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A phenomenal increase in the number of wireless devices has led to the evolution of several interesting and challenging research
problems in opportunistic networks. For example, the random waypoint mobility model, an early, popular effort to model
mobility, involves generating random movement patterns. Previous research efforts, however, validate that movement patterns
are not random; instead, human mobility is predictable to some extent. Since the performance of a routing protocol in an oppor-
tunistic network is greatly improved if the movement patterns of mobile users can be somewhat predicted in advance, several
research attempts have been made to understand human mobility. The solutions developed use our understanding of movement
patterns to predict the future contact probability for mobile nodes. In this work, we summarize the changing trends in modeling
human mobility as random movements to the current research efforts that model human walks in a more predictable manner.
Mobility patterns significantly affect the performance of a routing protocol. Thus, the changing trend in modeling mobility has led
to several changes in developing routing protocols for opportunistic networks. For example, the simplest opportunistic routing
protocol forwards a received packet to a randomly selected neighbor. With predictable mobility, however, routing protocols can use
the expected contact information between a pair of mobile nodes in making forwarding decisions. In this work, we also describe

the previous and current research efforts in developing routing protocols for opportunistic networks.

1. Introduction

Opportunistic networks are infrastructure-less networks
composed of pervasive wireless devices that use their contacts
for data delivery. In opportunistic networks, mobile devices
do not rely on the full availability of paths between source
and destination nodes; instead, mobility is exploited to
deliver data. Mobile nodes use their neighbors to relay data
with a hope that the data will eventually reach the desti-
nation node. Since mobile nodes in opportunistic networks
exchange data when they contact each other, predicting the
movement patterns of mobile nodes helps improve the rout-
ing protocol performance. A growing interest in predicting
human walk patterns has led to the development of several
new mobility models. Modeling mobility is of interest, as it
helps predict the contact pattern for a pair of mobile nodes.
(Throughout this paper, we use the terms mobile nodes and
mobile users interchangeably.) For example, given the move-
ment patterns of mobile nodes, we can estimate the amount
of time remaining before a pair of mobile nodes will contact

each other again. Similarly, we can predict how long a pair of
mobile nodes remains in contact with each other and, thus,
estimate the amount of data that can be transferred during
the period of contact.

Developing mobility models that can generate synthetic
traces to mimic real human walk patterns is of high interest.
Broadly, mobility models can be classified into two cate-
gories: (1) synthetic and (2) trace-based mobility models.
Synthetic mobility models attempt to model mobility in a
simplistic manner. The Random Waypoint (RWP) mobility
model is the first model developed to model human mobility
in a random manner [1]. Since then, several random mobility
models have been proposed. In general, synthetic mobility
models are simple to model and easy to use; however, the
traces generated by a synthetic mobility model do not cap-
ture human movement patterns. Specifically, several research
studies have shown that humans do not move in a completely
random manner; instead, their movement patterns are
predictable to some extent. Thus, there has been a growing
interest in developing models that are based on real datasets.



A mobility model developed using datasets collected from
real scenarios is called a frace-based mobility model. (In this
paper, we refer to a trace-based mobility model as a model
that is constructed based on the features extracted from the
analysis of real movement traces.) Specifically, a trace-based
mobility model is developed by monitoring the movement
patterns of users carrying mobile nodes. The traces collected
are then analyzed to find specific patterns that exist in human
walks. The development process of a trace-based mobility
model typically involves the following step:

(1) Collection of Traces. The mobility traces are captured
as a sequence of locations visited by mobile nodes
(i.e., the (x, y) coordinates) at different time intervals.
A location either represents an actual location visited
by the mobile node, or location of the access point
(AP) that a mobile node is connected to during its
movement.

(2) Processing of Traces. Due to several reasons (see
Section 3), the movement traces need to be processed
before they can be used for further analysis.

(3) Analysis of traces. The data (processed in Step 2) is
then analyzed to identify specific patterns that may
be present in human walks.

Each of the three previously listed steps can be executed
in several different ways. For example, the location informa-
tion of a mobile device can be tracked either via GPS or via
association with an AP. Similarly, the traces can be processed
and analyzed in several ways and the processing techniques
selected may lead to different conclusions about the move-
ment patterns. The specific features identified through the
analysis of traces are then modeled and a trace-based mobil-
ity model is developed. Several online repositories have a
wide range of traces collected from different indoor/outdoor
scenarios. The analysis of various traces (collected from real
scenarios) has revealed that human walks are not random
and can be predicted to some extent.

The rest of the paper is organized as follows. In Section 2,
we discuss many of the synthetic mobility models proposed
thus far. Section 3 provides details on the motivation behind
analyzing real datasets and developing mobility models based
on real scenarios. In addition, we briefly describe several
of the trace-based mobility models proposed thus far. In
Section 4, we describe the changing trends in developing
routing protocols for opportunistic networks. Finally, in
Section 5, we present conclusions and provide a list of
challenges that still exist in modeling human mobility.

2. Synthetic Mobility Models

Surveys of mobility modeling can be found in [5, 6]. An early
attempt to model mobility is called the Random Waypoint
(RWP) mobility model [1], where the mobility captured is
completely random. In particular, RWP generates synthetic
traces with mobile nodes moving independent of each other.
Several other synthetic mobility models followed the devel-
opment of RWP. Thus, we next briefly describe the methods
used in developing synthetic mobility models.
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2.1. Random Movement Patterns. RWP [1] models human
movements using three input parameters: location (i.e., x and
y coordinates), speed, and pause-time of a mobile node. In
RWP, every mobile node selects a random destination in the
simulation area and moves towards the chosen destination
with a random speed. Thus, the movement patterns of
mobile nodes contain a sequence of random jumps. Several
other mobility models with slight variations (e.g., random
direction, random jumps with a few attraction points, etc.)
have been proposed [6—12]. While these models are based on
slightly different features, the movement patterns generated
for every mobile node are independent. In other words, the
movement of a mobile node is not dependent on a neighbor
mobile node. The analysis of real traces shows that human
walks are not completely random; instead, movement pat-
terns in real scenarios show dependencies. Next, we briefly
describe synthetic mobility models that incorporate depen-
dencies present in human walk patterns.

