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The last decade has seen a booming of the applications of stereoscopic images/videos and the corresponding technologies, such
as 3D modeling, reconstruction, and disparity estimation. However, only a very limited number of stereoscopic image quality
assessment metrics was proposed through the years. In this paper, we propose a new no-reference stereoscopic image quality
assessment algorithm based on the nonlinear additive model, ocular dominance model, and saliency based parallax compensation.
Our studies using the Toyama database result in three valuable findings. First, quality of the stereoscopic image has a nonlinear
relationship with a direct summation of two monoscopic image qualities. Second, it is a rational assumption that the right-eye
response has the higher impact on the stereoscopic image quality, which is based on a sampling survey in the ocular dominance
research. Third, the saliency based parallax compensation, resulted from different stereoscopic image contents, is considerably
valid to improve the prediction performance of image quality metrics. Experimental results confirm that our proposed stereoscopic
image quality assessment paradigm has superior prediction accuracy as compared to state-of-the-art competitors.

1. Introduction

Three-dimensional (3D) imaging has been an extensive re-
search area, the application of which ranges from entertain-
ment, such as videos and games, to specialized domains,
such as education and medicine. As more and more image
processing operations have been specifically designed for
stereoscopic images, the necessity for an effective perceptual
stereoscopic image quality assessment (IQA) algorithm is
increasing. Following the research of monoscopic image
quality metrics, stereoscopic IQA approaches fall into two
categories: subjective assessment and objective assessment.
Although the subjective assessment method should be the
ultimate quality gauge for digital images, it is usually time-
consuming, expensive, and not practical for real-time image
processing systems. Therefore, an increasing number of
objective stereoscopic image quality metrics have been devel-
oped. According to the availability of reference images to
be compared with during the tests, objective stereoscopic
IQA methods can be further classified into three categories.
First, the most general approaches are full-reference methods

[1, 2], assuming the reference image is fully known. In
many practical applications, however, the reference image is
not available, and the second type of methods, namely, no-
reference image quality metrics [3, 4] is then desirable. The
third type is referred to as reduced-reference IQA algorithm
[5], which is applied to the situation where the reference
image is only partially available, that is, some extracted fea-
tures are made available as side information to help estimate
quality of the distorted image. This paper concentrates on the
no-reference type of IQA approaches.

Many valuable monoscopic no-reference image quality
metrics were proposed during the last decade. Wang et al.
and Sheikh et al. proposed IQA methods for JPEG and
JPEG2000 compressed images in [6, 7], which have obtained
high prediction performance. Besides, Blind Image Quality
Indices (BIQI) [8] proposed were based on image distortion
classification followed by those in [6, 7] and other image
quality metrics used for different specific types of distortion.
This no-reference IQA approach not only achieves much
better results but also opens a major new direction for the
current research of IQA algorithms.
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Extension from monoscopic image quality metrics to
stereoscopic IQA methods is a challenging work, although
some inspiring models have been proposed in [1, 2, 4, 5].
In the real world, it is not difficult to find that the human
subjective feelings between two-dimensional (2D) and 3D
images are immensely distinct on viewing, but they still have
a very close contact with each other. This phenomenon is
mainly supported by the fact [9] that cells in the retina of
each eye individually encode its received information, and
then the information from both eyes is merged in lateral
geniculate nucleus (LGN) to form the final stereoscopic
image in the brain. Therefore, we were enlightened to design
a no-reference stereoscopic IQA paradigm based on 2D
image quality metrics and the relationship between 2D and
3D image qualities.

So far, few stereoscopic image quality metrics have been
studied on the influence of nonlinear additive model between
the left and right image qualities on the perceptual quality
of the stereoscopic image, but it is noticed in our research
that a kind of nonlinear additive effect mainly takes effect
between them. Firstly, we found that the linear additive
model can constitute a link between the 2D and 3D image
qualities. However, it can hardly delight us due to the
demonstration in [10] that the amplitude tends to be reduced
with anticorrelated stimuli because of the responses of V1
complex cells. Furthermore, inspired by the research of
overlapping effects among different categories of contrast in
[11], it is observed that overlapping effects exist between
the qualities of left and right images on their integration,
especially under the condition that the correlation of their
qualities is quite weak. Then, by decreasing these overlapping
parts, our proposed nonlinear additive model gains an
inspiring improvement.

