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This paper puts forward a low-complexity video compression algorithm that uses the edges of objects in the frames to estimate
and compensate for motion. Based on the proposed algorithm, two schemes that balance energy consumption among nodes in a
cluster on a wireless video sensor network (WVSN) are proposed. In these schemes, we divide the compression process into several
small processing components, which are then distributed to multiple nodes along a path from a source node to a cluster head in a
cluster. We conduct extensive computational simulations to examine the truth of our method and find that the proposed schemes
not only balance energy consumption of sensor nodes by sharing of the processing tasks but also improve the quality of decoding
video by using edges of objects in the frames.

1. Introduction

A wireless video sensor network (WVSN) is a special kind of
wireless sensor network (WSN) that is capable of capturing
video data at video sensor nodes (nodes have the equipment
to capture video data), processing the data, and transferring
them using a multihop technique to the base station. Two
types of nodes are considered in WVSNs, video sensor nodes
(source nodes) and processing sensor nodes that affect the
retrieval of video data. The main functions of video sensor
nodes are to capture objects and to record video data, while
the main functions of processing sensor nodes are to gather
data and to process them. The size of video data is large while
all nodes are limited by their resources, that is, power battery,
computational capacity, and memory. Therefore, saving
energy consumption of network by reducing transmission
data size and guaranteeing quality of service (QoS) are two
fundamental issues in WVSNs.

With the practical deployment of WSNs and the avail-
ability of small CMOS camera chips, many multimedia
applications have been studied on WVSN. These applications

provide a distributed sensing and monitoring environment
for the ability to retrieve video data, including surveillance,
computer vision, video tracking, remote live video and
control, and smart homes [1–3]. In these applications,
researchers concentrate attention not only on observing
something in static scenarios but also on discovering the
changes. However, it is too difficult to implement both
of these tasks on WVSNs because of limited energy and
processor speed of sensors [4]. To solve these problems, we
propose a new algorithm for compressing video data on
WVSNs. In the algorithm, we use a homogeneity detection
technique [5–9], which is based on the color edge detection
algorithms to improve the quality and compression rate of
decoding video.

There are several image edge detection algorithms such
as Sobel, Gaussian, homogeneity methods [8–12]. In our
algorithm, we choose the homogeneity method because its
advantages are fast execution time (3 seconds for image of
512 pixels × 512 pixels) [9], low computational complexity
and low error rate, and it detects the edge of image better
than Sobel and Gaussian techniques especially in the noise
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Figure 1: A common multimedia sensor node architecture.

condition [5–9]. Since the method relies on color signatures,
it can be applied for many type images such as black and
white, greyscale, or color images. We only need to specify
the distance between two points of image. As a result,
the resulting signatures would be perceptually meaningful.
The details of the detection technique is explained in
Section 3.1. Based on the algorithm, we propose two efficient
energy schemes that are suitable for resource-constrained in
WVSNs.

The remainder of this paper is organized as follows.
In Section 2, we discuss related work and present general
image and video compression for WVSNs. In Section 3, two
proposed schemes based on video compression for WVSNs
are introduced. In Section 4, we critically evaluate and
analyze some simulation results. Finally, our conclusions and
suggestions for future work are given in Section 5.

2. Related Work

2.1. Sensor Node Structure. A WSN is a group of tiny dis-
posable wireless devices. Each device, referred to as a sensor
node, is equipped with sensors/actuators, microprocessors,
communication, and power modules. If the data transferred
are multimedia, each sensor, called a multimedia sensor,
should be equipped with the functions to capture, process,
and transfer the data. We can categorize WVSN platforms
into three categories based on the computation power,
namely lightweight, intermediate, and PDA-class platforms
[13] or based on purpose, namely general, heavily coupled,
and externally dependent architectures [3]. Since the visual
data require higher bandwidth usage due to the amount of
data to be transmitted and higher power consumption due to
the complexity of coding and vision processing algorithms,
only PDA-class platform can be applied for real-time video
applications that require the high data rate [1, 3, 13, 14]. The
architectures of multimedia sensors are shown in Figure 1
[1, 3, 13, 14]. The multimedia sensor device includes seven
basic components: a sensing unit, a processing unit (CPU),
a communication unit, a coordination unit, a storage unit
(memory), an optional mobility/actuation unit, and a power

unit. There are two subunits in the sensing unit, sensors
(cameras, microphones, and/or scalar sensors) and analog-
to-digital converters (ADCs). The ADC subunit converts the
analog signals, which are collected by the sensor subunit, into
digital signals, and then transfers them into the processing
unit. The processing unit carries out the system software to
coordinate sensing and communication tasks, and interacts
with the storage unit. The coordination unit performs
the location management, motion controller, and network
synchronization tasks. The communication unit manages
the communication protocol stack, system software, and
middleware. An optional mobility/actuation unit is used to
move or manipulate the objects. Finally, the power unit
supports energy for the whole system.

2.2. Image and Video Compression on WVSNs. The availabil-
ity of inexpensive equipments such as CMOS cameras makes
them possible to ubiquitously capture multimedia content
from the environment and has fostered the development
of image and video processing applications for WSNs [1,
4, 15–23]. Ahmad et al. [4] performed to evaluate energy
efficiency of a predictive coding scheme for deployment
on real-life sensor based on coding intraframes (I-frames).
Their results show that the energy consumed for coding an
I-frame (on average 60.03 mJ/frame) is much lower than
that for coding an interframe (on average 763.68 mJ/frame),
predictive frame (P-frame), or bidirectionally predicted
frame (B-frame).

Magli et al. [20] proposed an algorithm for low-
complexity video coding with video surveillance applications
based on active regions. The results show that the quality of
decoding video in the algorithm is competitive with that of
MPEG-2 while its complexity is lower than that of MPEG-
2. Chow [21] proposed a video-coding method based on
motion compensation followed by shape compensation to
replace the conventional discrete cosine transform (DCT)
coding. However, the method is efficiently applied only
for binary images. Yeo and Ramchandran [22] focused on
exploiting the correlation among cameras and proposed two
alternative models to capture interview correlation among
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cameras with overlapping views. The results show that
the quality of decoding intraframes in proposed models
improves 2.5 dB compared with that of H.263+. Liu et al.
[23] proposed a surveillance video compression system based
on Wyner-Ziv coding that balances between computational
complexity and coding efficiency. The results show that the
proposed system not only increases the coding efficiency but
also reduces the encoder complexity.

