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Iterative solution methods to solve linear systems of equations were originally formulated as basic iteration methods of defect-
correction type, commonly referred to as Richardson’s iteration method. These methods developed further into various versions
of splitting methods, including the successive overrelaxation (SOR) method. Later, immensely important developments included
convergence acceleration methods, such as the Chebyshev and conjugate gradient iteration methods and preconditioning methods
of various forms. A major strive has been to find methods with a total computational complexity of optimal order, that is,
proportional to the degrees of freedom involved in the equation. Methods that have turned out to have been particularly important
for the further developments of linear equation solvers are surveyed. Some of them are presented in greater detail.

1. Introduction

In many applications of quite different types appearing in
various sciences, engineering, and finance, large-scale linear
algebraic systems of equations arise. A particular type of
problems appear in signal processing. This also includes
nonlinear systems of equation, which are normally solved by
linearization at each outer nonlinear iteration step, but they
will not be further discussed in this paper.

Due to their high demand of computer memory and
computer time, which can grow rapidly with increasing
problem size, direct solution methods, such as Gaussian
elimination, are in general not feasible unless the size of the
problem is relatively small. In the early computer age, when
available size of computer central memories was very small
and the speed of arithmetic operations slow, this was found
to be the case even for quite modest-sized problems.

Even for modern computers with exceedingly large
memories and very fast arithmetics it is still an issue because
nowadays one wants to solve much more involved problems
of much larger sizes, for instance to enable a sufficient
resolution of partial differential equation problems with
highly varying (material) coefficients, such as is found in
heterogeneous media. Presently problems with up to billions
of degrees of freedom (d.o.f.) are solved. For instance, if an
elliptic equation of elasticity type is discretized and solved on

a 3D mesh with 512 meshpoints in each coordinate direction,
then an equation of that size arises.

A basic iteration method to solve a linear system

Ax = b, (1)

where A is nonsingular, has the following form.
Given an initial approximation x0, for k = 0, 1, . . . until

convergence, let rk = Axk − b,ek = −τrk , xk+1 = xk + ek.
Here, τ > 0 is a parameter to be chosen.

This method can be described either as a defect (rk)—
correction (ek) method or, alternatively, as a method to
compute the stationary solution of the evolution equation

dx(t)
dt

= Ax(t)− b, t > 0, x(0) = x0, (2)

by timestepping with time-step τ, that is,

x(t + τ) = x(t)− τ(Ax(t)− b), t = 0, τ, . . . . (3)

Such methods are commonly referred to as Richardson
iteration methods (e.g., see [1–4]). However, already in
1823 Gauss [5] wrote, “Fast jeden Abend mache ich eine
neue Auflage des Tableau, wo immer leicht nachzuhelfen
ist. Bei der Einförmigkeit des Messungsgeschäfts gibt dies
immer eine angenehme Unterhaltung; man sieht daran auch
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immer gleich, ob etwas Zweifelhaftes eingeschlichen ist,
was noch wünschenswert bleibt usw. Ich empfehle Ihnen
diesen Modus zur Nachahmung. Schwerlich werden Sie je
wieder direct eliminieren, wenigstens nicht, wenn Sie mehr
als zwei Unbekannte haben. Das indirecte Verfahren läßt
sich halb im Schlafe ausführen oder man kann während
desselben an andere Dingen denken.” (Freely translated, “I
recommend this modus operandi. You will hardly eliminate
directly anymore, at least not when you have more than two
unknowns. The indirect method can be pursued while half
asleep or while thinking about other things.”)

It holds that

xk+1 = xk − τ
(
Axk − b

)
, (4)

or

ek+1 = (I − τA)ek, (5)

where ek = x − xk is the iteration error and x is the solution
of (1).

Hence,

ek = (I − τA)ke0, k = 0, 1, . . . . (6)

For convergence of the method, that is ek → 0, the
parameter τ must in general be chosen such that ρ := ‖I −
τA‖ < 1, where ‖ · ‖ is a matrix norm, subordinate to the
chosen vector norm. (We remark here that this is not possible
if A is indefinite.)

Let ρ(·) denote the spectral radius of a matrix, that is, the
maximal absolute value of the eigenvalues of the matrix.

