as neither p1 nor p2 can make a unilateral
change to get a better or same utility without hurting the
other player’s utility. This game is a symmetric, nonzero sum,
and simultaneous whose solution lies under mixed strategy.
Figure 7 shows the Pareto boundary coinciding with the
NE.

4.2. Iterative Game. In an iterative game the action-payoff
cycle is repeated several times (Figure 5). As seen earlier, it
is possible to achieve equilibrium when the game is played
once, that is, one SU senses while the other sleeps, resulting
in low payoff for the sensing SU. However, when the game
is played repeatedly, the strategy adopted by the players will
change depending upon their past experience, past payoff,
and expected duration of the game.

Tit-for-tat, tit-for-two tats, grim trigger strategy have
been shown to achieve a stable solution [26]. In these
strategies, a rogue SU (an SU that refuses to contribute
to the sensing effort) will be penalized by others for not
cooperating, that is, if an SU refuses to sense, others in the
group will not sense either. This would result in complete
collapse of the network, resulting in trivially stable solution.
Analogy can be drawn to the “public good” game, where
everyone benefits from others’ contribution. Although the
solution strategy where few players contribute for the public
good is Pareto optimal, it is not fair to the contributing
players. As a result, this solution is not stable. It has been
proposed that a stable strategy in a public good game
can only be achieved by using a sufficiently large reward
or significant penalty [27, 28]. Provided the reward is
significant, all players could be motivated into cooperation
and, effectively, into stability.

4.3. Evolutionary Game. The evolutionary game is defined
as follows: G = 〈T ,A, S,U〉, where S is the strategy space
over action set A = {sense, sleep}. The number of the SUs
following strategies {s j} is {nj} where n1 + n2 + n3 = N .
The population profile x is defined as x = {x1, x2, x3}, where
xj = nj/N .

For theoretical analysis, we shall first consider only 3
strategies S = {0,K/N , 1} which can be extended further.

Strategy “1” corresponds to al sleep ⇒ always sleep,
Ps = 0.
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Figure 4: J versus Ps.

Strategy “2” is KbyN ⇒ sense the spectrum with prob-
ability Ps = K/N . This sensing probability would maximize
the network utility provided that all follow it.

Strategy “3” corresponds to al sense ⇒ always sense the
spectrum, Ps = 1.

Average utilities of groups using the corresponding
strategies of S are given by

Ũ1 = αIk + (1− α),

Ũ2 = αIk + (1− α)
(

1− Ps opt

)
where Ps opt = K

N
,

Ũ3 = αIk.

(11)

It can be seen that for 0 < α < 1, average utility of the group
following strategy 1 will be higher than the other two groups
as

Ũ1 > Ũ2 > Ũ3. (12)

In an evolutionary game, actions of the SUs are based
on the belief factor when the game is played repeatedly.
The strategies may change between generations based on
the comparison between the payoffs (utilities) for the group
following a certain strategy and average system payoff. Any
strategy that results in higher than average system payoff
(network utility) will be followed by the majority of the
population, ultimately becoming the winning strategy. This
behavior is modeled by “Replicator Dynamics” [26, 27]. The
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network utility or payoff involving populations following
different strategies is defined as

Ũnet = Ũ1x1 + Ũ2x2 + Ũ3x3. (13)

Substituting (11) in (13)

Ũnet = [αIk + (1− α)]x1

+
[
αIk + (1− α)

(
1− Ps opt

)]
x2 + αIkx3

= αIk(x1 + x2 + x3) + (1− α)x1 +
(

1− Ps opt

)
(1− α)x2

= αIk + (1− α)x1 +
(

1− Ps opt

)
(1− α)x2.

(14)
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Figure 7: Utility space.

For strategy 1 to be the winning strategy, the condition
Ũ1 > Ũnet must hold good, that is,

αIk + (1− α) > αIk + (1− α)
[
x1 +

(
1− Ps opt

)
x2

]
,

(1− α) > (1− α)
[
x1 +

(
1− Ps opt

)
x2

]
,

[
x1 +

(
1− Ps opt

)
x2

]
< 1,

(
1− Ps opt

)
x2 < 1− x1 = x2 + x3,

−Ps optx2 < x3.