One of the papers most closely related to our work is
[20]. In that paper, Magli et al. devised an algorithm that
can quickly find active regions. Two types of scenes are
considered in their algorithm, motion of background and
foreground objects. The main point of the algorithm is to
categorize the differences among noise, shadow, and illumi-
nation regions. Since the algorithm performs to compare
all pixels in every 8 × 8 block, it takes a long time and
consumes too much energy for processing per frame: the
total encoding time is more than 1000 ms for one frame, and
energy consumption for encoding one frame is 42 mJ in case
the group of pictures (GOP) is 25 [20]. On the other hand,
the quality of decoding video is not high since the method
only allows the noise standard deviation with a maximum
error of 0.25. In case of the motion with a foreground object,
peak signal-to-noise ratio (PSNR) of this algorithm is less
than 2 dB compared with that of MPEG-2 [20].

For the basic image coding techniques, we can divide
the techniques into four categories, predictive coding, block
transform coding, vector quantization, and subband and
wavelet coding [24]. In these categories, we consider the sec-
ond and fourth, that is, block transform coding, and subband
and wavelet coding, due to their simple implementation.
The DCT and discrete wavelet transform (DWT) techniques
are two special image-compression techniques belonging to
these categories. The advantage of DCT is that it can be easily
implemented with relatively low memory requirements,
whereas its disadvantage is its low compression and low bit
rate, which results in annoying blocking and ringing artifacts.
In contrast, the advantage of DWT is high compression rate
and high image quality, whereas its disadvantages include
its high computational complexity and substantial memory
requirements [25–27].

To address the problems above, the authors [15–19]
proposed the new methods to reduce the computational
complexity and memory utilization. Chrysafis and Ortega
[15] focused on reducing memory at both encoder and
decoder in image compression by using a line-based
approach for the implementation of the wavelet transform
and storing only a local set of wavelet coefficients. As a
result, the quality of decoding image and memory utilization
are improved clearly. Lee et al. [16] optimized the JPEG
implementations and measured the energy consumption
for compressing and transferring image data. The results
showed that the proposed algorithm can improve both
the quality of image and energy consumption. Oliver and
Malumbres [17] proposed an image compression algorithm
to improve the efficient construction of wavelet coefficient
trees. As a result, the proposed algorithm reduces not
only memory requirement but also processing time. Oliver
and Malumbres [18] proposed an algorithm to efficiently

compute the two-dimensional wavelet transform in image
compression. The results showed that the algorithm can
reduce the memory requirement up to 200 times. Rein and
Reisslein [19] presented an overview of the techniques using
wavelet transform that allow for transforming images on
in-network sensors with low memory. As analyzing above,
we believe that two techniques (DCT and DWT) will be
improved and applied for the multimedia applications on
WSNs.

For the video coding paradigms, we can divide the
techniques into two types, distributed source coding and
individual source coding [28]. Both can be applied to three
compression techniques, single-layer coding (i.e., JPEG),
multilayer coding (i.e., JPEG2000), and multidescription
coding. In this paper, we focus attention on the video coding
paradigms. The details of three techniques can be seen in
[28]. The three techniques have been inspected in the former
type, but they have not yet been fully studied in the latter type
[29–31].

For former type such as MPEG-X and H.26L, all
compression processes are carried out at the source nodes.
The nodes must thus implement all tasks of the video com-
pression process, including transforming, finding motion
vectors and compensating for motion, and encoding. Then
they send compressed data using a multihop technique or
directly to the base station. The advantage of this method
is that since the source nodes do not need to communicate
with the other nodes in the encoding process, the method
is simple to perform. Otherwise, the disadvantage of the
method is that the source nodes will be exhausted quickly
because of overloading. Therefore, the energy distribution in
the network is not balanced, and the network lifetime will be
reduced.

To solve this problem, researchers concentrate attention
on latter type. Wyner-Ziv encoder [29] and Power-efficient
Robust hIgh-compression Syndrome-based Multimedia cod-
ing (PRISM) are two typical schemes for distributing source
coding on WVSNs [22, 32]. In these schemes, researchers
either divide video data into small blocks that are suitable
to be performed by several nodes or try to reduce the
encoding complexity at the source nodes. As a result, the
energy consumption of network is balanced, and the network
lifetime is prolonged. However, the schemes have some
disadvantages. Since the nodes need to communicate with
one another, they must spend a part of their energy on
communicating. In some cases, the schemes will not achieve
high compression efficiency if there are only few complex
encoders [33]. Otherwise, the quality of decompressed data
is reduced due to wireless channel errors.

To address this problem, researchers use either the
channel codes that are able to protest against channel errors,
such as low-density parity check code (LDPC) [30] and
Turbo code [29], or a backward channel to improve the
quality of reference frames [23]. In the paper, we consider
combining individual source coding and distributed source
coding for the proposed method. In our algorithm, we
perform to compare the edges of objects among the frames
to find the active regions quickly. We try to reduce the
complexity of the encoder by sharing the processing tasks
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such as detecting edges of objects, finding motion vectors,
and compensating for motion to other nodes. To the best of
our knowledge, using the edges of objects in the frames to
compress video on WVSNs has not been considered in the
literature.

3. Proposed Schemes

3.1. Homogeneity Edge Detection Technique. In the proposed
algorithm, we use the homogeneity edge detection, based on
the color edge detection algorithms, to estimate motion (find
motion vectors) and compensate for motion. We can divide
the color edge detection algorithms into three categories,
namely output fusion method, multidimensional gradient
method, and vector method [6, 8].

In the output fusion method, finding edge detection
is performed independently for three color components,
red, green, and blue (RGB), and then three edges are
combined into the final edge. In the multidimensional
gradient method, three color components are first combined
before performing edge detection. In the vector method, the
edges of images are found based on the vector nature of
colors and their rotation. (See [6] for more details on the
three techniques.)

Among three methods, we consider the output fusion
method and the multidimensional gradient method due
to their simple implementation. The advantage of output
fusion method is simple to perform, whereas its disadvantage
is to consume more energy for detecting edges because
it has to perform edge detection three times [6, 8]. The
edge detection task includes many steps and consumes a
lot of energy [5, 7], and thus output fusion method is not
suitable to implement on wireless sensor devices. To solve
the problem, we first perform preprocessing three color
components before implementing edge detection, and then
apply the homogeneity edge detection method in [7, 9]. As a
result, we only carry out edge detection one time, and thus
save energy consumption of wireless sensor devices.