If A is self–adjoint, then it can be shown that ρ(A) =
‖A‖2 =

√
ρ(A∗A), where ‖ · ‖2 denotes the matrix norm

subordinate to the Euclidian vector norm. For general,
nonsymmetric matrices it has been shown (e.g., see [6, page
162]) that there exist matrix norms that are arbitrarily close
to the spectral radius. These can, however, correspond to an
unnatural scaling of the matrix.

The rate of convergence is determined by the convergence
factor ρ. For symmetric positive definite matrices, the
optimal value of τ to minimize ρ, is τ = 2/(λ1 + λn), where
λ1, λn are the extreme eigenvalues of A. Normally, however,
the eigenvalues are not available.

As an example, for second order elliptic diffusion type
of problems in Ωd(d = 2, 3) using a standard central
difference or a finite element method, the spectral condition
number λn/λ1 = O(h−2), where h is the (constant) meshsize
parameter. Hence, the number of iterations to reach a relative
accuracy ε is of order O(h−2)| log ε|), h −→ 0.

Since each iteration uses O(h−d) elementary arithmetic
operations, this shows that the total number of operations
needed to reduce the error to a given tolerance is of order
O(h−d−2). This is in general smaller than for a direct solution
method when d ≥ 2, but still far from the optimal order,
O(h−d), that we aim at.

To improve on this, often a splitting of the matrix A
is used. It is readily shown that for any initial vector, the
number of iterations required to get a relative residual,

‖rk‖/‖r0‖ < ε, for some ε, 0 < ε < 1, is at most kit =
�ln(1/ε)/ ln(1/ρ) + 1�, where �� denotes the integer part.
Frequently, ρ = 1− cδr , where c is a constant, r is a positive
integer, often r = 2 and δ is a small number, typically
δ = 1/n, which decreases with increasing problems size n.
This implies, that the number of iterations is propotional to
(1/δ)r , which number increases rapidly when δ −→ 0.

For τ = 1, the splitting A = C − R of A in two terms is
used, where C is nonsingular. The iterative method (4) then
takes the form

Cxk+1 = Rxk + b, k = 0, 1, . . . . (7)

Method (7) is convergent if ρ(C−1R) < 1. Splitting methods
will be discussed in Section 2.

Let B = C−1R. If ‖B‖ is known and ‖B‖ < 1, we can use
the following theorem to get a test when the iteration error is
small enough, that is, when to stop the iterations.

Theorem 1. Let ‖B‖ < 1, B = C−1R, and xm be defined by
(7). Then,

‖x − xm‖ ≤ ‖B‖
1− ‖B‖

∥∥xm − xm−1
∥∥, m = 1, 2, . . . . (8)

Proof. From (7) follows xm+1 − xm = B(xm − xm−1) and, by
recursion,

xm+k+1 − xm+k = Bk+1(xm − xm−1), k = 0, 1, . . . . (9)

Note now that xm+p − xm =∑p−1
k=0 (xm+k+1− xm+k). Hence, by

the triangle inequality and (9)

∥∥xm+p − xm
∥∥ ≤

p−1∑

k=0

∥∥∥Bk+1
∥∥∥∥∥xm − xm−1

∥∥

≤ ‖B‖ − ‖B‖p+1

1− ‖B‖
∥∥xm − xm−1

∥∥.

(10)

Letting p → ∞ and noting that xm+p → x̂, (8) follows.

The basic iteration method (4) or the splitting methods
in Section 2, can be improved in various ways. This will be
the major topic of this paper.

Note first that application of the splitting in (7) requires
in general that the matrix R is given in explicit form, which
can make the method less viable.

The most natural way to improve (4) is to introduce an
approximation C of A, to be used when the correction ek in
(4) is computed. The relation ek = −τrk is then replaced by
Cek = −τrk .

Such a matrix is mostly called preconditioner since, by
a proper choice, it can significantly improve the condition
number K of A, that is,

K
(
C−1A

)
K(A), (11)

where K(B) = ‖B‖ ‖B−1‖.
Clearly, in practice, the matrix C must be chosen such

that the linear systems with C can be solved with relatively
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little expense compared to a solution method for A. In
particular, the expense for C is much smaller than that for
A using a direct solution method.

For badly scaled matrices A a simple, but often practi-
cally useful, choice of C is the (block) diagonal part D of
A. Much more efficient choices will be discussed later in the
paper.

Early suggestions to use such a matrix C can be found
in papers by D’Yakonov [7] and Gunn [8]. For an automatic
scaling procedure, see [9] and references therein.