2.2. Movement Patterns with Dependencies. An analysis of
datasets collected from real movement scenarios confirms
that the movement patterns of mobile nodes contain several
dependencies. The dependencies that exist in the movement
patterns of mobile nodes are due to various reasons. For
example, mobile nodes exhibit

(i) temporal dependencies, as the locations visited by a
mobile node are not independent of its movement in
the past (e.g., velocity, direction, location, etc.)

(ii) spatial dependencies, as the locations visited in future
by a mobile node may depend on the movement of its
neighbor nodes (e.g., group mobility).

Several examples of synthetic mobility models with tem-
poral and spatial dependencies can be found in [13-22].

2.3. Movement with Geographic Restrictions. As discussed,
experiments reveal that human movement should not be
modeled as a completely random phenomenon. Since ran-
dom movement models do not represent real scenarios,
researchers have developed new models that are closer to
realistic scenarios. For example, while moving, a mobile node
may encounter an obstacle such as a building; in this case,
the movement pattern of a node should not be represented
as random jumps made in random directions. To explore the
effect of obstacles that produce geographic restrictions, new
synthetic mobility models were developed. For example, the
authors in [23] proposed a mobility model that simulates
a scenario with obstacles. The obstacles are modeled as
polygons and the center of the obstacles are used to form
movement paths using Voronoi diagrams. Another model
is proposed in [20], where the users are connected as social
groups and are mapped onto topological space. The authors
use a random transition matrix for mobile nodes to select
locations. Similarly, [24] proposes a new mobility model that
is based on the datasets collected in [17]. Other examples of
mobility models with geographic restrictions can be found in
[17,25-37].
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While synthetic mobility models are simple and easy
to use, very few of these models have been validated with
datasets collected from real scenarios. Validation of a syn-
thetic mobility model with real trace data is crucial to make
sure that the model can represent a real scenario. A few
research studies have shown that synthetic mobility models
do not model human mobility in a realistic manner [38, 39].
This observation can be attributed to the following reasons

(i) Synthetic mobility models represent human move-
ment in a random manner; however, research shows
that human movement patterns are not completely
random and can be predicted to some extent.

(ii) Synthetic mobility models are not based on real
datasets; instead, movements are generalized for all
the mobile nodes in the network and, thus, generate
homogeneous synthetic traces.

The current research focus in this area is on the develop-
ment of models that are based on real traces; thus, we do not
include more details on synthetic mobility models in this
paper. For further details on synthetic mobility models, see
[6, 38]. In our previous work [38], we classify existing syn-
thetic mobility models via several factors (e.g., applications/
scenarios for these models and whether the models are val-
idated or not). This classification helps researchers choose a
synthetic model for a specific need. For example, a researcher
who is interested in simulating a scenario without any depen-
dencies among mobile nodes can use the Random Waypoint
(RWP) mobility model. Similarly, to simulate a city scenario
with buildings and other obstacles, models such as the
Manhattan-Grid or Random-Waypoint-City model can be
used. See [38] for further details on our proposed classifi-
cation as well as how to obtain codes for different mobility
models.

3. Trace-Based Mobility Models

Mobility models that are based on real datasets are
called trace-based mobility models. Movement traces col-
lected from several indoor/outdoor sites are available on
CRAWDAD CRAWDAD (http://crawdad.cs.dartmouth.edu/).
While CRAWDAD is the largest repository for real datasets
collected from diverse scenarios, other repositories can be
found at UNC/FORTH (http://netserver.ics.forth.gr/data-
traces/) and MobiLib (http://nile.cise.ufl.edu/MobiLib/). In
[38], we provide a review of trace-based mobility models and
the datasets that are available online. We categorize the traces
using different criteria. For example, the traces are classified
via the scenarios for which they were collected. The analysis
of real datasets has helped researchers understand the sta-
tistical features present in human walks. We note, however,
that different trace analysis techniques may lead to dissimilar
movement patterns. Therefore, the results obtained from the
analysis of one dataset may not be applicable to another
dataset. Next, we briefly describe the three steps (listed in
Section 1) involved in the development of a trace-based
mobility model.

3.1. Trace Collection. A mobility trace is collected via mon-
itoring the movements of mobile users in a network; thus,
the collected trace is based on the type of devices used in
the network. For example, the wireless local area network
(WLAN) traces collected using laptops may not represent
complete movement patterns, as users do not carry laptops
everywhere. On the other hand, ubiquitous devices (e.g.,
smartphones) are likely to be carried around and, thus, these
traces will represent more realistic movement patterns. Yoon
et al. [40] compare a sample trace collected via a GPS device
with traces collected via a laptop and a voice over IP (VOIP)
user. The analysis shows that the data collected via GPS is
closer to the VOIP trace when compared to the laptop trace.
The data collected via laptop traces, therefore, does not
necessarily represent the full movement patterns. The loca-
tions visited by mobile nodes in the network are monitored
via different connectivity methods. Thus, we next illustrate
common methods used for trace collection and how each
method affects the movement patterns of mobile nodes.

As mentioned in Section 1, mobility traces are collected
as a sequence of locations visited by mobile nodes over the
duration of the trace collection. Using the time of locations
visited, contact information between a pair of mobile
nodes can also be extracted (see Section 3.1.2 for details).
Since mobile nodes in opportunistic networks rely on their
contacts to deliver data, recent studies involve collecting
contact-based traces. We note, however, that the accuracy of
movement traces may vary depending on the type of trace
collection technique used. Next, we briefly describe popular
methods used to collect movement traces.