Figure 2 shows the details of steps of homogeneity edge
detection method. In Figure 2, we modify the conventional
homogeneity edge detection method by inserting the prepro-
cessing block before detecting edges of objects in images to
reduce the complexity computation. Therefore, the detection
process includes two steps as follows.

Step 1 (preprocessing). In this step, we select one of three
color elements of input image to detect as follows

I
(
i, j
) = max

(
IR
(
i, j
)
, IG
(
i, j
)
, IB
(
i, j
))

, (1)

where IR(i, j), IG(i, j), IB(i, j) are the intensity of red, green,
and blue elements of input image at pixel (i, j), respectively.
The goal of the step is to reduce energy consumption of
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Figure 3: The implementation of homogeneity operator.

wireless sensor devices for detecting edges of objects by
carrying out edge-detection task one time.

Step 2 (detecting edges of objects). We use the homogeneity
operator that performs to calculate the different value of
center point with eight neighbors to find edges of objects in
image (EA), as shown in Figure 3. The homogeneity operator
based on [9] is defined as

EA
(
i, j
) =

⎧
⎪⎪⎨

⎪⎪⎩

max
{∣∣IA

(
i, j
)− IAn

(
i, j
)∣∣n = 1, 2, . . . , 8

}
,

if max
{∣∣IA

(
i, j
)− IAn

(
i, j
)∣∣} ≥ threshold1,

0, otherwise

0 ≤ threshold1 ≤ 255,
(2)

where threshold1 is the threshold that is used to improve the
quality of edges of objects in image. There are several ways
to determine the threshold. Observing the edges of objects
for a set of tested images and selecting the value that gains
acceptable edges of objects is the simple way [34]. In our
simulation, we choose threshold1 = 90.

3.2. Proposed Video Compression Algorithm. We make some
network assumptions based on [1, 3, 20] in our proposed
algorithm as follows. (1) The transmission range of the
sensor nodes can be adjusted dynamically to allow multihop
communication within a cluster in WVSNs. (2) Source nodes
can load the raw video data into their memory. (3) All
nodes are able to perform the complex tasks. (4) The energy
consumption for SYN/ACK packets is not considered. (5)
Since sensors are limited by their storage and processing
capacity, we assume that video input includes only I- and
P-frames. (6) We consider scenes with small changes in the
backgrounds and low motion of objects.

Our proposal is based on the algorithm in [20]. As we
analyzed in Section 2, the most difficult problem of the
algorithm in [20] is that it has to compare all pixels in every
8 × 8 block to determine active regions, and thus, it takes a
long time to scan and consumes too much energy per frame.
To solve this problem, we propose a method to find motion
regions based on comparing the edges of objects among
frames.
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The proposed algorithm has three different points from
[20]. First, we use the difference of edges of objects
among frames to mark motion regions while [20] uses the
differences among noise, shadow, and illumination regions.
Since we use edges of objects, processing time and energy
consumption for encoding frames of our method are less
than those of [20]. Secondly, we use edges of objects in the
background images to increase accuracy when performing to
mark motion regions. As a result, the numbers of motion
vectors and motion regions reduce, and thus compression
rate is improved. Thirdly, we then apply our method (finding
the motion regions by comparing the edges of objects)
for MPEG-2/H.262 encoder that is suitable to perform
for wireless applications because of its low complexity of
algorithm and acceptable quality of decoding data [35]. The
main difference between the proposed algorithm and MPEG-
2 is that only the edges of objects in the frames are required in
the proposed method while MPEG-2 requires all data of the
frames. Therefore, we can save energy and time for finding
motion vectors and compensating for motion.

Figure 4 depicts an overview of the proposed video
compression system. First, the source node captures the
current frame to detect its edges of objects and compares
the detected edges of objects with the edges of objects in the
background images. The goal of this step is to reduce noise.
Then the detected edges of objects of this frame are stored
in the buffer of source node. The source node repeats the
same process for the next frame and compares the detected
edges of objects of this frame with those of the previous
frame in its buffer to mark active regions. Based on the
active regions, the source node finds motion vectors and
compensates for motion. Finally, the motion regions are
transformed, quantized, run length encoding (RLE), and
Huffman encoding, respectively, and the motion vectors are
encoded by RLE, and Huffman encoding by the encode
block.

Figure 5 depicts the details of the proposed video com-
pression algorithm using the homogeneity edge detection
technique. First, video data are captured by the source node.
The video data consist of a sequence of frames, which are
encoded as I-frames and P-frames, where I-frame is the
frame which stores only information within the current
frame and P-frame is the frame which stores the difference
(motion vectors and motion regions) among one or more
neighboring frames. These frames are stored in the frame
buffer block. At the block, an input frame is checked whether
it is I-frame or P-frame. If the input is an I-frame, it is
compressed by the following process: DCT, quantization,
RLE and Huffman encoding. On the other hand, if the input
is a P-frame, it will be transferred to the edge detector block
to mark active regions, as shown in Figure 6. In the figure, we
perform two steps to determine the active regions as follows.

Step 1 (comparing edges of objects of frames). First, the
edge-detector block performs to detect edges of objects in the
frames (P1, P2 frames, and background images). At the initial
time, we assume that the background images were stored in
the buffer. At the next times, we will use the previous frames
as the background images. The detected edges of objects

among frames are then compared each other. The different
edges of objects between two frames are calculated as

ΔEP12

(
i, j
) =

{
0, if EP1

(
i, j
) = EP2

(
i, j
)
,

EP2

(
i, j
)
, otherwise.

(3)

Step 2 (marking the active regions). In this step, the number
of pixels (NΔP12 ) whose value is different from zero in each
block of ΔP12 frame is calculated. If NΔP12 is more than
threshold2, which depends on the size of block, the block is
marked. In our simulation, threshold2 is set up as 32 if the
size of block is 8× 8.

The algorithm then performs to find motion vectors at
the motion estimation block and compensate for motion at
the motion compensation block in Figure 5 based on the
marked regions (active regions). To save energy consumption
for finding motion vectors, we use a “three-step search”
algorithm. The algorithm searches motion vector based on
comparing and determining minimum mean absolute errors
(MAEs) of eight points that have the same distance from
center point (estimated point). An example of “three-step
search” is shown in Figure 7. In the figure, the motion
vector AD that has minimum MAE is determined after
performing to search three steps. The details of steps of
the algorithm can be seen in [36, 37]. Finally, the motion
regions are transformed DCT, quantized, RLE, and Huffman
encoding, respectively, and motion vectors are encoded by
RLE and Huffman encoding. Based on the proposed video
compression algorithm, we propose two different schemes to
implement this video compression algorithm in WVSNs.