Through further researches, we found that the above-
mentioned nonlinear additive effect is probably caused by the
discrepancy of qualities between left and right images. This
phenomenon can be explained by some researches on ocular
dominance [12–17]. Inspired by Ocular Dominance Index
(ODI) in [12, 13], this paper proposes an ocular dominance
model, which is defined as ODI weighted quality difference
between left and right images. It will be demonstrated widely
that our ocular dominance model has significant influences
on the perceptual quality of stereoscopic images, just like
the way the nonlinear additive model performs. Besides,
it is pointed out in [14–17] that about two-thirds of the
population is right-eye dominant and one-third is left-eye
dominant, while neither eye is dominant in a small portion
of the population. So, this conclusion enlightened us to make
the right-eye response have higher weight on prediction of
the final stereoscopic image quality, which defines our ocular
dominance weighting model, and it also contributes a certain
promotion.

Finally, different degrees of parallaxes resulted from
various stereoscopic image contents also highly affect the
prediction accuracy of image quality metrics, based on the
experimental result in [18] that the low subjective evaluation
is caused by high degree of parallax. Thus, except for the
reduction of the nonlinear additive effects, the compensation
of different degrees of parallaxes is also applied here. In

addition, visual attention (VA) based IQA methods in [19,
20] illuminated us to introduce the applications of double
various VA models [21, 22]. As expected, the parallax com-
pensation can be devoted to much higher prediction results
for stereoscopic image quality metrics.

Consequently, based on a 2D no-reference image quality
metric ([6] is chosen here) and our proposed effective
models, we present a novel nonlinear additive model, ocular
dominance (weighting) model, and saliency based parallax
compensation based distortion metric (NOSPDM) for JPEG
compressed stereoscopic images. Our NOSPDM method
basically operates in five steps: individual predictions of left
and right image qualities, nonlinear additive model based
combination of both quality measures, reduction of the
ODI weighted discrepancy between left and right image
qualities, different weights for both eyes supported by ocular
dominance researches, and, finally, saliency based parallax
compensation resulted from different stereoscopic image
contents.

The remainder of this paper is organized as follows.
In Section 2, the phenomenon of nonlinear additive effect
is first reviewed, and then the employment of nonlinear
additive model is described in detail. Supported by the ocular
dominance researches, Section 3 explicitly presents the pro-
posed ocular dominance (weighting) model. The influence
of different parallaxes and the corresponding compensation
methodology combined with two classical VA models are
mainly introduced in Section 4. Section 5 proposes our
NOSPDM paradigm. In Section 6, experimental results
using the Toyama database [3] are reported and analyzed.
Eventually, conclusion is drawn and future work is discussed
in Section 7.

2. Nonlinear Additive Model

For quality assessment of monoscopic images, human obser-
vers generally score the quality by quantifying the distortion
or difference between the reference and distorted images.
However, for stereoscopic images, it has been noticed that
two images (left and right images) are individually received
by different eyes, and then the final stereoscopic image is
formed by merging both monoscopic images in LGN [9].
Thus, under the condition that predictions of both 2D image
qualities (illustrated in Section 5.1) are available, a reliable
combination model becomes the key point.

It would be natural to employ the linear additive model,
one of the simplest models for incorporating two parts. How-
ever, we are hardly content with its result, as illustrated in
Figure 9 and Table 4 (NOSPDM1). Then, to find the problem
of the linear additive model, eight nonexperienced assessors
are invited to score fourteen monoscopic images (Figure 2
and all the other corresponding 2D distorted images) with
the same 3D image content, and their subjective scores
versus mean opinion score (MOS) values of stereoscopic
images in the Toyama database [3] are displayed in Figure 1.
Through this test, two significant conclusions can be drawn.
Firstly, the relationship between 3D image quality and both
2D image qualities is far beyond the linear additive model.
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Figure 1: Illustration of qualities of stereoscopic images with the
same “computer” image content versus qualities of their correspon-
ding left and right images. MOS(3D), MOS(L), and MOS(R) indi-
cate MOS values of stereoscopic, left and right images, respectively.

Table 1: Demands for the chosen image groups for testing the “dis-
tress” feeling.

Image index Left image quality Right image quality

1 Low High

2 High Low

3 Fair Fair

Table 2: Demands for the chosen four image pairs with different
degrees of JPEG distortion.