(15)

Since x1, x2, x3, and Ps opt are all positive, the condition above
is always satisfied and all the SUs will converge to strategy 1.
This would be a trivially stable strategy. For network viability,
it is necessary that strategy 2 or K/N strategy should be
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the winning strategy. For strategy 2 to win, the following
conditions must be satisfied:

Ũ2 > Ũnet or Ũ2 > Ũ1, Ũ2 > Ũ3. (16)

However, with the current definition of utilities, conver-
gence to strategy 2 is not possible, since SU seem to gain
much more by using the knowledge from others rather than
sensing themselves. Drawing an analogy with the “Public
Good games” [28], the best network utility may be achieved
by providing the SUs with an incentive or a penalty. Such
incentivization has been discussed in depth in [29]. To
encourage contribution from all the SUs, we introduce a
“Reward factor” (Fsi) as a reward metric. The value of the
reward awarded to the ith SU depends upon the sensing
effort by an SU as compared to the required effort (K/N) that
will achieve the targeted performance.

Consider the following:

Fsi =

⎧
⎪⎪⎨
⎪⎪⎩

(
Psi

Ps opt

)
Psi < Ps opt

1 Psi ≥ Ps opt,
(17)

where Psi is the sensing probability of ith SU. The reward
saturates to 1 once the sensing probability Psi reaches the
desired value Ps opt = (K/N). The reward for the SUs
following strategies al sleep, K/N , and al sense are listed
below:

(Strategy 1) Fsi = 0 for al sleep,

(Strategy 2) Fsi = 1 for K by N ,

(Strategy 3) Fsi = 1 for al sense.

After inclusion of the reward factor, the utilities can be
rewritten as,

Ũ j = αFsIk + (1− α)(1− Ps), (18)

Ũ1 = (1− α) with Ps = 0, Fs = 0, (19)

Ũ2 = αIk + (1− α)
(

1− Ps opt

)
, (20)

Ũ3 = αIk, (21)

Ũnet = (1− α)x1 +
[
αIk + (1− α)

(
1− Ps opt

)]
x2 + αIkx3.

(22)

For K/N strategy to win, it must be the strategy with the
highest payoff compared to other strategies, or

Ũ2 > Ũ1,

αIk + (1− α)
(

1− Ps opt

)
> (1− α),

αIk > (1− α)Ps opt,

α >
Ps opt

Ik + Ps opt
.

(23)

The condition will hold true so long as the information
gain is greater than 0, which is always true for k > 0 as

Ũ2 > Ũ3,

αIk + (1− α)
(

1− Ps opt

)
> αIk,

(1− α)
(

1− Ps opt

)
> 0.

(24)

Since both α and Ps opt are both bounded by 1, the above
condition is always satisfied when α /= 1 and Ps opt /= 1. Thus,
strategy 2 has higher payoff than strategy 1 and 3 and thus
will be the winning strategy with inclusion of the reward
factor.

4.4. Replicator Dynamics and Evolutionary Stable Strategy. A
system is considered to be evolutionary stable when change
in the populations following different strategies goes to zero.
Let dxj/dt represent the change in the population following
strategy j. According to replicator dynamics [24, 25], this
change will be directly proportional to difference between
group payoff and network payoff as

dxj
dt
= ẋ j = xj

(
Ũ j − Ũnet

)
= Δx. (25)

Since the number of SUs in the network remains con-
stant, the population with a winning strategy must increase
at the cost of population following other strategies as

x1 + x2 + x3 = 1;

dx1

dt
+
dx2

dt
+
dx3

dt
= 0.

(26)

A fixed point of the replicator dynamics is where the
relation dx j/dt = 0 is satisfied for all j [24, 25].