3.3. Energy Evaluation Model. For evaluating energy con-
sumption, we use the wireless communication energy model
proposed in [38–40]. The energy consumption in transmis-
sion per bit is

etx =
{
eelec + ε f sd2, d < d0,

eelec + εmpd4, d ≥ d0,
(4)

and the energy consumed in reception per bit is

erx = eelec, (5)

where d0 is the close-in referential distance or threshold
distance, which is determined from measurements close to
the transmitter, and d is the distance between the wireless
transmitter and the receiver. The notation eelec is the energy
consumption by the circuit per bit, and ε f sd2 or εmpd4 is the
energy amplifier that depends on the transmitter amplifier
model.

In the proposed video compression algorithm, we pro-
cess data following 8 × 8 blocks. Therefore, we model the
energy consumption for blocks. For I-frame, the energy
consumption in video compression for the ith block of I-
frame (Ei

Icp) is

Ei
Icp = Ei

DCTI
+ Ei

CodeI = aieDCT + bieCode, (6)
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where Ei
DCTI

and Ei
CodeI are the energy dissipation for

transforming DCT and coding for the ith block of I-frame,
respectively. ai and bi are the data sizes of blocks before
transforming DCT and coding (quantizing and coding) for
the ith block of I-frame, respectively. eDCT and eCode are
the energy consumption per bit for transforming DCT and
coding, respectively. Consequently, the energy consumption
for compressing I-frame (EIcp) is

EIcp =
N∑

i=1

Ei
Icp, (7)

where N is the number of blocks of frame. Total energy
consumption for I-frame (EI) is

EI = EIrx + EIcp + EItx = Aerx + EIcp + Cetx, (8)

where EIrx and EItx are the energy consumed for receiving
and transmitting per I-frame, respectively. A is the data size
of receiving I-frame, and C is the data size of transmitting
I-frame after coding.

For P-frame, the energy consumption for compressing
the ith block of P-frame (Ei

Pcp) is

Ei
Pcp = Ei

DCTP
+ Ei

CodeP = a′i eDCT + b′i eCode, (9)

where a′i and b′i are the data sizes of blocks before trans-
forming DCT and coding (quantizing and coding) for the
ith block of P-frame, respectively. Therefore, the energy
consumption for compressing P-frame (EPcp) is

EPcp = EDetect + EMot +
N∑

i=1

Ei
Pcp, (10)

where EDetect is the energy dissipation for detecting the edges
of objects in previous and current frames, and EMot is the
energy dissipation for finding motion vectors and motion
regions. Total energy consumed for P-frame (EP) is

EP = EPrx + EPcp + EPtx = A′erx + EPcp + C′etx, (11)

where EPrx and EPtx are the energy consumed for receiving
and transmitting per P-frame, respectively. A′ is the data size
of receiving P-frame, and C′ is the data size of transmitting
P-frame after coding.

The value of EDetect and EMot are much larger than eDCT

and eCode in our proposed algorithm because it has to scan
the entire frame to find its edges of objects and to scan active
regions to determine motion vectors and motion regions.
The details of steps for calculating the energy values are
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explained in Appendix A. In the proposed algorithm, we
therefore distribute these two tasks to other nodes instead of
performing to compress video data at the source nodes.

3.4. Proposed Video Compression Scheme 1. Figure 8 depicts
the first proposed scheme with a normal case of the video
compression system in a WVSN, where the number of hops
from the source node to the cluster head is three. Figure 8(a)
depicts a case where the input frame is an I-frame. For
the frame, we compress by the following process: DCT,
quantization, and encoding along the path from the source
node to the cluster head. Total energy consumption for I-
frame is

EI(scheme 1) = EIrx + EIcp + EItx

= EIrx +
N∑

i=1

(
ETi

DCTI
+ ECi

CodeI

)
+ EItx,

(12)

where ETi
DCTI

is the energy dissipation for transforming DCT
at transforming node T for the ith block of I-frame, and
ECi

CodeI is the energy consumption for coding at coding node
C for the ith block of I-frame.

Figure 8(b) depicts the other case, where the input frame
is an P-frame. Node S must first detect the edges of objects
in the frames and those of the background images, and then
compare them to each other to mark active regions. The step
is performed similar to the Steps 1 and 2 in Section 3.2.
Based on the active regions, node S finds motion vectors
and compensates for motion. Then the motion regions are
transformed DCT, quantized, RLE and Huffman encoding,
respectively, and the motion vectors are encoded by RLE
and Huffman encoding. In this case, node T performs the
DCT task, and node C performs the coding task. By sharing
the compression tasks among several nodes in a cluster, the
energy consumption of the nodes will be balanced. Total
energy consumption for P-frame is

EP(scheme 1) = EPrx + EPcp + EPtx

= EPrx + ES
Detect12

+ ES
Mot

+
N∑

i=1

(
ETi

DCTP
+ ECi

CodeP

)
+ EPtx,

(13)

where ES
Detect12

is the energy dissipation for detecting the
edges of objects in previous and current frames at node S,
ES

Mot is the energy dissipation for finding motion vectors
and motion regions, ETi

DCTP
is the energy dissipation for

transforming DCT at node T for the ith block of P-frame,
and ECi

CodeP is the energy spent for coding at node C for the
ith block of P-frame.

When the number of hops between node S and node C,
say hsc, is less than three, the tasks cannot be fully distributed
as shown in Figure 8. Accordingly, all the compression tasks
(DCT and coding) are allocated to the intermediate node
when hsc = 2; and all are done on the source node when
hsc = 1.

We recognize that in scheme 1, source nodes have to
implement many tasks (to detect the edges of objects in
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Figure 8: The normal case of the proposed video compression scheme 1 with Nhops = 3 for (a) I-frames and (b) P-frames.

the frames, to compare them, to find the motion vectors
and compensate for motion, to detect the edges of objects
in the background images, and compare and store edges of
objects), while other nodes still have enough energy to do
these tasks. Therefore, we need to distribute the tasks, for
example, detecting edges of objects in the frames and finding
motion vectors and motion regions, to reduce overload at the
source nodes. To solve the problem, we propose the second
scheme.