3.1.1. Traces Based on Locations. A location trace is a set of
tuples as follows:

<t,x,ex,y,ey,z,ez>, (1)

where t is the time, x, y, z are the coordinates, and ey, ey, e,
are the location errors for the coordinates.

Each tuple specifies a location visited by a mobile
node. Depending on the granularity of time used to record
locations, there might also be a timing error and inaccurate
timing may result in inaccurate locations. Thus, the errors ey,
€y and e, can represent both the location and timing error.
Depending on the localization method used and quality of
traces, the location information is classified as either coarse-
grained or fine-grained.

(1) Coarse-Grained Localization. A coarse-grained location
for a mobile node is defined with respect to the access
point (AP) the mobile node is connected to. Based on the
mode of communication between devices, these traces can be
either Bluetooth traces or WLAN traces. Since the commu-
nication area of an AP is large, this coarse-grained location
estimate only lists the AP; in other words, the location esti-
mate does not specify the mobile node’s exact location within
the AP’s communication area. The coarse-grained tech-
nique is very popular since it is a simple method to collect



movement traces; however, it may generate inaccurate move-
ment patterns, as described as follows:

(i) A coarse-grained localization method may result in
misleading contact information for a pair of mobile
nodes. For example, if a mobile node’s current loca-
tion is defined by the AP it is connected to, another
mobile node linked to the same AP is assumed to
be connected to the mobile node; however, the two
mobile nodes connected to the same AP may not
be able to communicate. (See [38, 41] for further
details.)

(ii) The user flight (i.e., a straight-line distance covered
between two consecutive locations) is represented as
a straight line between the two APs. In reality, the
movement pattern of a mobile node may be quite
different. (Figure 1 shows an example of a coarse-
grained and a fine-grained movement pattern cap-
tured for a mobile node).

(iii) In a network with a high density of APs, a user may
not be connected to the closest AP. Thus, the user’s
movement patterns filtered as an association with an
AP may not be accurate.

(iv) A few devices do not change APs as often as others
(e.g., CISCO devices) and, thus, the movement pat-
terns defined as associations with APs may be more
accurate for some devices than others.

(2) Fine-grained Localization. Due to the issues associated
with coarse-grained localization, recent research efforts have
focused on developing techniques to collect fine-grained
location estimates for mobile nodes. Specifically, it would be
better to locate a mobile node within the communication
area of an AP. For example, Figure 1 shows four APs with
example communication areas. In this example, a mobile
node moves from AP1 to AP4. The solid (blue) lines and
arrows represent the coarse-grained movement patterns of
the mobile node. With a fine-grained localization technique,
we can more closely track the mobile node’s path, for
example, see the dotted (red) lines and arrows in Figure 1.
A few popular ways to collect fine-grained location estimates
are as follows.

(i) GPS is a popular method to localize a mobile node.
Since GPS does not currently work indoors, it is
less suited for scenarios where nodes move within
a building. Other popular fine-grained localization
methods use fingerprinting (e.g., PlaceLab [42],
which works indoors), RFID, (Abatec LPM—http://
www.abatec-ag.com/) and Radio Interferometric
Positioning System (RIPS [43], as it provides better
accuracy than a GPS receiver).

(ii) Coarse-grained location estimates can be filtered to
obtain fine-grained mobility information. Various
filtering techniques include Triangle Centroid, Time-
based Centroid, and Kalman Filter [44, 45]. For
example, W. Gao and G. Cao [46] have developed an
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N Fine-grained

FiGurk 1: Fine and coarse-grained location information collected
for an example scenario.

HMM (Hidden Markov Model) that generates fine-
grained mobility information from coarse-grained
information; the proposed model has been validated
with the set of traces used in [3].

Hong and Kim [41] analyzed two large datasets, UCSD
[11] and Kotz et al. [47], and discussed that user association
patterns with APs may not represent the actual user mobility
patterns in dense networks. Specifically, the authors found
that 90% of the transitions (i.e., a user’s association from
one AP to another) in the Dartmouth trace and 38% of
transitions in the UCSD trace are false-positives and, thus,
do not represent the correct movement patterns. We note
that the difference between the percentages of false-positives
in these two datasets is due to the method used in collecting
traces. For example, the UCSD trace is collected via a polling-
based method, while the Dartmouth trace is collected via
an event-based trace collection method. Thus, Hong and
Kim [41] proposed an empirical model that filters the user
movement patterns from the AP association traces. (See [41]
for details.)

3.1.2. Traces Based on Contact Information. Since mobile
nodes in opportunistic networks store and forward data
using relay nodes, understanding the contact patterns of
mobile nodes is highly useful. The time between two
consecutive contacts for a pair of mobile nodes is called inter-
contact time (ICT). Also, the duration for which two mobile
nodes remain connected is called contact duration (CD).
If movement patterns of mobile nodes can be predicted
in advance, ICTs and CDs can help estimate the contacts
made by mobile nodes and help make efficient forwarding
decisions. A contact-based trace contains a sequence of
contacts made by mobile nodes. Specifically, a mobile device
transmits beacons and scans for other devices (e.g., using
Bluetooth) present within its transmission range at distinct
time intervals. A typical format of a contact-trace is as
follows:

<n1) nlatrn)emytlyel)) (2)



Journal of Electrical and Computer Engineering

where n; denotes the id of the first node (i.e., the scanning
device), n, denotes the id of the second node (i.e., the
scanned device), t,, (meeting time) denotes the time when
the two mobile nodes enter each other’s transmission range,
e denotes the potential error of the meeting time t,,, caused
by discrete scanning periods, #; (leaving time) denotes the
time when the two mobile nodes get disconnected, and e,
denotes the potential error of the leaving time ¢;.