In the present paper, we will survey various choices of
C which have proven to be useful in practice. The paper
attempts to give a more personal account of the development
of iterative solution methods. It is also not our ambition to
present the present state- of- the- art but rather to describe
the unfolding of the field.

In the remainder of the paper, we discuss, in order,
methods based on splitting of the given matrix, the acceler-
ated iterative methods of the Chebyshev and (generalized)
conjugate gradient types, pointwise and block incomplete
factorization preconditioning methods, symmetrized pre-
conditioners of SSOR and ADI type, approximate inverses,
and augmented subspace preconditioning methods. If space
had allowed it, it would have been followed by presentation
of geometric and algebraic multigrid methods, two-level and
multilevel methods, elementwise preconditioning methods,
and domain decomposition methods. Also, iteration error
estimates and influence of rounding errors, and precondi-
tioners for matrices of saddle point type would have been
included. The paper ends with some concluding remarks.

The following relations will be used; if A = [ai j], then
AT = [aji] denotes the transpose of A, while A∗ = [aji],
denotes the Hermitian transpose.

2. Splitting Methods

A comprehensive, early presentation of splitting methods,
and much more on iterative solution methods, is found in
Varga [10]. Often there is a natural splitting of the given
matrix as

A = C − R, (12)

where C is nonsingular. This can be used to formulate an
iterative solution method in the form

Cxk+1 = Rxk + b, k = 0, 1, . . . . (13)

This method converges if ρ(C−1R) < 1.

Definition 1. (a) A matrix C is said to be monotone if C is
nonsingular and C−1 ≥ 0 (componentwise).

(b) A = C − R is called a regular splitting [10], if C is
monotone and R ≥ 0.

(c) a weak regular splitting [11], if C is monotone and
C−1R ≥ 0.

(d) a nonnegative splitting [12], if C is nonsingular and
C−1R ≥ 0.

The following holds, see, for example, [6].

Theorem 2. Let A = C − R be a nonnegative splitting of A.
Then, the following properties are equaivalent:

(a) ρ(B) < 1, that is, A = C − R is a convergent splitting,

(b) I − B is monotone,

(c) A is nonsingular and G = A−1R ≥ 0.

(d) A is nonsingular and ρ(B) = ρ(G)/[1 + ρ(G)], where
G = A−1R.

Corollary 1. If A = C−R is a weak regular splitting, then the
splitting is convergent if and only if A is monotone.

Proof . (see, e.g., [6]).

A splitting method that became popular in the fifties is
the SOR method. Here, A = D − L − U , where D is the
(block) diagonal and L, U are the (block) lower and upper
triangular parts of A, respectively. The successive relaxation
method takes the form
(

1
ω
D − L

)
xk+1 =

[(
1
ω
− 1

)
D +U

]
xk + b, k = 0, 1, . . . ,

(14)

where ω /= 0 is a parameter, called the relaxation parameter.
For ω = 1 one gets the familiar Gauss-Seidel method (Gauss
1823 [5] and Seidel 1814 [13]) and for ω > 1 the successive
overrelaxation (SOR) method (Frankel 1950 [14] and Young
1950 [15]).

For the iteration matrix in (14),

Lω =
(

1
ω
D − L

)−1(( 1
ω
− 1

)
D +U

)
, (15)

it holds that ρ(Lω) ≤ |ω − 1|, where the upper bound is
sharp. Therefore, the relaxation method is divergent for ω ≤
0 and ω ≥ 2 (see, e.g., [6, 16]).

An optimal value of ω can be determined as follows.
Assume then that A has property (Aπ), that is, there exists a
permutation matrix P such that PAPT is a block tridiagonal
matrix. The following Lemma holds.

Lemma 1 (see [15]). Assume that A has property (Aπ) and
let ω /=0. Let B := D−1(L +U). Then,

(a) if λ /= 0 is an eigenvalue of Lω and μ satisfies

μ2 = (λ + ω − 1)2

(ω2λ)
, (16)

then, μ is an eigenvalue of B,

(b) if μ is an eigenvalue of B and λ satisfies

λ + ω − 1 = ωμλ1/2, (17)

then, λ is an eigenvalue of Lω.

Proof. For a short proof, see [6].
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Theorem 3. Assume that

(a) A has property (Aπ), and

(b) the block matrix B = I − D−1A has only real
eigenvalues.