Image pairs index JPEG compressive
quality of left image

JPEG compressive
quality of left image

1 15 79

2 79 15

3 27 27

4 100 100

Secondly, the stereoscopic image quality is sensitive when
the discrepancy between its corresponding two monoscopic
image qualities is quite large. For example, the higher value
the left image quality becomes, the lower increasing rate of its
stereoscopic image quality gets, as marked by black diamond
“�” in Figure 1. If the different qualities of left and right
images can be regarded as different stimuli, the fact stated
above basically coincides with the results of experiments in
[10], which discovered that amplitude tends to be lessened
with anticorrelated stimuli caused by the responses of V1
complex cells.

Further idea is enlightened by [11], in which it is verified
that no two saliency effects were found to be strictly indepen-
dent in all subjects. When viewers score monoscopic images,

Table 3: Different combinations of NOSPDMx. Y represents the
corresponding model applied in the (x)th combination.

x-index FL FW
O FN FD

O FP FVP FSP

1 Y

2 Y

3 Y Y

4 Y Y

5 Y Y

6 Y Y

7 Y Y Y

8 Y Y Y

9 Y Y Y

10 Y Y Y

11 Y Y Y

12 Y Y Y

13 Y Y Y

14 Y Y Y

15 Y Y Y

16 Y Y Y

17 Y Y Y

18 Y Y Y

Table 4: PLCC, SRCC, KRCC, AAE, and RMSE values (after
nonlinear regression) of testing and training groups in [3] and
NOSPDM1–NOSPDM18.

Metrics PLCC SRCC KRCC AAE RMSE

[3] (testing) 0.9350 — — 0.3500 0.4210

[3] (training) 0.9660 — — 0.2920 0.3670

NOSPDM1 0.8934 0.8897 0.7066 0.4136 0.5234

NOSPDM2 0.8943 0.8912 0.7097 0.4120 0.5212

NOSPDM3 0.9350 0.9312 0.7666 0.3303 0.4133

NOSPDM4 0.9360 0.9325 0.7699 0.3269 0.4100

NOSPDM5 0.9318 0.9266 0.7609 0.3358 0.4228

NOSPDM6 0.9288 0.9231 0.7556 0.3416 0.4316

NOSPDM7 0.9493 0.9433 0.7926 0.2851 0.3664

NOSPDM8 0.9665 0.9600 0.8284 0.2330 0.2992

NOSPDM9 0.9705 0.9652 0.8416 0.2146 0.2807

NOSPDM10 0.9502 0.9444 0.7951 0.2814 0.3630

NOSPDM11 0.9673 0.9611 0.8313 0.2289 0.2955

NOSPDM12 0.9711 0.9660 0.8442 0.2114 0.2782

NOSPDM13 0.9470 0.9400 0.7878 0.2896 0.3741

NOSPDM14 0.9638 0.9565 0.8223 0.2402 0.3106

NOSPDM15 0.9676 0.9613 0.8340 0.2238 0.2942

NOSPDM16 0.9445 0.9373 0.7837 0.2958 0.3827

NOSPDM17 0.9610 0.9534 0.8162 0.2476 0.3220

NOSPDM18 0.9647 0.9581 0.8278 0.2344 0.3067

their saliency regions have highly significant influences on
the final subjective scores. Moreover, our used 2D no-
reference image quality assessment approach [6] depends on
perceiving local distortion, which also belongs to a kind of
saliency on a broader definition. Therefore, we have a reason
to believe that overlapping effects exist between 3D image
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(a) first pair (b) second pair (c) third pair (d) fourth pair

Figure 2: Four monoscopic image pairs with the same “computer” image content: ((a)–(c)) three pairs of distorted images; (d) reference
image pairs. The regions marked in red circle can clearly show the different JPEG compressive qualities of every image.
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Figure 3: PLCC and SRCC values (given in Section 6) based on
different weights of right-eye response (the summation of both
weights is 2) and their maximum values and corresponding weight
values (“∗”). Weights of right-eye response are tested from 0 to 2,
and the concealed part has the lower value than the revealed part.

quality and both 2D image qualities. Following the method
in [23], our nonlinear additive model can be computed as

FN = λ ·max{Q2D(L),Q2D(R)}, (1)

where L and R indicate left and right images, and Q2D

represents a 2D image quality assessment method. Here,
maximum operator is used to replace minimum operator,
since image quality metrics based on measuring difference or
distortion mainly pay attention to the lower quality image or
the poorer quality regions, which is opposite to the situation
of [11, 23].