It can be shown that inclusion of reward factor allows
strategy 2 to be the winning strategy as well as the stable
strategy. A fixed point {x1 = 0, x2 = 1, x3 = 0} of the
replicator dynamics (or any dynamical system) is said to be
asymptotically stable if any small deviation ε from that state
is eliminated by the dynamics as t → ∞. Let x∗2 = 1 be the
stable point, being perturbed by a disturbance ε [26]. The
new population density is given by

x2 = x∗2 − ε = 1− ε. (27)

Substituting (27) in (25) for j = 2, we have

ẋ2 = −ε̇ = (1− ε)
(
Ũ2 − Ũnet

)
, (28)

ε̇ = − (1− ε)
(
Ũ2 − x1Ũ1 − x2U2 − x3U3

)

= − (1− ε)
(
Ũ2(1− x2)

)
,

(29)

ε̇ = (1− ε)
(
εŨ2

)
≈ −εŨ2. (30)

With the assumption that 0 < ε � 1; εn is negligible for
n > 1. Substituting (20), (30) can be solved as

ε̇ = −ε
(
αIK + (1− α)

(
1− Ps opt

))
,

ε(t) = ε0e
−(αIK+(1−α)(1−Ps opt))t .

(31)
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Thus, asymptotic stability with t → ∞,ε → 0 is ensured
when the condition below is satisfied, which is always true
since α, Ik and Ps opt are all bounded between 0 and 1 as

αIk + (1− α)
(

1− Ps opt

)
> 0 (32)

The strategy set can be extended where different groups
of SUs can sense with different probabilities varying from
0 to 1, that is, over strategy space {0, . . . K/N . . . , 1}. The
network converges to K/N strategy because of the presence
of reward factor introduced in the utility functions. If there is
no group following the strategy K/N , the game will converge
to a strategy that is close to the optimum K/N strategy.
Implementation of the reward system requires a central
entity that can monitor the broadcasting activity by each
SU and allocate rewards based on their sensing probability
computed over several iterations. With various SUs in the
network sensing with different probabilities, the incentive
factor will ensure that the system will evolve such that all
SUs will follow a strategy that has the highest network
utility.

4.5. Validation of the Evolutionary Game Model. To evaluate
the performance of the proposed analytical model, a sim-
ulation model has been built using software Netlogo [31].
100 iterations are construed to represent one generation,
and the strategies followed by the players are assumed to
be unchanged over a generation. The number of SUs in the
network N has been set to 30, and the initial population
distribution of the three groups has been assigned randomly.
The process of evolution of population can be seen in the
plots shown in Figure 8. The first graph shows the change
of population or Δx (25) over generations. The third graph
shows the number of SUs following each strategy over several
generations, or the dynamic demographics of the game.
As the game evolves, the population following K by N
(strategy 2) strategy increases at the cost of the other two
groups.

Fairness of a system is judged based on the difference
between the average energy spent by individual SUs in
the network. In a fair system, the average energy spent
will be similar or the variance between the energy spent
by individual SUs will be small. The sample variance ν is
computed using average energy spent by individual SU (ei)
and the mean of the average energy spent by all the SUs in
the group ẽ. High variance shows an unfair situation and vice
versa. Plot shows reduction in variance as the system evolves
towards a stable, fair solution. The second graph shows the
variance over generations. It can be seen that the variance
goes down to zero as the game stabilizes as

ν =
∑N

i=1 (ei − ẽ)2

N − 1
. (33)

0 10 20 30 40 50 60 70 80
0

0.05
0.1

0.15
0.2

0

0.5

1

0

10

20

30

Generations

N
u

m
be

r 
of

 S
U

s 

0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80

V
ar

ia
n

ce
 o

f 
en

er
gy

sp
en

t 
ac

ro
ss

 S
U

s
Δ
x

Δx, variance, and number of SUs versus generations

Ps = 0
Ps = 1

ps = Ps opt
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One essential condition for convergence to the K by N
strategy (strategy 2) is that there should be at least one
SU following the strategy. If no subgroup is following K
by N strategy, the system will evolve towards the subgroup
following the closest to strategy K by N group, resulting in a
suboptimal solution. However, in all cases the system is fair,
stable and evolves to a nontrivial solution.