Contact-based traces for a campus scenario and two
conference scenarios can be found in [2, 11], respectively (see
Section 4 for details). While contact-based traces have been
helpful in validating mobility models [3, 39], analysis shows
that the movement patterns extracted from these traces may
not be accurate [48, 49]. Depending on the type of scanning
device (e.g., Bluetooth or ZigBee) and scanning period used,
potential contact opportunities may be missed. For example,
the analysis in [2, 50] shows that if a larger scanning period
is used, then several short contacts are missed or merged
into long contacts. One way to improve a contact-based
trace is by augmenting the trace with contacts missed due
to the scanning period chosen. For example, Whitbeck et al.
(48, 49] have developed an algorithm that first generates
a movement trace from a contact-based trace. The authors
then extract contact information from the generated move-
ment trace and refer to this as an estimated contact-based
trace. The analysis in [49] shows that in addition to the con-
tacts registered in the original trace [51], several new short
contacts are found in the estimated contact-based trace.
These additional short contacts have a significant effect on
the performance of the forwarding scheme. In particular, the
authors find that the performance of the Spray and Wait
(SNW) [52] routing scheme is significantly improved using
the inferred contact trace data.

3.2. Trace Processing. Prior to analyzing a movement trace,
it is important to remove noise from the data; various
techniques have been used to process datasets collected from
real movement scenarios. For example, the analysis of GPS
traces shows that a change in direction leads to several short
flights [3]. Rhee et al. in [3] suggest researchers use three
methods (rectangular, angle, and pause-based) to preprocess
a trace by combining the short flights made by mobile nodes
into longer flights. Similarly, the switching of a mobile node
between two APs may occur without an actual movement;
this undesired switching is called the ping-pong effect [40].
The noise due to the ping-pong effect can be removed by
aggregating the data collected for different APs. As a result,
however, some location accuracy may be lost.

The traces collected over a period of time should be
processed for the variations that may occur over time [53].
For example, movement patterns in an office scenario may
differ over the weekend when compared to the movement
behavior during the weekdays. Similarly, movement patterns
in a campus scenario will be different during the holiday sea-
son. One of the major concerns during trace processing is to
consider the bias that may be present in the collected dataset.
For example, a small dataset with 10 users is likely to be
biased when compared to a large dataset with 1000 users.

Datasets collected from scenarios with different trace-collec-
tion methods, therefore, require specific techniques for pro-
cessing. In addition, features extracted from one dataset may
not be applicable to other datasets that are collected under
different circumstances.

3.3. Trace Analysis. As the last step, processed traces are
analyzed to identify specific patterns that may appear in
movement data. For example, analysis of real datasets shows
that the distribution of contact durations (CDs) for a pair of
mobile nodes fits a power-law distribution [54]. In addition,
a recent analysis by Song et al. [55] shows that the locations
visited by mobile nodes over a period of time are not com-
pletely independent of each other. In fact, a user returns to
a previously visited location with a probability proportional
to the number of times the location has been visited before;
thus, it is possible to predict a mobile node’s movement pat-
terns. The authors in [55] have analyzed a database of three
million user cell phone records. The two main conclusions of
the study are as follows.

(1) Humans often revisit a few locations that they have
visited in the past. Specifically, the probability to
explore a new location is given by

prob_explore(n) = aD,,?, 3)
where

(i) D, is the total number of distinct locations
visited by a mobile node # so far, and

(ii) a ~ 0.6 and b = 0.21 + 0.02 are the constants
derived from the empirical data analyzed in
[55]. (See [55] for details on these parameters
and the data used.)

(2) The probability to visit a previously visited location is
given by (1-prob_explore) and, among the locations
visited, the probability to select a location is propor-
tional to the number of times the location has already
been visited.

These two features describe the human mobility model
proposed in [55]. We note that the model can be easily
extended to capture the social behavior among humans as
well. Several researchers discuss known features of human
movement extracted from real datasets in [3, 55-59]. Quot-
ing from [39], these seven features are as follows.

(i) Feature 1. The flights (i.e., a straight-line distance
covered between two consecutive locations) distri-
bution of mobile nodes follows a truncated power-
law (TPL). (The truncated power-law distribution
follows power-law up to a certain time after which it
is truncated by an exponential cutoff.)

(ii) Feature 2. The ICTs (intercontact times) (i.e., the
amount of time between two successive contacts of

the same pair of nodes) distribution of mobile nodes
follows TPL.



(iii) Feature 3. The pause-times (i.e., the amount of time
a node pauses at a location) distribution of mobile
nodes follows TPL.

(iv) Feature 4. The distribution of mobile nodes is non-
uniform in the network.

(v) Feature 5. Mobile nodes do not move randomly in
the network; instead, their movement patterns can be
predicted to some extent due to the regularity present
in their movement. (See the next two features for
details.)

(vi) Feature 6. A mobile node explores a new location with
probability (say prob_explore) inversely proportional
to the total number of distinct locations it has visited
so far.

(vii) Feature 7. A mobile node visits a previously visited
location with probability given by (1-prob_explore).

Since early attempts to model human walks involved
random jumps, a Poisson process approximated the locations
visited by mobile nodes. The analysis of real datasets,
however, shows that humans do not move randomly; instead,
a few locations are visited more often than other locations.
Thus, the appropriate distribution of mobile nodes over a
simulation area is nonuniform (i.e., feature 4) and bursty.
(See [3, 4, 39, 55] for further details on these seven features.)
To further understand the heavy-tailed behavior that appears
to exist in different human activities (e.g., movement
patterns), Barabasi [60] analyzed a large email database. The
analysis shows that interactivity time of replying to emails
is heavy-tailed due to the priority-based selection of tasks.
For example, in email response, many emails are replied
too quickly followed by a long period of inactivity in email
response. To validate this behavior, Barabasi also analyzed
the correspondence records by Darwin and Einstein [61].
The analysis shows that the correspondence patterns in [61]
and the email exchanges in [60] follow the same power-law
behavior.