3. Ocular Dominance (Weighting) Model

It is described in detail above that our proposed nonlinear
additive model can overcome the obstacle introduced from
the nonlinear additive effect between left and right image
qualities. However, this model is only illuminated by some
researches about overlapping effects, lacking theoretical
principles.

3.1. Compensation of “Distress” of Stereoscopic Image Pairs.
Further experiment is to choose more monoscopic image
pairs from the Toyama database [3] and divide them into
different testing groups. Every group should include three
image pairs with the same stereoscopic image content, which
meets the requirement presented in Table 1. One exemplary
group is shown in Figures 2(a)–2(d).

If we observe the stereoscopic images shown in Figures
2(a)–2(d) with 3D shutter glasses, at a glance, we can
immediately tell that the third stereoscopic image has the
noticeable distortion. However, we can barely find any
difference between the reference and distorted images for the
first and second stereoscopic images. This phenomenon can
be explained by the fact that there is one image of high quality
in the image pairs, and then the visual transience effect makes
observers feel good because of the rapid switch of 3D glasses
shutters between the open and close states. Contrarily, since
the qualities of both images in the third stereoscopic image
are not good, they are of much lower perceptual quality.

However, if viewing the first or second stereoscopic image
for sufficiently long time, we can feel uncomfortable or even
dazzled. The MOS values from the Toyama database verify
this observation: generally, the third stereoscopic image
quality is the highest of the three, while the MOS value of
the second stereoscopic image is a little higher than that
of the first one. Demonstrated by many different groups
meeting the demand in Table 1, it is noticed that this
phenomenon exists widely. Consequently, we believe that the
“distress” feeling is caused by the difference between left and
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Figure 4: Illustration of the (a) first index; (b) second index; (c) third index; (d) fourth index of image pairs in Table 1. QJPEG(L) and
QJPEG(R) are predictions of left and right image qualities by [6], and MOS(3D) indicates MOS values of stereoscopic images.

right image qualities, and, moreover, the “distress” feeling
becomes more serious with their larger discrepancy.

When observing a stereoscopic image, if the left and right
images are almost of the same quality, our eyes can function
equally, and the images are merged smoothly in LGN [9].
However, when the left and right image qualities are quite

different, for example, the left image is clear but the right
one is heavily contaminated as shown in Figures 2(c) and
2(d), the imbalance causes the inequality of the two eyes
[24] and LGN will have difficulty in merging left and right
images. The brain must tense the muscles around the outside
of the eye that is receiving the low quality image so as to
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Figure 5: A simple visual attention model defined in [21].

steady the view. And this makes the brain suffer. After a while,
the muscles start to ache and the nerves begin to pain. And
this unbalanced image pair may even result in amblyopia for
a very long-term viewing [24].

In this study, this important “distress” is defined as

G(X ,Y) = H(X ,Y) · ‖X − Y‖∞, (2)

where X and Y are the left- and right-eye responses respec-
tively, and H(X ,Y) denotes a “distress” degree parameter.
Furthermore, the interaction between the left- and right-eyes
should have impacts on the final perception of the 3D image
quality. Inspired by the definition of ODI in [12, 13]

ODI =
[
left eye response

]

[
left eye response

]
+
[
right eye response

] , (3)

we believe that ODI is a good characterization of this inter-
action, and it can constitute a link between both 2D image
qualities and the final 3D image quality. So, by taking ODI
into H(X ,Y) and replacing eye responses X and Y with
quality predictions Q2D(L) and Q2D(R) in (2), our ocular
dominance model can be given by

FD
O = ODI · ‖X − Y‖∞ = X

X + Y
· ‖X − Y‖∞

= Q2D(L)
Q2D(L) + Q2D(R)

· ‖Q2D(L)−Q2D(R)‖∞.
(4)

3.2. Asymmetric Weights of Different Eye Responses. Besides,
an important conclusion is given in [14–17] that about two-
thirds of the population are right-eye dominant and one-
third is left-eye dominant, while neither eye is dominant in
a small portion of the population. Thus, we have a reason to
suppose that asymmetric weights of different eye responses
have a certain impact on prediction performance of stereo-
scopic IQA method. This supposition can be testified by
using all the stereoscopic images with the same “computer”
image content, as partly shown in Figure 2, and their MOS
values of the 3D images are shown below:

MOS3D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.00 1.12 �1.12 1.12 1.19 1.35 1.23
1.15 1.31 1.50 1.54 1.73 1.50 1.77
�1.12 1.62 2.27 2.27 2.27 2.54 2.81
1.23 1.35 2.31 2.88 2.88 3.19 3.31
1.38 1.92 2.88 3.00 3.00 3.73 3.73
1.31 2.00 2.92 3.38 3.38 4.19 4.46
1.46 2.12 3.04 3.54 3.54 4.65 5.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5)

Just as our expectation, it can be seen from the MOS3D

matrix above that only one couple of MOS3D values covered

with a wave line (about 5% of all) is consistent with the
common sense that two eyes have the same function, 12
couples in bold type (about 57%) is against it (but their
deviations are less than 10%), and 8 couples in bold type
and covered with a horizontal line (about 38%) show the
completely contrary results. Demonstrated by all the other
3D images, this fact is widely existent although some slight
differences exist in the percentage distribution of these three
categories of results.

To quantify the weights of different eye responses, at
first, all the stereoscopic images are randomly divided into
two groups (training group and testing group) according
to the reference images. Then, the test of finding the
most reliable weights is carried out by making NOSPDM2

(defined by (17) in Section 5.2) achieve the best quality
prediction performance in terms of the highest correlation
coefficients. Figure 3 displays the above-mentioned results.
It can be concluded that the right-eye response should have
a weight larger than the left-eye response, and here we set
μR (the weight of right-eye response) equal to 1.04 (the
corresponding weight of maximum values “∗” in Figure 3).
So, the ocular dominance weighting model can be eventually
estimated as

FW
O = μL ·Q2D(L) + μR ·Q2D(R)

= (2− μR
) ·Q2D(L) + μR ·Q2D(R),

(6)

where μL and μR represent the weights of left- and right-eye
responses.

4. Saliency Based Parallax Compensation

Besides the existing nonlinear additive effects in the mono-
scopic image pairs with the same stereoscopic image content,
which is clarified in Sections 2 and 3, it is also viewed that
another kind of additive effect exists among stereoscopic
images with different image contents. We first test various
groups of 2D image pairs, which cover all the different image
contents. Every group of four image pairs should meet the
demand illustrated in Table 2, which lists the chosen four
categories of image pairs with different degrees of JPEG
distortion. And Figure 2 is just one exemplary group.

The experimental results shown in Figure 4 confirm
our finding. However, in the meantime, we observed two
interesting phenomena. First, against our common sense that
the higher qualities of left and right images the higher quality
of the corresponding 3D image, the stereoscopic images
represented by blue “×” and green “∗” in Figure 4(a) with
high qualities of both 2D images have the unusually low
qualities. The similar phenomenon also appears in Figures
4(b)–4(d). Second, it is also found in Figure 4 that the
existence of the above-mentioned phenomenon tends to
appear for testing stereoscopic images with the same JPEG
compressive quality but different image contents. In the
whole Toyama database, the two above-mentioned findings
exist to a large extent.

This fact cannot be simply explained by the interaction
between qualities of left and right images, otherwise it should
not appear in Figure 4(c) (or Figure 4(d)), where each
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Figure 6: Reference stereoscopic images in the Toyama database [3]: bird, cactus, car, cattle, computer, doll, doll2, flower, flower2, gate, goat,
statue, and women in turn.

Figure 7: Corresponding saliency maps of Figure 2 computed by the authors in [22].
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Figure 8: Five steps of NOSPDM framework.
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Figure 9: Scatter plots of MOS versus representive NOSPDM algorithms on the Toyama database [3]. The (red) lines are curves fitted with
the logistic function and the (black) dash lines are 95% confidence intervals.
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pair of images has the same JPEG compressive qualities
(or lossless compression). Due to the consistent existence,
this fact may be explained by the influence of inconsistent
responses to different 3D image contents. According to a sig-
nificant conclusion in [18] that the low subjective evaluation
appeared for a high degree of parallax, and, moreover, based
on a reasonable assumption that it is independent between
parallax and the degree of image distortion (partly supported
by the similar maps in Figure 7), it can be concluded that
the uneven responses are caused by different degrees of
parallaxes, which are introduced from different 3D image
contents. For example, as shown in Figure 6, the “doll2” and
“gate” images, which correspond to blue “×” and green “∗”
in Figure 4, have higher degrees of parallax, because of the
content objects are closer to each other.