5. Application of the Evolutionary Game Model
to Adaptive Spectrum Sensing Mechanism in
Emergency CRAHN

The game model described in Sections 3 and 4 can be applied
to an adaptive collaborative spectrum sensing scheme in
emergency CRAHNs [23]. In this scheme, each SU can
sense with an initial sensing probability from 0 to 1. For
viability of the network, it is desirable that all SUs in
the network should sense with probability K/N , but the
SUs do not have the knowledge about the values of K
or N due to dynamic operating conditions. The central
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Figure 10: The functional block diagram of the proposed system.
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Figure 11: Behavior of the simulated system under changing
environmental conditions.

entity monitoring the spectrum sensing activity by each
SU keeps track of network size (N) and estimates the
optimum sensing frequency periodically. It provides this
information to the SUs indirectly through the reward factor
(Fsi). Implementation of the reward system requires a central
entity (shown in Figure 9) that will monitor the spectrum
sensing activity of each SU and allocates rewards based on
the individual contribution and desired contribution.

With various SUs in the network sensing with different
probabilities, the incentive factor will help individual SUs
adapt their sensing strategy such that all SUs will follow a
sensing schedule, that is, (or the closest to) the optimum
sensing schedule, resulting in highest network utility. Each
SU has the flexibility to adjust its sensing schedule at the rate
it desires. Any change in network size or SNR conditions
which should result in corresponding change in sensing
schedule is communicated to the SU through the reward
factor.

Figure 10 shows the functional diagram of the proposed
system. Functions such as data fusion, estimation of the
parameters for each SU (Pdi,Pf i,Psi), keeping track of
network size (N), and estimation of K are performed at
the spectrum coordinator. Estimation of the probabilities
(Pdi,Pf i,Psi) is done over a period of time, assumed to be
M time epochs. The SC computes the reward for each SU at
the end of each M time epochs.

This reward factor Fsi is sent in real time to each SU. The
SU uses this information to adapt its sensing probability such
that its reward is maximized. The update equations for Psi
when Fsi < 1 and for Fsi = 1 are as shown below. Each SU
can adjust the rate at which its probability of sense is being
adapted with the factors μp and μn as

Ps new = Psi +
μp(1− Fsi)

Psi
,

Ps new = Psi + μnPsi.

(34)
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Step 1: Initialize k = 1, Set M
Qd target = 0.9, Ps opt = 1,
Ps opt Learning flag = 0, iter = 0

Step 2: Get local decisions
Fuse the received data to obtain global decisions
Update Psi, Pdi, Pf i

Compute Qd for global decision iter = iter + 1
Step 3: if (iter ==M)

Compute reward for each SU
Set iter = 1
Compute Qd av (Average Qd over M iters)
If (Qd av > Qd target) & (Ps opt Learning flag == 0)

set Ps opt ←mean (Psi) of all SUs;
set Ps opt Learning flag = 1

end
end

Step 4: iter←iter + 1
Step 5: If Network Size changes set N old← N , Ps opt ← Ps opt ∗N old/N
Step 6: If SNR changes set Ps opt Learning Flag←0

go to Step 2

Algorithm 1: Adaptation algorithm at the spectrum coordinator (SC).

Step 1: Init: Set M;
Set Psi = Random value {0 to 1};
Fsi = 0; μp = 0.02; μn = 0.2
iter = 1

Step 2: Make local decisions about spectral occupancy and send to SC
iter = iter + 1

Step 3: if iter =M Observe Fsi
If Fsi < 1 and Psi < 1 set Psi = Psi + ΔPsi

else if Ps > 0 Ps = Ps − ΔPs

iter = 1
Step 4: go to Step 2

Algorithm 2: Adaptation algorithm at the SU “i”.