Chaintreau et al. performed a similar analysis [62] with
traces collected from real scenarios. The datasets include two
Wi-Fi traces [11, 63] and one iMote trace dataset [64]. The
analysis shows that the ICTs distribution for a pair of mobile
nodes best fits power-law; however, the analysis shows that
large ICTs (e.g., ICTs >one hour and ICTs >one day) range
3-25%, a significant percent. Zhu et al. [65] developed a new
application (called Goose) with data collected from a few
volunteers in Germany and China. The data collected for 15
days shows that the ICTs and encounters follow power-law;
as a result, the success rate using epidemic forwarding is able
to reach 50% in the short term and 80% in the long term.

3.4. Recent Efforts in Mobility Modeling. Recent research
efforts are focused on the development of new mobility
models that exhibit realistic behavior. In this section, we
briefly describe four of the most recently proposed mobility
models. Each of these four models satisfies some or all of the
seven features listed in Section 3.3. Our choice of mobility
models included in this section is based on the motivation
to cover a wide range of design paradigms used in modeling
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human mobility. Specifically, the set of mobility models
analyzed in this section include

(i) TLW: a mobility model that represents human move-
ments as a sequence of random power-law jumps,

(ii) SLAW: a mobility model that represents human
movements as a self-similar process,

(iii) SWIM: a mobility model that represents human
movement in an intuitive way, which prioritizes pop-
ularity or distance based on the value of its input
parameter, « (see Section 3.4.3 for details), and

(iv) SMOOTH: a mobility model that represents human
movement in a simple yet realistic manner, associat-
ing probability with every visited location.

3.4.1. TIW (see [3]). The Truncated Levy Walk (TLW)
mobility model is based on real GPS traces collected from
five outdoor sites [3], including two campuses, Disney
World, a state fair, and a metro city scenario. The traces
are preprocessed to remove noise that may be present in the
movement patterns. For example, small changes in direction
may result in several short flights made by a mobile node;
combining these short flights into one flight changes the
flights distribution. (See [3] for further details on the three
techniques used to extract flights, pause-times, and ICTs dis-
tribution from the GPS traces.)

Initially, mobile nodes in TLW are randomly distributed
over the simulation area. Each mobile node then makes
power-law jumps in random directions and pauses at every
visited location for a pause-time (which is power-law distrib-
uted). Figure 2(a) represents the initial distribution of 20
mobile nodes simulated in TLW and Figure 2(b) shows the
movement patterns generated for one of these 20 mobile
nodes. While validation results show that TLW generates
synthetic traces with power-law distributed ICTs, our anal-
ysis shows that the movement of the mobile nodes does not
appropriately represent the social behavior among humans.
In other words, the locations visited by mobile nodes in TLW
are random; thus, generated synthetic traces by TLW can not
represent the social communication patterns found in real
data.

3.4.2. SLAW (see [4]). The SLAW (Self-Similar Least Action
Walk) mobility model is based on the same set of traces used
in the development of TLW. Through analysis, the authors of
SLAW concluded that the locations visited by mobile nodes
in the network can be modeled as a self-similar process. A
process is called self-similar if the aggregated processes (i.e.,
the processes obtained by averaging the original process over
nonoverlapping blocks) are highly correlated. Specifically,
the autocorrelation function of a self-similar process is
nonsummable (i.e., o). For further details, see [66]. In par-
ticular, the distribution of locations is controlled by the Hurst
parameter, which can be varied (0.5, 1). To illustrate the dif-
ference between the movement patterns generated by SLAW
and a random mobility model, we simulate SLAW and
RWP for an example scenario. Figure 3(a) shows the initial
distribution of locations that a mobile node may visit for
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FIGURE 2: An example initial distribution and movement pattern in TLW. (Note that we restricted the scales of the axes in (b) to better

visualize the detailed movements of one node.).

an example scenario with Hurst = 0.75. As shown, the
locations visited by mobile nodes in SLAW are nonuniformly
distributed over the simulation area. Figure 3(b) shows the
initial distribution of mobile nodes in RWP. As mentioned
in Section 2, RWP models the movement of a mobile node
as a series of random jumps from one location to another. A
location visited in SLAW, on the other hand, is chosen based
on its distance from the mobile node’s current location. As a
result, the movement patterns generated by SLAW represent
several short flights with occasional long jumps. Figures 4(a)
and 4(b) compare the movement patterns of a mobile node
generated by SLAW and RWP, respectively. As shown, under
the SLAW mobility model, a mobile node prioritizes loca-
tions visited. Specifically, while moving, the node prefers to
visit near-by locations and rarely jumps to a random loca-
tion.

While Hurst is a well-defined parameter mathematically,
it is hard to estimate its value. In particular, for a given data
set, different Hurst values may be calculated with different
Hurst estimators. In addition, as discussed in [67], the Hurst
value may be biased.

3.4.3. SWIM (see [54]). While TIW and SLAW mobility
models are based on datasets collected from real scenarios,
the SWIM (Small Worlds in Motion) mobility model is
based on the following two intuitions of human movement:
whether a location is visited depends on (a) how far the
location is and (b) how popular the location is. In other
words, under the SWIM mobility model, mobile nodes visit
locations based on the location’s distance and popularity. In
SWIM, the network is divided into equal-sized cells. Every
mobile node is assigned a home location (which depends
on the simulation scenario and is assigned at the beginning
of simulation). A destination cell is selected to be visited
depending on its distance from the mobile node’s home

location and its popularity. An input parameter « controls
the selection of the next destination cell. Specifically, for «
close to 1, a mobile node prefers to visit locations closer to its
home location; for a close to zero, a mobile node prefers to
visit popular cells in the network. Figure 5(a) represents the
locations visited by a mobile node in SWIM for an example
scenario with & = 0.25. As shown in the figure, the loca-
tions visited by the node are less concentrated near its home
location (denoted by the red marker) when compared to
Figure 5(b), which shows the locations visited by the node
with a = 0.75.