Thus, to balance this inconsistency, we first define the
parallax as

dθ = cos−1
(

L · R
‖L‖2 · ‖R‖2

)
. (7)

Furthermore, enlightened by VA based 2D image quality
metrics [19, 20], a simple VA model defined in [21] is taken
here to improve (7). Thus, the VA based parallax can be
estimated by

dθV = cos−1
(

L(V) · R(V)
‖L(V)‖2 · ‖R(V)‖2

)
, (8)

where V represents simple visual attention regions, as
illustrated in Figure 5.

In addition, inspired by the behavior and the neuronal
architectures of the early primate visual system, a classic
bottom-up visual attention model (saliency model) [22] is
to construct a single topographical saliency map first by
combining multiscale image features, such as colors, inten-
sity, orientations, and other visual information, and, then,
a winner-take-all network that implements a neutrally dis-
tributed maximum detector is performed to detect the most
salient locations step by step until the final saliency map
is computed. The corresponding saliency maps of Figure 2
are displayed in turn in Figure 7. To further explore (7) by
employing this saliency model, the saliency based parallax
can be evaluated as

dθS = cos−1
(

L(S) · R(S)
‖L(S)‖2 · ‖R(S)‖2

)
, (9)

where S represents saliency regions computed by the authors
of [22].

Consequently, to compensate the low degree of parallax,
the VA/saliency based parallax compensation can be com-
puted by

FVP = FP + ωV · dθV = dθ + ωV · dθV (10)

or

FSP = FP + ωS · dθS = dθ + ωV · dθS , (11)

where ωV and ωS are model parameters. In the end, our
proposed NOSPDM model is defined by

FNOSP = FO − FN + FSP = FW
O − FN − FD

O + FSP. (12)

5. The Proposed Quality Metric

5.1. No-Reference IQA Method for JPEG Images. We aim to
design a no-reference image quality metric for JPEG com-
pressed stereoscopic image pairs. For JPEG compressed
monoscopic images, at low bitrates, blurring and blocking
artifacts occur due to the coarse quantization to 8 × 8
independent coding blocks. The blurring effect is mainly due
to the loss of high frequency DCT coefficients while the
blocking effect occurs because of the discontinuity at block
boundaries.

Following [6], a 2D no-reference IQA metric is defined
in four steps First, blockiness is estimated as the average dif-
ferences across block boundaries as follows:

Bh = 1
M(�N/8� − 1)

M∑

i=1

�N/8�−1∑

j=1

∣
∣dh

(
i, 8 j

)∣∣. (13)

Second, the average absolute difference between in-block
image samples is calculated as follows:

Ah = 1
7

⎡

⎣ 1
M(N − 1)

M∑

i=1

N−1∑

j=1

∣
∣dh

(
i, j
)∣∣− Bh

⎤

⎦. (14)

Third, the horizontal zero crossing rate can be estimated as
follows:

Zh = 1
M(N − 2)

M∑

i=1

N−2∑

j=1

zh(m,n). (15)

Finally, the image quality prediction is given by the following:

QJPEG = α + β
(
Bh + Bv

2

)γ1
(
Ah + Av

2

)γ2
(
Zh + Zv

2

)γ3

, (16)

where Bv, Av, and Zv are the vertical features using similar
methods like Bh, Ah, and Zh, and α, β, γ1, γ2, and γ3 are the
model parameters.

5.2. NOSPDM Based Stereoscopic IQA Algorithm. Our pro-
posed NOSPDM method primarily has five steps (only
NOSPDM2, NOSPDM12, and NOSPDM18 are illustrated
in Figure 8 and other omitted NOSPDM algorithms have
similar steps): first, predict the 2D image qualities of left
and right images; second, apply different weighting coef-
ficients to both image quality predictions; third, calculate
the nonlinear quantity between them, based on nonlinear
additive model or ocular dominance model; fourth, estimate
VA/saliency based parallax compensation; fifth, evaluate
the final stereoscopic image quality score by summing up
different coefficients weighted 2D quality scores and parallax
compensation and reducing the nonlinear quantity. Using
QJPEG as an approximation to Q2D, different combinations
of NOSPDMx (x = 1 · · · 18) tabulated in Table 3 are defined
as follows:

NOSPDMx = FL + FW
O − FN − FD

O + FP + FVP + FSP

= QJPEG(L) + QJPEG(R) + FW
O

− FN − FD
O + FP + FVP + FSP.