Then, the SOR method converges for any initial vector if and
only if ρ(B) < 1 and 0 < ω < 2. Further, we have

ωopt = 2

1 +
√

1− ρ(B)2
, (18)

for which the asymptotic convergence factor is given as

min
ω
ρ(Lω) = ρ

(
Lωopt

)
= ωopt − 1 =

(
1−

√
1− ρ(B)2

)

(
1 +

√
1− ρ(B)2

) .

(19)

Proof. Fort a short proof, see [6].

The eigenvalues of C−1A are in general complex, and for
ω = ωopt it can be shown that they are distributed around
a circle in the complex plane. This implies that the method
can not be polynomially accelerated. (See Section 3 for a
presentation of polynomial acceleration methods.) Further,
the efficiency of the SOR method turns out to be critically
dependent on the choice of ω.

A similar result as in Theorem 3 has been shown in [6],
see also [17], that holds even if A does not have property
(Aπ), but is Hermitian.

Theorem 4. Let A be Hermitian and positive definite and let

L̃ω = D1/2LωD−1/2 =
(

1
ω
I − L̃

)−1(( 1
ω
− 1

)
I − L̃∗

)
,

(20)

where L̃ = D−1/2LD1/2, and let 0 < ω < 2. Then,

ρ(Lω)2 = ρ
(
L̃ω
)2 ≤ 1− 2/ω− 1

(1/ω− 1/2)2δ−1 + γ + 1/ω
, (21)

where

γ = sup
x /= 0

⎧⎪⎪⎨
⎪⎪⎩

[(∣∣∣x, L̃x
∣∣∣

2
/(x, x)

)
− 1/4(x, x)

]

(
Ãx, x

)

⎫⎪⎪⎬
⎪⎪⎭

,

δ = λmin

(
Ã
)
=

minx /= 0

(
Ãx, x

)

(x, x)
.

(22)

Further, if |(x, L̃x)| ≤ 1/2(x, x), then

ω∗ = 2
1 +

√
2δ

, (23)

minimizes the upper bound of ρ(Lω) and we have

ρ(Lω∗)2 = 1−√δ/2
1 +

√
δ/2

. (24)

For a proof, see [6].
In Section 4, we present a symmetric version of the SOR

method where acceleration is possible.

3. Accelerated Iterative Methods

In this section, the important Chebyshev and conjugate
gradient iteration methods are presented.

Consider first the iterative method (4) with variable time-
steps τk,

xk+1 = xk − τkC−1rk , rk = Axk − b, k = 0, 1, . . . .
(25)

Here, {τk} is a sequence of iteration (acceleration) parame-
ters. If τk = τ, k = 0, 1, . . ., we talk about a stationary iterative
method, otherwise about a nonstationary or semiiterative
method.

Let ek = x − xk, the iteration error. Then, it follows from
(25) that ek+1 = (I − τkC−1A)ek, k = 0, 1, . . ., so em =
Pm(C−1A)e0 (and rm = APm(C−1A)A−1r0 = Pm(AC−1)r0).
Here, Pm(λ) = Πm

k=0(1 − τkλ) a polynomial of degree m
having zeros at 1/τk and satisfying Pm(0) = 1.

We want to choose the parameters {τk} such that ‖em‖
is minimized. However, this would mean that in general the
parameters would depend on e0, which is not known. Also
the eigenvalues of C−1A are not known. We then take the
approach of minimizing ‖em‖/‖e0‖ for all e0; that is, we
want to minimize ‖Pm(C−1A)r0‖.

3.1. The Chebyshev Iterative Method. In case the eigenvalues
of C−1A are real and positive and if a positive lower (a) and
(b) an upper bound are known of the spectrum, then we
see that {τk} should be chosen such that maxa≤λ≤b|Pm(λ)|
is minimized over all Pm ∈ Π0

m, that is, over the set of
polynomials of degree m satisfying Pm(0) = 1.