3.4.4. SMOOTH (see [39]). Recently, a new mobility model
called SMOOTH that was based on all the seven features
listed in Section 3.3 was developed [39]. The initial setup of
the network in SMOOTH is done by placing landmarks that
represent popular locations. The initial locations for mobile
nodes are then defined with respect to the landmark loca-
tions. Figure 6(a) shows the initial placement of landmarks
and mobile nodes for an example scenario in SMOOTH.

As mentioned in Section 3, features 6 and 7 state that
mobile nodes revisit locations visited previously with a
predefined probability. Locations visited by the mobile
nodes in SMOOTH, therefore, are concentrated near the
landmarks; Figure 6(b) illustrates the locations visited by the
mobile nodes.

3.5. Concluding Remarks. In this section, we have described
the changing trends in the development of mobility models
for opportunistic networks. As discussed, early attempts to
model human mobility included random movements (e.g.,
RWP). Recent mobility models represent movement patterns
in a more predictable manner (e.g., SLAW). We briefly des-
cribed four of the most recently proposed mobility models
that were constructed to simulate several features extracted
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FIGURE 4: Example movement patterns in SLAW and RWP.

from real measurements. Since the analysis of real datasets
shows that the movement patterns of mobile nodes in a net-
work can be predicted to some extent, contact information
for a pair of mobile nodes can be estimated and may lead to
better forwarding decisions. In the next section, we describe
the effect of predictable movements in the development pro-
cess of routing protocols for opportunistic networks. Specifi-
cally, we briefly describe several routing schemes developed
for opportunistic networks, from Random forwarding to
routing based on Expected Contact Time (ECT).

4. Changing Trends in Opportunistic
Network Routing

Routing in opportunistic networks is different from routing
in other ad hoc networks. For example, in a mobile ad hoc

network, a packet is forwarded after a complete path from
source to destination has been established. Due to partition-
ing in opportunistic networks, a full path to the destination
node may never be available; thus, a packet is relayed until
it reaches the destination. The selection of the relay node
may be random or based on knowledge of a node’s contact
information. For example, in Random Forwarding, a packet is
forwarded to a randomly selected neighbor with a hope that
the packet will eventually reach the destination node. In [4],
on the other hand, a packet is relayed in a more intelligent
manner. Since the ICT distribution for a pair of mobile
nodes best fits the power-law distribution, mobile nodes with
long ICTs may never meet at all. Obviously, if future contact
probabilities for a pair of mobile nodes can be estimated in
advance, opportunistic routing schemes can take advantage
of this knowledge and perform well. The performance of
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a routing scheme can be measured via a variety of metrics.
In this work, we compare opportunistic routing techniques
via the following three performance metrics.

(i) Success Rate denotes the fraction of successfully deliv-
ered packets to the total number of packets generated
in the network.

(ii) Cost denotes the number of duplicate packets gener-
ated per packet transmitted, which is a valuable met-
ric since many proposed protocols flood packets.

(iii) End-to-end delay denotes the total amount of time it
takes for a packet to travel from its source to destina-
tion.

We now describe different types of routing schemes
for opportunistic networks. In addition, we classify these
schemes based on the type of information used to make
forwarding decisions.

4.1. Oblivious Routing. In oblivious routing, a packet is for-
warded to the neighbor node without any prior information
about the contact. For example, Direct Transmission [52]
is the simplest form of routing proposed for opportunistic
networks. In Direct Transmission, a source node waits until
the destination node is within direct contact. In other words,
there is no duplication of packets in the network and the cost
of delivery is minimal; however, with a power-law ICT dis-
tribution, a delay in packet delivery is likely to be extremely
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high for mobile nodes with long ICTs. Similarly, in Random
Forwarding [52], data is forwarded to a randomly selected
neighbor node until it reaches the destination. Since for-
warding decisions are random (i.e., not based on any mobil-
ity information), Random Forwarding is another example of
oblivious routing used in opportunistic networks.

4.2. Routing Based on Flooding. A popular way to forward
packets in opportunistic networks is to use flooding. For
example, in Epidemic Forwarding [68], a packet is flooded
among neighbors until it reaches the destination node. Of
course, with the large replication of packets, both success rate
and cost of delivery are quite high. Since mobile devices are
resource-constrained, flooding is highly inefficient. Thus,
another forwarding technique, Spray and Wait (SNW) [52],
which has a moderate amount of flooding, was developed. In
SNW, a packet is flooded to a random subset of the neighbor
nodes. While the cost of delivery is lower in SNW than in
Epidemic Forwarding, the success rate is lower as well due to
the random selection of nodes chosen to forward the packet.

4.3. Routing Based on Contact Information. The routing
schemes discussed in Sections 4.1 and 4.2 relay packets ran-
domly and do not exploit information known about the
mobile nodes. A more efficient way to handle packet for-
warding in opportunistic networks is to use the contact
history of mobile nodes in making routing decisions. In
Probabilistic Routing Protocol using History of Encounters
and Transitivity (PROPHET) [69], a mobile node uses the
history of contact information to choose a relay node for
packet forwarding. Specifically, a mobile node a uses the
number of contacts made with another mobile node b to
estimate the probability, P,;, that node a and node b will
meet again in the future. If nodes a and b do not meet for a
very long time, then P, is eventually decreased to zero via an
aging parameter. (See [69] for details.) In this type of routing
scheme, a packet from node a is forwarded to node b with
probability P, .

Another routing scheme called Last Encounter Time
(LET) [70] uses the latest contact information available for
mobile nodes. Specifically, the mobile node that encountered
the destination node most recently is expected to meet the
destination again soon. While the intuition behind LET
is more appropriate for opportunistic networks than the
PROPHET routing protocol, LET fails to make good for-
warding decisions due to the power-law distribution for
ICTs. In other words, nodes with long ICTs are less likely to
meet again in the near future. Thus, selecting a relay node
with the most recent history of contact with the destination
node may result in long delays. Expected Contact Time (ECT)
proposed in [4] overcomes this limitation of LET, as the
forwarding decision in ECT is based on the expected time
remaining before the next contact between the relay and the
destination node. In particular, ECT for a pair of mobile
nodes a and b is computed as a difference of the expected
intercontact time and last encounter time for node a and
node b. A mobile node with the lowest value for ECT is then
selected as a relay for the packet. Mobile nodes with higher
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TaBLE 1: The real Infocom’05 scenario analyzed in [2].