(17)
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Finally, our proposed most effective NOSPDM12 is given by

NOSPDM12 = FW
O − FN + FSP

= (2− μR
) ·QJPEG(L) + μR ·QJPEG(R)

− λ ·max
{
QJPEG(L),QJPEG(R)

}

+ cos−1
(

L · R
‖L‖2 · ‖R‖2

)

+ ωS · cos−1

(
L(S) · R(S)

‖L(S)‖2 · ‖R(S)‖2

)

,

(18)

where λ, ωV , and ωS are model parameters. Here, we set λ
equal to 0.67. This value should be explained by the ocular
dominance theory, which needs more studies to further
reveal the relationship between left- and right-eyes in the
future. Besides, with respect to different reference images,
we divide all the stereoscopic images in the Toyama database
into two groups. Then, ωV and ωS can be determined
through training on the first group (343 images) and testing
on the second group (294 images).

5.3. Application of NOSPDM to Video Quality Metric. Video
quality assessment (VQA) may be more relevant to real-
world applications. The most salient video degradations
include blurring, blockiness, and motion jerkiness artifacts.
Blurring and blockiness can be measured in every single
frame, but motion jerkiness has to be measured between
successive frames. To measure the single frame quality, we
notice that (16) can be rewritten as follows:

QJPEG(L) = QJPEG
(
L,α,β, γ1, γ2, γ3

)
. (19)

In this paper, NOSPDM applies the coefficients α, β, γ1, γ2,
and γ3 trained by [6] to obtain a stereoscopic IQA approach
with high prediction performance. Then, according to
[6], we know that blockiness is evaluated by the average
differences across block boundaries, and average absolute
difference between in-block image samples and zero crossing
rate are employed to estimate the degree of bluring. So,
it is believed that the single stereoscopic frame quality
can be predicted through adjusting the above-mentioned
coefficients. Thus, 3D video quality will be calculated by
considering some temporal features of stereoscopic vision.

6. Experimental Results and Analyses

Mappings of these eighteen metrics values to subjective
scores are obtained using nonlinear regression with a four-
parameter logistic function as suggested by VQEG [25] as
follows:

q(x) = β1 − β2
1 + exp

(−x − β3/β4
) + β2, (20)

with x being the input score and q(x) the mapped score and
β1 to β4 are free parameters to be determined during the
curve fitting process.

Five commonly used performance metrics as suggested
by VQEG [25] are employed to further evaluate the com-
petitive NOSPDM based stereoscopic IQA metrics on the
Toyama database [3]. The first metric is the Pearson Linear
Correlation Coefficient (PLCC) between MOS and the
objective scores after nonlinear regression. It can be defined
by

PLCC = Σi
(
qi − q

)
(oi − o)

√(
qi − q

)2(oi − o)2
, (21)

where oi is the subjective score of the ith image. The second
metric is the Spearman Rank-Order Correlation Coefficient
(SRCC), computed as

SRCC = 1− 6ΣN
i=1d

2
i

N(N2 − 1)
, (22)

where di is the difference between the ith image’s ranks in
subjective and objective evaluations. It is a nonparametric
rank-based correlation metric, independent of any mono-
tonic nonlinear mapping between subjective and objective
scores. The third metric, Kendall’s Rank-Order Correlation
Coefficient (KRCC), is another nonparametric rank correla-
tion metric given by

KRCC = Nc −Nd

(1/2)N(N − 1)
, (23)

where Nc and Nd are the numbers of concordant and
discordant pairs in the data set, respectively. Average Abso-
lute Prediction Error (AAE) is the fourth metric, which
is calculated using the converted objective scores after the
nonlinear mapping of (20) the following:

AAE = 1
N
Σ
∣
∣qi − oi

∣
∣, (24)

and the final metric Root Mean-Squared Error (RMSE) is
defined by

RMSE =
√

1
N
Σ
(
qi − oi

)2
. (25)

All the values of different combinations of NOSPDM
algorithms and [3] are presented in Table 4. And the
representative scatter plots of NOSPDM methods are shown
in Figure 9. Compared with image quality metrics of both the
testing and training groups in the studies in [3], it is easy to
find that our NOSPDM have achieved inspiring results and,
moreover, as expected, the performance gain of NOSPDM12

simultaneously based on nonlinear additive model, ocular
dominance weighting model, and saliency based parallax
compensation obtains the best performance.