3.5. Proposed Video Compression Scheme 2. Our second
proposed scheme is shown in Figure 9. In this scheme, we
improve scheme 1 and use the encoding technique based on
the Wyner-Ziv encoder to reduce the complexity of encoder
[4, 23, 41]. In Figure 9, the sequence of frames of the input
video is divided into two groups, P-frames and I-frames.
The different points of the proposed scheme 2 from the
proposed scheme 1 are to detect edges of objects in I-frame,
to find motion vectors and compensate for motion at the
next to source node S. Therefore, we reduce overload at the
source node. The details of steps of proposed scheme 2 are
performed as follows.

For I-frames, we use the conventional encoder (i.e.,
H.262, H.263, H.263+, or H.264 encoders). In our simu-
lation, intraframes are encoded by H.262 encoder that is
suitable for wireless application because of its low complexity
of algorithm and acceptable quality of decoding data [35].
The frames will be used as reference frames to find the
motion vectors and compensate for motion.

For P-frames, we implement five steps to estimate and
compensate for motion, as shown in Figure 9.

Step 1. The current frame is detected to find its edges of
objects at the encoder (node S). Then it is compared with the
edges of objects in the background images to cut down noise.
The difference data between the edges are transformed,
quantized, and encoded before being sent to the decoder
(node T).

Step 2. At the decoder, we perform decoding and inversing
transformation to rebuild the difference data between the
edges. The difference data are compared with the edges of
objects in the reference frame at the decoder to mark active
regions. The step is performed similar to the Steps 1 and 2 in
Section 3.2.

Step 3. The indexes of marked active regions are sent back to
the encoder.

Step 4. The encoder sends only active regions based on the
indexes of marked active regions to the decoder.

Step 5. The decoder estimates motion (motion vectors)
and compensates for motion based on active regions and
reference frame. Finally, the motion regions will be trans-
formed, quantized, and encoded by JPEG-encoding block.
By reducing the computational complexity of the encoder,
the video compression tasks are shared by both the encoder
and the decoder.

Figure 10 depicts an example of the proposed scheme
2 where the number of hops from the source node to the
cluster head is three. Figure 10(a) illustrates a situation where
the input frame is an I-frame. For the frame, the data are
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Figure 10: The normal case of the proposed video compression scheme 2 with Nhops = 3 for (a) I-frames and (b) P-frames.

compressed by H.262 encoder along the path from the source
node to the cluster head. In the figure, node T not only
performs the transforming task but also detects and stores
the edges of objects in the I-frames for motion estimation
and motion compensation. The energy consumption in
video compression for I-frame is

EI(scheme 2) = EIrx + EIcp + EItx

= EIrx + ET
Detect

+
N∑

i=1

(
ETi

DCTI
+ ECi

CodeI

)
+ EItx,

(14)

where ET
Detect is the energy dissipation for detecting the edge

of I-frame at node T .

Figure 10(b) shows the compression scheme for a P-
frame. Node S first performs edge detection on the current
frame. Then the edges of objects are compared with the edges
of objects in the background images. After the comparison,
the difference data will be sent to the node T . Node T
compares the difference data with the edges of objects in the
reference frame to mark active regions and sends indexes of
active regions back to node S. Based on the indexes, node
S sends the active regions of current frame (P-frame) to
node T to estimate and compensate for motion (motion
vectors and motion regions). Then the motion regions will
be transformed, quantized, RLE and Huffman encoded,
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respectively, and the motion vectors are encoded by RLE and
Huffman encoding. In this case, node T performs the DCT
task, and node C performs the coding task. Therefore, the
energy consumption in video compression for P-frame is

EP(scheme 2) = EPrx + EPcp + EPtx

= EPrx + ES
Detect + ET

Mot

+
N∑

i=1

(
ETi

DCTP
+ ECi

CodeP

)
+ EPtx + ES

Dtx + ES
Mtx,

ES
Dtx = Detx,

ES
Mtx = D′etx,

(15)

where ES
Detect is the energy dissipation for detecting the

edge of P-frame at node S, ES
Dtx is the energy dissipation

for transferring the edges of objects in current frame from
node S to node T , and ES

Mtx is the energy dissipation for
transferring the marking regions of current frame from node
S to node T . D and D′ are the data sizes of the edges of objects
in current frame and the marking regions of current frame,
respectively. Since the edges of objects in frames have the high
correlation, we compress the data before sending to the node
T .

In scheme 2, since we use the encoding technique that
uses active regions, only a part of current frame based on
marking regions is transferred to estimate and compensate
for motion as shown in Figure 9. Therefore, the energy (ES

Mtx)
is much smaller than the energy consumption for sending the
whole frame. When the number of hops between node S to
node C, hsc, is less than three, the tasks will be allocated to the
same node like the scheme 1, due to the lack of intermediate
nodes.

4. Simulation Results

4.1. Simulation Setup. We used Visual Studio C to design
our simulation. In our simulation, we consider six-sensor
networks with sizes of 100, 200, 300, 500, 800, and 1000
nodes, randomly distributed over a 500 m × 500 m field.
The source nodes are randomly selected. We divide the
wireless network into many parts (clusters), and each part is
controlled with a special node termed a cluster head node.
We choose the cluster head based on LEACH-C [38]. We
choose the energy model parameter values in (4) and (5)
as follows: eelec = 50 nJ/bit, ε f s = 0.01 nJ/bit/m2, εmp =
0.0000013 nJ/bit/m4, and d0 = 100 m, using the typical
values in the previous literature [38–40]. Based on [39, 40],
we select the values of the parameters for computing energy
model as follows: eDCT = 20 nJ/bit and eCode = 90 nJ/bit.
Based on [5, 7, 36, 40, 42], we calculate the energy for
homogeneity edge detection EDetect ≈ 266846 nJ/frame and
the energy for finding motion region eMot ≈ 1205 nJ/bit.

We select the node that is closest to the center of the
field as the base station. Every sensor is provided with two
joules as startup energy. We use the Akiyo video whose

background images change slowly, which is used in relevant
video compression literature, supported by the quarter
common interchange format (QCIF, 176 pixels× 144 pixels),
with 24 bits/pixel and 150 frames as input data. We use
MPEG-2/H.262, the main profile at low level (SP@LL) that is
suitable for wireless applications [35]. In our simulation, the
number of reference background images is five, and GOP is
five (IPPPPIPPPP. . .). The reference background images are
updated and stored in the buffer of the video sensors. These
parameters are suitable for the buffer of video sensors in a
wireless network [28].