Scenario Infocom’05
Device iMote
Nodes 41
Network Type Bluetooth
Duration (days) 3
Granularity (sec) 120

ICTs have longer ECTs and, thus, will not be chosen to act as
relay nodes.

Hui et al. developed another interesting routing scheme
called BUBBLE [71]. BUBBLE is based on the observation
that a few mobile nodes in the network are more popular
than other nodes. The index of popularity for a mobile node
is estimated (via several simulations) as the number of times
the node acts as a relay on the shortest path for other nodes in
the network. The analysis shows that a mobile node popular
within a cluster may not be popular outside the cluster.
Therefore, the authors propose a mobile node to have two
indexes: a local rank (i.e., local centrality) and a global rank
(i.e., global centrality); these two ranks are used to make
forwarding decisions.

4.4. Effect of Mobility on Routing. The performance of a
routing protocol for an opportunistic network is dependent
on the contacts made by mobile nodes. In Sections 3 and 4,
we have described recent trends in modeling mobility as
well as recent efforts in developing routing protocols for
opportunistic networks. We now present our analysis results
obtained by evaluating the effect of the movement patterns
on the performance of an opportunistic routing protocol.
For this purpose, we simulated two mobility models, SLAW
and TLW, to generate synthetic mobility traces. We then
compared the performance of two routing protocols, Epi-
demic Forwarding and ECT, on the generated synthetic
traces. In addition, we also determined the performance
of the two routing protocols with a real trace, Infocom’05,
as discussed in the following section. The metrics used to
compare the performance of these two routing protocols are:
success rate, cost, and end-to-end delay.

4.4.1. Simulation Setup. We simulated both SLAW and TLW
to create a synthetic trace of a real Infocom’05 mobility
scenario analyzed in [2] (see Table 1 for details). Intel iMotes
were distributed among students attending a workshop at
the Infocom’05 conference. The devices periodically scanned
nearby contacts and logged this information in the form of a
contact-based trace. Tables 2 and 3 list the input parameters
to SLAW and TLW and their values in order to simulate the
Infocom’05 scenario on these two models. For both models,
the input parameter values that provide the best match for
the statistical features (e.g., ICTs distribution) with real traces
are used. See [3, 4] for a complete list of input parameters to
SLAW and TLW, respectively.

SLAW and TIW are simulated to generate a contact-
based trace for the scenario listed in Table 1. Specifically,
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TaBLE 2: Input parameter values of TLW for the Infocom’05 sce-
nario listed in Table 1. See [3] for details on the parameters.
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TaBLE 3: Input parameter values of SLAW for the Infocom’05 sce-
nario listed in Table 1. See [4] for details on the parameters.

Input parameter Value Input parameter Value
Nodes 41 Nodes 41
Area (m?) 500 x 500 Area (m?) 500 x 500
Simulation time (sec) 259200 Simulation time (sec) 259200
Range (m) 25 Range (m) 25
(@ fmin> frmax) (2.1,5m, 100 m) (B, Prmin> Prmax) (2.1,10s, 12h)
(B, Prains Prmax) (2.1,10s, 12h) a 2
Clusters 4 Waypoints 500
per-waypoint 0.1
Hurst 0.71
while moving, when a mobile node i reaches a destination in Clusters 4

SLAW (or TLW), it scans the nodes near its current location
to estimate its list of neighbors. In other words, a mobile
node j is added to node i’s neighbor list if the Euclidean
distance between node i and node j is <R, where R is the
transmission range of the mobile nodes. When node i needs
to route a packet, it looks at its neighbors’ table and forwards
the packet based on the routing technique used. For example,
in Epidemic forwarding, the packet is flooded to all the
neighbor nodes and in ECT, the routing decision is based
on the contact information. The performance of protocols is
measured against the TTL (Time to Live) value for a packet
on a 3-hour trace. In our simulation, a random source and
destination pair is selected every 4 seconds. Since we only
measure the effect of nodes’ mobility, a full contact history is
maintained. In other words, a mobile node stores the contact
information of nodes encountered in the past.

4.4.2. Simulation Results. Figures 7(a) and 7(b) show the
success rate measured for Epidemic Forwarding and ECT on
the two mobility models; success rate for the real trace is
also included. Due to the limit on a length of a (power-law)
flight used in TLW, mobile nodes are restricted to a portion
of the simulation area. For example, if we set fnax = 500 m
in Table 2, then the mobile node will explore a larger part
of the simulation area compared to the area explored with
fmax = 100 m. SLAW, on the other hand, results in contacts
among mobile nodes that belong to different parts of the
network (i.e., clusters), as a mobile node in SLAW randomly
replaces one of its clusters after every trip. Therefore, com-
pared to SLAW, mobile nodes have higher ICTs in TLW.
SLAW overestimates the performance of both routing pro-
tocols when compared to the success rate of the real trace.
As shown in Figures 7(a)-7(b), due to replication, packet
delivery in both SLAW and TLW has a higher cost in Epi-
demic Forwarding than in ECT. Mobile nodes in TLW have
restricted movements and are unable to establish contacts
with mobile nodes concentrated in other parts of the net-
work, thereby reducing the number of replications made for
packet delivery when compared to Epidemic Forwarding (as
shown in Figures 7(c) and 7(d)).

Lastly, we compare the end-to-end delay of the ECT
routing protocol with the synthetic traces (SLAW and TLW)
and a real trace. Since ECT uses contact information of
mobile nodes, the nodes will make smart routing decisions.