The solution to this min-max problem is well known,

Pm(λ) = Tm((b + a− 2λ)/(b− a))
Tm((b + a)/(b− a))

, (26)

where Tm(z) = (1/2)[(z+(z2−1)1/2)
m

+ (z−(z2−1)1/2)
m

] =
cos(m arccos z) are the Chebyshev polynomials of the first
kind. The corresponding values of τk satisfy

1
τk
= b−a

2
cosΘk+

b+a
2

, Θk= 2k−1
2m

π, k=1, 2, . . . ,m,

(27)

which are the zeros of the polynomial. The corresponding
method is referred to as the Chebyshev (one-step) accelera-
tion method, see, for example, [10, 18]. It is an easy matter
to show that

1
Tm

(
b + a

b− a
)
≤ 2ρm, where ρ =

(
b1/2 − a1/2

)

(b1/2 + a1/2)
. (28)

This implies that if the number of iterations satisfies m ≥
ln ρ−1 ln(2/ε), that is, in particular if

m ≥ 1
2

(
b

a

)1/2

ln(2/ε), ε > 0, (29)

then ‖em‖/‖e0‖ ≤ ε.
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The disadvantage with this method is that to make it
effective one needs accurate estimates of a and b, and we need
to determine m beforehand (which, however, can be done by
(29)). The method cannot utilize any special distribution of
the eigenvalues in the spectrum (as opposed to the conjugate
gradient method, see below). More important, however, is
that this method is actually numerically unstable (similarly
to an explicit time stepping method for initial value problems
when the time steps are too large). This is due to the fact that
‖I − τkC−1A‖ is much larger than unity for several of the
values τk. However, one may prove that with some particular
permutation of the parameters, their instability effect can be
avoided.

There is an alternative to the choice (25). Namely, there
exists a three term form of the Chebyshev acceleration
method

xk+1 = αkxk + (1− αk)xk−1 − βkC−1rk, k = 1, 2, . . . ,
(30)

where x1 = x0 − (1/2)β0C−1r0.
Here, the parameters are chosen as β0 = 4/(a+ b),

αk = a + b

2
βk , β−1

k = a + b

2
−
(
b − a

4

)2

βk−1

k = 1, 2, . . . .

(31)

Hence, we do not have to determine the number of steps
beforehand. More importantly, it has been shown in [18] that
this method is numerically stable. (For some related remarks,
see [6]). A similar form of the method was proposed a long
time ago, see Golub and Varga [19] and the references cited
therein.

It is interesting to note that the parameters approach
stationary values. If C−1A = I − B and B has eigenvalues
in [−ρ, ρ], ρ = ρ(B) < 1 (the spectral radius of B), then

a = 1− ρ, b = 1 + ρ,

αk = a + b

2
βk −→ 2[

1 +
(

1− ρ2
)1/2

] , (32)

which is recognized as the parameter ωopt of the optimal
SOR method (see Section 2). Young [20] has proven that the
asymptotic rate of convergence is retained even if one uses
the stationary values throughout the iterations.

For the case of complex eigenvalues of C−1A with
positive real parts and contained in an ellipse one may
choose parameters similarly. See [6, 21, 22] for details. For
comments on the optimaly of the method, see [23]. For
application of the method for nonsymmetric problems, see
[6, 24].

Perhaps the main thrust during the 1970 has been in
using the conjugate gradient method as an acceleration
method. Already much has been written on the subject;
we refer to [25–27] for a historical account, to [18, 28–33]
for an exposition of the preconditioned conjugate gradient
PCG method and to [18, 34] for a survey of generalized

Given x(0), ε initial guess and absolute or
relative stopping tolerance

Set x(0), g = Ax− b,
δ0 = gTg
d = −g initial search direction

Repeat until convergence
h = Ad
τ = δ0/(dTh)
x = x + τd new approximation
g = g + τh new (iterative) residual
δ1 = gTg
if δ1 ≤ ε then stop, otherwise
β = δ1/δ0, δ0 = δ1

d = −g + βd new search direction

Algorithm 1: Standard conjugate gradient algorithm.

and truncated gradient methods for nonsymmetric and
indefinite matrix problems.

The advantage with conjugate gradient methods is that
they are self adaptive; the optimal parameters are calculated
by the algorithm so that the error in energy norm ‖el‖A1/2 =
{(el)

T
Ael}1/2

is minimized. This applies to a problem where
C and A are symmetric and positive definite (SPD) or,
more generally, if C−1A is similarly equivalent to an SPD
matrix. Hence, there is no need to know any bounds for
the spectrum. Since the method converges at least as fast
as the Chebyshev method it follows that ‖x − xm‖A1/2 ≤
ε‖x − x0‖A1/2 , if

m = int
{

1
2
K1/2 ln

(
2
ε

)
+ 1

}
. (33)

We describe now the conjugate gradient method.
Thereby we follow the presentations in [29, 35].