4.2. Simulation Results. To evaluate the effect of different
parameters on the execution of the proposed video com-
pression schemes, several simulations are conducted. Two
proposed schemes, which compress video data along the path
from a source node to a cluster head node and transfer to
the base station with a multihop transmission, are compared
with MPEG-2/H.262 and the algorithm that compresses
video data at the source node and transfers to the base station
directly in [20].

We evaluate three parameters, the quality of decoding
video (compression rate, video quality, and encoding time),
the quality of the network (the numbers of received and lost
frames), and the power consumption of the network in two
cases. In the first case, we assume that there is no error on the
channel. In the second case, we assume that there is an error-
control scheme based on [43, 44]. In this case, we assume that
there is only error between two nodes and do not consider
interference with other nodes [43]. Therefore, the packet
loss rate depends on the distance between two nodes. We
assume that number of bits/packet for transmission is 8 [44].
A frame will be discarded if one or more packets constituting
the frame are lost. Therefore, the average frame loss rate is
defined as follows:

average frame loss = number of frame loss
number of received frames

. (16)

To evaluate the video compression algorithms, three
parameters, PSNR, compression rate, and encoding time of
decoding video, are used. Image quality is measured by PSNR
metric as the following equation:

PSNR [dB] = 20 log10
2b − 1

E
∥∥x1
(
i, j
)− x2

(
i, j
)∥∥ , (17)

where x1(i, j) is the value of pixel (i, j) in the original image,
x2(i, j) is the value of pixel in the decompressed image, and
b is the number of bits per pixel for the original image. The
storage capacity is measured by the compression rate. It is
defined as follows:

compression rate = size of encoded image
size of original image

. (18)

The PSNR and the compression rate have relation
with each other. If the compression rate metric decreases,
the image quality will go down. It means that PSNR
will decrease. Thus, we need to balance two parameters
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Figure 11: Simulation results with the Akiyo video: (a) the compression rate, (b) the quality of video, and (c) the total encoding time.

when compressing image, while researchers focus on the
compression rate metric because of the energy constraints.

Comparison of decoding video quality: We perform to
compress and decompress video data at a source node and
calculate three parameters, PSNR, compression rate, and
encoding time of decoding video, with two types of input
videos, Akiyo and Carphone videos. The results are shown in
Figures 11 and 12.

In Figure 11, when the background images of Akiyo
video change slowly, the average quality of decoding video
by the proposed algorithm is improved up 2 dB and 1 dB
compared with the results by MPEG-2/H.262 and the Magli
algorithm in [20], respectively, as shown in Figure 11(b)
while the compression rate of decoding video by the
proposed algorithm is smaller than that by other algorithms,
as shown in Figure 11(a). On the other hand, the encoding
time of the proposed algorithm is competitive with the Magli
algorithm in [20] and lower than that of MPEG-2/H.262, as
shown in Figure 11(c).

In Figure 12, when the background images of Carphone
video change quickly, the average quality of decoding video
by the proposed algorithm is not improved. In this case, the

quality of decoding video by the proposed algorithm is not
as good as that by MPEG-2/H.262 and the Magli algorithm
in [20] for some frames, as shown in Figure 12(b) while the
encoding time of the proposed algorithm is longer than that
of MPEG-2/H.262, as shown in Figure 12(c).

Comparison of network quality: To evaluate the network
quality, we perform to compress and transfer data video from
source nodes to the base station. First, a video node, which
is a source node, has to find the shortest way to the cluster
head to send video data. Then the cluster head will send
the compressed data to the base station using the multihop
technique through other cluster heads. The simulation will
stop when all source nodes depleted their energy.

First, we evaluate the energy consumption for encoding
frame at the source node among MPEG-2/H.262, Magli algo-
rithm in [20], and the proposed algorithm. The simulation
results are shown in Figures 13 and 14. Although the energy
consumption for encoding intraframes in the proposed
algorithm is higher than that of other algorithms because
of performing edge detection in the proposed algorithm as
shown in Figures 13(a) and 14(a), the energy consumption
for encoding interframes in the proposed algorithm is lower
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Figure 12: Simulation results with the Carphone video: (a) the compression rate, (b) the quality of video, and (c) the total encoding time.
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Figure 13: Comparing encoding energy consumption among algorithms for Akiyo video with: (a) the intraframe and (b) the interframe
(P-frame).

than that of other algorithms due to reducing the complexity
of motion estimation and motion compensation in the
proposed algorithm, as shown in Figures 13(b) and 14(b).
Therefore, total energy consumption for encoding intra and
interframes in proposed algorithm is much lower than that
of other algorithms because the number of interframes is

much larger than the number of intraframes in video data,
especially when GOP increases.

Then, we evaluate the network quality in two cases. In the
first case, we assume that there is no error on the channel.
In the second case, we assume that there is an error-control
scheme. The simulation results are shown in Figures 15
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Figure 14: Comparing encoding energy consumption among algorithms for Carphone video with: (a) the intraframe and (b) the interframe
(P-frame).
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Figure 15: The results obtained for four schemes with QCIF Akiyo video in case of not having channel error: (a) the average frame loss rate,
(b) the number of received frames, and (c) the total residual energy.

and 16. In both cases, when the number of nodes becomes
large enough, the topology of the network will be improved.
Thus, the frame loss rates are less than 5 percent with 1000
nodes as shown in Figure 15(a), and less than 10 percent
with 1000 nodes as shown in Figure 16(a) in two proposed
schemes. As a result, as shown in Figures 15(b) and 16(b),
the numbers of received frames by the proposed schemes
that perform to distribute the video compression tasks for

multiple nodes from a source node to a cluster head are
greater than those by the other schemes that perform to
centralize the video compression tasks at a source node, while
the energy consumptions of all schemes are almost the same,
as shown in Figures 15(c) and 16(c).

Comparison of power consumption: To evaluate the energy
balance, we also perform in two cases, not having error con-
trol scheme and having error control scheme. We measured
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Figure 16: The results obtained for four schemes with QCIF Akiyo video in case of having channel error: (a) the average frame loss rate, (b)
the number of received frames, and (c) the total residual energy.

the residual energy of the network after receiving 5000 frames
at the base station. We conducted the simulation with 2000
sensor nodes, and the results are plotted in Figures 17 and
18. In Figures 17 and 18, the proposed schemes avoid that
many sensor nodes run out of energy, and especially scheme
2 successfully makes the energy hole around the base station
smaller than others.