Thus, we analyze the average end-to-end delay for the deliv-
ery of the first 50 packets transmitted in ECT. Our results
are based on an average of 20 simulation runs with 95%
confidence intervals on the mean. As shown in Figure 7(e),
SLAW overestimates the performance of ECT when com-
pared to the real trace performance of ECT; in addition, TLW
has longer end-to-end delays due to restricted movements of
the mobile nodes (Figure 7(e)).

4.5. Recent Trends in Opportunistic Routing. With a power-
law distribution for ICTs, Hui et al. show that the rare
contacts made by mobile nodes are critical in maintaining
connectivity in the network [72]. Specifically, the pairs of
mobile nodes with long ICTs are responsible for connecting
different parts of the network. Removing these contacts
will leave the network disconnected with no routes between
different parts (e.g., clusters) of the network. Hui et al. show
that mobile nodes with smaller ICTs do not have new infor-
mation to share every time they meet. In other words, new
data is shared among mobile nodes that do not meet very
often (i.e., the mobile nodes with longer ICTs). In summary,
having rare contacts is critical in delivering data from one
part of the network to another. As a result of their analysis,
the authors made the following conclusions.

(i) A pair of mobile nodes with short ICTs may not be
effective after the first or second contact, as data is
likely to be already exchanged.

(ii) The network connectivity greatly depends on the
mobile node pairs with long ICTs (i.e., rare contacts).

(iii) Individual path failures do not significantly affect the
network connectivity.

Current research efforts have explored metrics that may
be even more appropriate to opportunistic networks. For
example, in [73], the authors analyze a graph representing
the social behavior among mobile nodes via the following
two metrics.

(i) Node Degree Distribution (NDD) denotes the num-
ber of potential relay nodes for a mobile node.

(ii) Clustering Coefficient (CC) denotes the amount of
clustering present in the network.
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The analysis in [73] is done using diverse datasets, includ-
ing Wikipedia. (See [73-75] for details.) The authors used
three popular sampling algorithms for analysis: (1) Breadth-
First Sampling (BES), (2) Frontier Sampling (FS), and (3)
Metropolis-Hastings Random Walk (MHRW). Their work
concludes that BES is biased towards high degree nodes and,
thus, obtains larger CC; however, FS converges faster and is
more accurate than MHRW. In [76], Yong et al. also analyzed
the performance of routing schemes with energy constraints.
Through simulation results, the authors show that applying
energy constraints in routing can significantly help avoid
high delivery costs by minimizing message replication.

With these advances in current research in opportunistic
networks, we note that researchers are interested in several
other properties of opportunistic networks. We next present
our conclusions and list challenges that still exist in the
modeling of mobility for opportunistic networks.

5. Conclusions and Challenges for
Future Research

In this paper, we summarize the changing trend in modeling
mobility for opportunistic networks. With a phenomenal
increase in the number of mobile wireless device users,
several interesting and challenging applications have evolved.
Interests in analyzing human walk patterns have led to the
development of several mobility models, and the trend in
modeling mobility has changed over the years. Older mobil-
ity models included random movement patterns, while a few
recently proposed mobility models are either based on real
datasets or known features of human movement. Although
the synthetic traces generated by these mobility models
are closer to real movement patterns, several challenges for
future research still exist. In this section, we first present our
conclusions and then list challenges for future research.

5.1. Conclusions

(1) Synthetic traces generated by trace-based mobility
models are closer to human movement than synthetic
traces generated by random mobility models.

(2) The statistical features extracted from real datasets
depend on the analysis methods used to analyze
traces.

(3) Traces collected from different scenarios may lead to
different mobility models.

(4) The movement patterns of mobile nodes are not
independent of each other; instead, as it is intuitive,
a mobile node’s neighbors might influence the move-
ment pattern of the node. Thus, metrics such as ICTs,
CDs, and CNs (i.e., contact numbers) are of partic-
ular interest in opportunistic networks.

(5) Mobility modeling research has undergone signifi-
cant change over the years, from completely random
to movement patterns that are predictable to some
extent. There is, however, still a lot of effort required
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to understand mobility patterns present in human
mobility.

(6) Trends in developing routing schemes for oppor-
tunistic networks have also changed: from random
forwarding to forwarding decisions based on the
expected time remaining before the next contact
occurs between a pair of mobile nodes.

(7) Current research efforts are focused on exploring
performance metrics that are more suitable to oppor-
tunistic routing (e.g., the amount of clustering in a
network) than success rate and end-to-end delay. (See
Section 4.5 for details.)

5.2. Challenges for Future Research

(1) Trace-based mobility models depend on the analysis
methods chosen; thus, a set of guidelines should
be generated that will help researchers make better
decisions in their analysis of trace data. For exam-
ple, researchers need to be aware of the possible
methods available for analyzing datasets; in addition,
researchers need to realize that different methods
may extract traces with different properties.

(2) More datasets are required to explore other real
mobility scenarios such as office, disaster, and mil-
itary scenarios. Statistical features extracted from
these scenarios may be different from the features
derived from other scenarios (e.g., campus scenarios)
and, thus, need to be investigated.

(3) To be accepted by a major part of the research
community, a mobility model must be realistic and
simple; thus, there is a need for developing new
mobility models such as SWIM and SMOOTH.

(4) The duration of several available datasets is short,
which often leads to biased results. Thus, a set of
guidelines should be developed to help researchers
perform credible data collection, which will also pro-
duce a more reliable and realistic mobility model.

(5) A trace-based mobility model should be validated
with traces collected from a variety of scenarios (in
addition to the traces for which the model has been
parameterized), in order to assess its applicability in
different types of networks.

(6) To assist researchers in selecting what scenarios to
model, further research in the field of scenario mod-
eling is required.

(7) The performance of routing protocols should be
evaluated using real traces, in addition to the evalua-
tion of synthetic traces obtained from a trace-based
mobility model. While performance evaluation of
routing protocols with synthetic traces is useful to
fully evaluate a protocol, including real traces in the
evaluation is more credible than the evaluation done
using synthetic traces only.
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