Furthermore, through testing different combinations of
NOSPDM methods illustrated in Table 3 and comparing the
prediction accuracies in Table 4, some observations are given
below.

Firstly, we can observe that stereoscopic image quality is
considerably affected by nonlinear additive effects between
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the qualities of left and right images, and through reducing
the nonlinear quantity, the gain of PLCC and SRCC is about
0.04 (from NOSPDM1−2) to MOSPDM3−5). Meanwhile, the
saliency based parallax compensation is also very important
with a gain of PLCC and SRCC around 0.035 (from
MOSPDM3−5 to NOSPDM9,12,15). Still, it is noticed that the
ocular dominance weighting model can lead to a certain
improvement, while its gain in PLCC and SRCC is just about
0.001 (from NOSPDM1,3 to NOSPDM2,4), and it is only valid
for the nonlinear additive model. Besides, it is worth men-
tioning that the performance of ocular dominance model
seems to be affected by the ocular dominance weighting
model (from NOSPDM5,13−15 to NOSPDM6,16−18).

Secondly, from the prediction accuracy analysis in
Table 4, it is easy to find that there is strong dependence
between ocular dominance model and nonlinear additive
model (e.g., NOSPDM3,4, NOSPDM10,13, etc.). And we can
further observe from NOSPDM4,10−12 to NOSPDM5,13−15

that the integration of nonlinear additive model and ocular
dominance weighting model is better than ocular dominance
model only. Then, according to the illustrations in Figure 7
that left/right saliency maps of the four image pairs in
Figure 2 are almost the same, and according to the fact
that this phenomenon widely exists in stereoscopic images
in the whole Toyama database, it can be concluded that
the (saliency based) parallax is highly dependent on image
contents, and the improved prediction accuracy is mainly
based on reducing the influence of uneven responses to
different image contents on perceptual stereoscopic image
quality, which is supported by NOSPDM4 to NOSPDM10−12

in Figure 9.
Eventually, some potential applications need to be

emphasized here. In the utilization of NOSPDM, we note
that the second most effective NOSPDM11 not only has
more prediction performance than the studies in [3], but
also has very little computational complexity, because of the
simplicity of our used 2D no-reference IQA approach [6]
and the proposed models, which only involves some basic
computations, such as addition, subtraction, multiplication,
and trigonometric functions. Meanwhile, some valuable
applications are also illuminated in the area of JPEG image
compression and stereoscopic video quality assessment. For
the JPEG compression, under the condition of constant
capacity of image storage, the approximately equal JPEG
compressive qualities of left and right images tend to give
higher subjective stereoscopic image quality. The related
VQA approach can be further accomplished by adjusting
some useful model parameters and incorporating some tem-
poral features of stereoscopic vision, as stated in Section 5.3.

7. Conclusion

In this paper, we propose a novel no-reference stereoscopic
image quality assessment algorithm based on 2D no-
reference IQA method, nonlinear additive model, ocular
dominance (weighting) model, and saliency based paral-
lax compensation. By testing different combinations of
NOSPDM algorithms, we have three key findings: firstly,

stereoscopic image quality is highly affected by nonlinear
effects between left and right image qualities. Secondly,
saliency based parallax compensation is quite important for
improving prediction accuracy of image quality metrics.
Finally, ocular dominance weighting model also contributes
for the performance of the algorithm. By testing on the
Toyama database, experimental results verify that our pro-
posed NOSPDM methods have superior performance for
stereoscopic image quality assessment.

It is natural to extend the stereoscopic IQA algorithms to
stereoscopic video quality assessment. In the near future, we
will construct a complete 3D video database. And moreover,
due to the high prediction accuracy and low computational
complexity of our NOSPDM approach, our work will be
devoted to the research about stereoscopic video quality
assessment, through taking into account some of the most
salient video degradations, including blurring, blockiness,
and motion jerkiness. Besides, we believe that the compres-
sive consistency of stereoscopic JPEG images also warrants
further study.
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