4.3. Discussion. In this paper, we propose two schemes based
on an edge detection technique. The proposed schemes
achieve not only to improve the quality of decoding frames
but also to balance the energy consumption of the nodes.
However, there remains three issues in this paper.

First, we assumed that the backgrounds were not chang-
ing so quickly and we considered the scenes with small
changes in the backgrounds and low motion of object.
In the surveillance applications, the assumption will be
acceptable. However, when the assumption is extended to
other applications where backgrounds change quickly, the
proposed algorithm will not be optimized, as shown in
Figure 12. In the worst case, active region might be the

same size of the original image. To solve the problem, the
number of backgrounds should be large enough to remove
noise when estimating motion regions and motion vectors.
Since memories of sensors are limited, we will consider the
tradeoff between the number of backgrounds and capacity of
memory when applying for real environments in the future
work.

Secondly, we assumed that there was only one object in
the simulation. In the real monitoring environments, more
than two objects might come into a frame. In this case,
the most difficult problem is to determine motion region
when these objects overlap each other. In the future work, we
will therefore consider to solve the problem by using other
techniques such as overlapping views technique [22].

Thirdly, we shared the edge detection task for a
transforming node in the second proposed scheme but
finding motion vectors task was still performed at a
source/transforming node. The finding motion vectors task
consumes more energy and memory [36, 37, 42]. Therefore,
we will perform to distribute the task for multiple nodes to
balance energy consumption on WSNs in the future work.
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Figure 17: The obtained results after receiving 5000 frames at the base station with QCIF Akiyo video in case of not having channel error:
(a) MPEG-2/H.262 scheme, (b) Magli scheme [20], (c) the proposed scheme 1, and (d) the proposed scheme 2.
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Figure 18: The obtained results after receiving 5000 frames at the base station with QCIF Akiyo video in case of having channel error: (a)
MPEG-2/H.262 scheme, (b) Magli scheme [20], (c) the proposed scheme 1, and (d) the proposed scheme 2.
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5. Conclusion and Future Work

In this paper, we proposed two video compression schemes
using an edge detection technique for balancing energy
consumption in WVSNs. The proposed schemes solved
three problems on WSNs, energy conservation, resource-
constrained computation, and data processing. The energy
conservation and data processing problems are solved by
distributing the data processing tasks for multiple nodes
from a source node to the cluster head in a cluster. As a
result, the number of received data by the proposed schemes
increases while the energy consumption is just the same for
all schemes and energy among sensor nodes is balanced. For
the resource-constrained computation problem, we use edge
feature of image to find motion regions. The advantages of
the technique are short execution time, low computational
complexity, and low error rate [9].

In our simulation, because we use only I-frames and P-
frames in video compression, the rate of compression is not
yet optimized. Moreover, since we use H.262 encoder for
intraframes, the quality and compression rate of encoding
frames have not yet exploited. To solve the problem, the
authors [23] used a backward channel to improve the
quality of reference frames and compression rate of encoding
frames while maintaining low complexity at the encoder.
We therefore will utilize bidirectional frames (B-frames) and
apply the features of H.264 encoder [45] for intraframes to
improve the quality and compression rate in the future work.

Appendices

A. Coding Energy Model

The data processing models on WSNs have been investigated
in many papers [40, 46–48]. To describe more details for
compressing multimedia data, we use the simple JPEG model
in [48], as shown Figure 19.

In the image/video compression algorithms, the data are
often processed by 8 × 8 block. Consequently, we model the
block-based energy consumption. Based on the model, the
total energy consumption for compressing one data block,
denoted as Ecp, is calculated as [48]

Ecp = EDCT + EQt + EZ + ERLE + EHuff, (A.1)

where EDCT, EQt, EZ , ERLE, and EHuff are the consumed energy
for transforming two-dimensional DCT (2D-DCT), quan-
tizing, zigzag scan, RLE encoding, and Huffman encoding,
respectively.

The 2D-DCT has been used in many papers, and it is
often simply described as
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(A.2)

where f (n1, n2) is the grey level of one pixel at position (n1,
n2) in one block. Xk1 and Xk2 are equal to 1/

√
2 if k1 = k2 = 0,

and to 1 if 0 < k1, k2 < N . The notations k1 and k2 are the
discrete frequency variables such that

0 ≤ k1 < N ,

0 ≤ k2 < N ,
(A.3)

where N is the block size. Equation (A.2) can be modeled by
three N ×N matrices as follows:

F(N×N) = A(N×N)I(N×N)A
T
(N×N), (A.4)

where F is the matrix whose coefficients are F(k1, k2), and the
size of matrix is N×N . I is the matrix of pixels of the original
image, and AT is the transpose of matrix A whose coefficients
are expressed as the following equation,

A(k1, k2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
N

, if k1 = 0,
√

2
N

cos
(
π

N

(
k2 +

1
2

)
k1

)
, otherwise.

(A.5)

Each matrix (N × N) in (A.4) has N2 coefficients, and each
coefficient performs N multiplications and (N−1) additions.
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Therefore, total energy consumption for performing (A.2) is
expressed as

EDCT = 2N2(Nemult + (N − 1)eadd), (A.6)

where emult is the energy consumption per multiplication,
and eadd represents the energy consumption per addition.

In the JPEG standard, the value of N is often 8, and
thus the energy consumed for transforming DCT per block
is expressed as

EDCT = 128(8emult + 7eadd). (A.7)

Similarly, we can calculate energy consumption for quanti-
zation, zigzag scan, RLE encoding, and Huffman encoding
steps. The more details of the steps can be seen in [48].

The energy consumption for performing quantization
per block is calculated as follows:

EQt = N2(ediv + er), (A.8)

where ediv and er are the energy consumption for division
and round instructions, respectively.