The pseudocode for the algorithm is as shown below.
Table 2 lists the parameters used for simulations. The SC
receives decisions from all the SUs in the network and
generates the global decision using those decisions. It also
updates probabilistic parameters for each SU (Psi,Pdi,Pf i).
After averaging over M iterations, it determines the award
for each SU based on its sensing frequency and the required
sensing frequency. The SC also keeps tracks of the number
of SUs in the network (from the proactive routing table)
and adjusts the optimum sensing frequency if the network
size changes. Increase in the network size will result in
reduction in Ps opt and vice versa. If the average Pd and Pf

change significantly it is assumed that SNR change event
has occurred. This triggers learning at SC as indicated by
resetting the flag Ps opt Learning flag (see Algorithm 1).

The code at each SU is shown below. Here N and the
group SNR need not be known. The Ps opt is updated based
on the reward Fs. It should be noted that this reward is a

function of both N and SNR and reflects any changes in their
value (see Algorithm 2).

Figure 11 shows the behavior of the simulated CRAHN
under changing environmental conditions. Plots show the
variance of the energy spent by each SU, sensing performance
of the system in terms of Qd over time. The group SNR has
been set to −2.25 dB and initial network size N is 30. At the
50th time unit the SNR of the system is changed to −2.25 dB
from −1.75 dB and at 150th unit, the number of SUs in the
system (N = 30) is changed to (N + 5). It can be seen
that any change in the environment will result in temporary
increment of variance and reduction of Qd, but the system
can adapt itself with the help of the learning that takes place
at the SC and the reward factor that is fed back to SU. With
that a low energy variance as well as a desired Qd is achieved.
Last plot shows the changes in the probability of sensing at
any ith SU. Reduction in the SNR results in slow increment of
Psi, and similarly increment in N results in gradual reduction
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Table 2: List of parameters for simulation.

Parameter/scheme Value/type Comments

Local spectrum sensing Energy detection Can be replaced by any other local sensing mechanism

SNR distribution across SUs Exponential distributed with different average values

Arrival distribution of SUs. (changing N) Poisson

Initial number of SUs 10 Considering medium sized networks with N between 3 to 50 SUs

μp 0.02 Scaling factor adjusted empirically

μn 0.2 Scaling factor adjusted empirically

Table 3: Requirements of emergency CRAHNs.

Requirement parameter Met by the following design feature

Accuracy Network utility function

Resource efficiency (energy consumed or bandwidth overhead) Network utility function

Variation in number of SUs Adaptation

Variation in SNR Adaptation

Optimal number of sensing SUs in each time epoch K Self-learning based or estimation [23]

Fairness with respect to energy consumption All SUs sense with the same probability

Low latency Proactive periodic quiet period sensing

Byzantine attack immunity LLRT-based data fusion [30]

of Psi. The rate of change of Psi is governed by μp and μn
which can be adjusted locally.

6. Conclusions

In this paper, we propose a spectrum sensing system that can
meet the requirements of emergency CRAHNs as listed in
Table 3. The adaptation algorithm implemented at each SU
adapts its local sensing schedule such that the network utility
is continually maximized even in case of changing network
size and the SNR variations. As the network size and/or SNR
conditions change, the optimum number of SUs that must
sense in a given quiet period changes, this number is learnt
at the SC periodically. SC communicates this information via
a reward factor, which allows the SU to adjust its sensing
schedule.

The LLRT-based fusion implemented at the SC inher-
ently is resilient to Byzantine attacks [30] and provides
protection against malicious users. Since the sensing is done
proactively and periodically in the quiet periods [20], latency
of the system is reduced compared to request-based reactive
sensing.

Concept of the reward coefficient is derived from the
analysis performed using evolutionary game theory and
replication dynamics. Comparison with public good game
showed that unless a reward or penalty is given, the stable
solution is where no SU senses and the network cannot
function. Stability achieved using a proportional reward
concept ensures high spectral accuracy, while consuming
the smallest amount of energy by the group. The presented
evolutionary framework helps a CRAHN to adapt itself to an
optimal sensing schedule, that is, to decide whether to sense
or not sense in a time epoch adaptively without having any
information of the optimal schedule.
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