The energy consumption for performing zigzag scan per
block is calculated as follows:

EZ =
(
N2 − 1

)
esh, (A.9)

where esh represents the energy consumption of shift process.
The energy consumption for encoding RLE per block is

calculated as follows:

ERLE =
(
N2 − 1

)
ez +

((
N2 − 1

)−
(
N0 −N0seq

))
ewr

+
N0seq∑

i=1

e0seq(i),

e0seq(i) =
⎧
⎨

⎩
e0, if

(
i < N0seq

)
∨ (Last component /= 0

)
,

ewr , otherwise.

e0 =
(
pi + 1

)
(ewr + eres) +

(
15pi + qi − 1

)
einc,

N0 =
N0seq∑

i=1

length(i),

Pi = length(i) div 16,

qi = length(i) mod 16,

(A.10)

where 0seq denotes the sequence of zeros,N0seq is the number
of 0seqs inside one block, and ez is the consumed energy
for checking whether an alternating current (AC) coefficient
is null. The function length(i) returns the number of zeros
in 0seq(i) (ith sequence of zeros). The notation ewr is the
dissipated energy for writing each 0seq of length r < 16 and
the non-zero value X in the block denoted by (r,X). The
notation einc is the dissipated energy for incrementing the
counter of the number of zeros in each 0seq, and eres is the
consumed energy for resetting the counter.

Table 1: Energy parameters using in the simulation.

Parameter Value

Initial energy 2 Joules

Energy of transceiver electron (εelec) 50 nJ/bit

Energy for transmission in free-space
model (ε f s)

0.01 nJ/bit/m2

Energy for transmission in two-ray
model (εmp)

0.0000013 nJ/bit/m4

Energy consumption for transforming
DCT (eDCT)

20 nJ/bit

Energy consumption for performing
zigzag (eZ)

10 nJ/bit

Energy consumption for performing
quantization (eQt)

10 nJ/bit

Energy consumption for pre-processing
(ePre)

15 nJ/bit

Energy consumption for post-processing
(ePost)

15 nJ/bit

Energy consumption for for coding
(eCode)

90 nJ/bit

Energy consumption for performing edge
detection (EDetect)

266846 nJ/frame

Energy consumption for finding motion
region (eMot)

1205 nJ/bit

The energy consumption for Huffman encoding per
block is

EHuff = eDC
Huff + eAC

Huff,

eDC
Huff = efetch

1 + efetch
2 + ed + ews,

eAC
Huff = m

(
efetch

3 + efetch
4 + ews

)
,

(A.11)

where m is the number of pairs (r,X) in previous RLE stage
within the block, except the pairs that are special markers
like (0, 0) or (15, 0), and ews is the energy required to write
a stream of bits in the JPEG file. The notation efetch

1 is the
dissipated energy when we look in the category table for the
representation of X , whereas efetch

2 is the consumed energy
when we look in the final step of Huffman encoding of the
byte (r,X). The notation ed is the energy required to compute
the difference between two direct current (DC) coefficients
(denoted as Diff j). The notation efetch

3 is the consumed energy
when we look in the category table for the representation
of Diff j , and efetch

4 is the dissipated energy when we look
in DC Huffman table for the representation of the function
Huff(cat(Diff j)) written in the JPEG file for one block.

Based on [5, 7, 36, 40, 42], we calculate the energy
for homogeneity edge detection and the energy for finding
motion region. The more details of the steps can be seen in
[5, 7, 36, 40, 42]. The notations and their values, which are
used in the paper, are summarized in the Table 1.
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Figure 20: Simulation results with the Akiyo video: (a) the compression rate and (b) the quality of video.
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Figure 21: Comparing average encoding energy consumption among algorithms for Akiyo video with: (a) the intraframe and (b) the
interframe (P-frame).

Table 2: Comparing computation complexity and coding gain with
0.3 bits/sample of four transformations with Gauss-Markov input
and intersample autocorrelation coefficient ρ ≈ 0.95 per block.

Transform
(block size
N = 8)

Number of
multiplications

Number of
additions

Coding gain
(dB)

DCT 13 29 0

HLBT 16 42 0.65

LOT 22 54 0.40

LBT 23 54 1.05

B. Compare Quality and Energy Consumption
of Proposed Algorithm with H.264/AVC

H.264/AVC is the new video coding standard of the ITU-
T Video Coding Experts Group and the ISO/IEC Moving
Picture Experts Group. The main goal of the H.264 encoding
is to improve both quality and compression rate of decoding

video. In the standard, there are many highlighted features
that enhance not only quality but also compression rate.
However, it is difficult to implement the encoder for WVSNs
because of its high complexity. In this section, we apply two
typical features (lapped transform and arithmetic coding in
H.264) for our proposed algorithm and compare with the
H.264 standard.

B.1. Lapped Transform. Lapped transform (LT) is a tech-
nology that uses a preprocessing stage before implementing
DCT to improve DCT [49, 50]. Therefore, we use an LT for
intraframes in our proposed algorithm instead of DCT to
improve the quality of decoding video. Among three types
of lapped transform, namely lapped orthogonal transform
(LOT), hierarchical lapped biorthogonal transform (HLBT),
and lapped biorthogonal transform (LBT), we choose the
HLBT because it is better than the LOT and LBT in
three aspects: reduced blocking and ringing artifacts, lower
computational complexity, and higher coding gain than LOT
for low bit rate image coding applications as shown in
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Table 2 [49, 50]. Therefore, the HLBT is the most suitable
for implementing in WVSNs. The details of HLBT can seen
in [49, 50].

B.2. Arithmetic Coding. The JPEG model is applied to
compress video data in [4, 20, 51]. The advantage of the
model is the simplicity of implementation. Nevertheless,
since the Huffman coding is used in the JPEG model, we
have to transfer the Huffman table with the compression
data from source nodes to the base station in WVSNs. It
thus consumes much energy of sensor nodes. Besides, the
compression rate of decoding video in JPEG model is not
high. To address the problem, we replace the Huffman coding
by an arithmetic coding to improve an efficient compression
[52, 53]. The main point of arithmetic coding is that each
possible sequence is mapped to a unique number in [0, 1).
Therefore, efficient coding is improved. The details of the
arithmetic coding can be seen in [52, 53].

B.3. Compare PSNR and Compression Rate. For H.264
encoder, we used a model in [4, 53] to estimate with our
proposed algorithm. The results are shown in Figure 20.
In Figure 20, the proposed algorithm, which uses HLBT
and arithmetic coding, is competitive with H.264 encoder
in terms quality (PSNR) and compression rate of decoding
video.

B.4. Compare Encoding-Energy Consumption. In Figure 21,
we evaluate the average energy consumption for encoding
per frame at the source node between H.264 encoder and
our proposed algorithm that uses HLBT and arithmetic
coding. To evaluate the energy consumption for inter and
intraframes of H.264 video compression, we use a model in
[4, 53]. The results show that energy consumption for both
intra and interframes in the proposed algorithm is much
lower than that of H.264 encoder, especially in interframe (P-
frame) as shown in Figure 21(b).
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