3.2. The Preconditioned Conjugate Gradient Method. During
the past 40 years or so, the preconditioned conjugate gradient
method has become the major iterative solution method
for linear systems of algebraic equations, in particular those
arising in science and engineering. The author of these notes
became interested in the method by the beginning of 1970
(cf. [18]).

The conjugate gradient algorithm to solve a system of
linear equations the Ax = b, where A(n × n) is symmetric
and positive definite, was originally introduced by Hestenes
and Stiefel [25] in 1950. Before we discuss the properties of
the CG method, we describe its implementation. Namely, the
algorithm consists of the steps in Algorithm 1.

What one sees from a first glance is that the CG algorithm
is quite simple. Each iteration consists of one matrix-vector
multiplication, two vector updates and two scalar products.
Apart from the initial guess x(0) (which can be taken to be
the zero vector) and stopping tolerance, there are no other
method parameters to be determined or tuned by the user.
Thus, the method is easily programmable, cheap in terms of
arithmetic operations and performs as a black box.
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For some problems the standard (unpreconditioned) CG
method performs impressively well and this can be explained
by some particular properties of this powerful algorithm.

The CG method is best described as a method to
minimize the quadratic functional

f (x) = 1
2

xTAx− bTx + c, (34)

over a set of vectors. If A is nonsingular, then we can rewrite
f in the form

f (x) = 1
2

xT(Ax− b)TA−1(Ax− b)− 1
2

bTA−1b + c, (35)

so, minimizing the quadratic functional is equivalent to
solving the system Ax = b. If A is singular and A−1 in
(35) is replaced by a generalized inverse of A, then the above
equivalence still holds if the minimization takes place on a
subspace in the orthogonal complement to the null-space of
A.

Given an initial approximation x(0) and the correspond-
ing residual r(0) = Ax(0) − b, the minimization in the
conjugate gradient method takes place successively on a
subspace

Kk =
{

r(0), Ar(0), A2r(0), . . . ,Ak−1r(0)
}

, (36)

of growing dimension. This subspace is referred to as the
Krylov set.

In the derivation of the algorithm, the next approximate
solution is constructed as

x(k+1) = x(k) + τkd(k), (37)

where τk is chosen

τk = −d(k)T g(k)

d(k)TAd(k)
=
−d(k)T

(
Ax(k) − b

)

d(k)TAd(k)
, (38)

which minimizes the function f (x(k) + τd(k)), −∞ < τ < ∞.
Also, the gradient of f at x(k+1) is made orthogonal to
the search direction d(k). This is seen from the following
relations:

x(k+1) = x(k) + τkd(k) =⇒ Ax(k+1) − b

= Ax(k) − b + τkAd(k) =⇒ g(k+1) = g(k) + τkAd(k)

=⇒ d(k)T g(k+1) = d(k)T g(k) + τkd(k)TAd(k) = 0.
(39)

As in Fourier type minimization methods, it turns out
to be efficient to work with orthogonal (A-orthogonal)
search directions d(k) which, since A is symmetric, can be
determined from a three-term recursion

d(0) = r(0), d(k+1) = −Ad(k) + β̃kd(k), k = 1, 2, . . .,
(40)

or equivalently, from

d(k+1) = −r(k+1) + βkd(k). (41)

This recursive choice of search directions is done so that at
each step the solution has smallest error in the A-norm, ‖x−
x(k)‖A = {e(k)TAe(k)}1/2

, where e(k) = x−x(k) is the iteration
error. As mentioned, the minimization takes place over the
set of (Krylov) vectors Kk and, as is readily seen

Kk =
{

x(1) − x(0), x(2) − x(0), . . . , x(k) − x(0)
}

=
{

g(0), g(1), . . . , g(k−1)
}

=
{

d(0), d(1), . . . , d(k−1)
}
.

(42)

To summarize, the CG method possesses the following
remarkable properties.

Theorem 5. Let the CG Algorithm 1 be applied to a symmetric
positive definite matrix A. Then, in exact arithmetic the
following properties hold:

(1) the iteratively constructed residuals g are mutually
orthogonal, that is, g(k)T g( j) = 0, j < k;

(2) the search directions d are A-orthogonal (or conju-
gate), that is, d(k)TAd( j) = 0, j < k:

(3) as long as the method has not converged, that is,
g(k) /=0, the algorithm proceeds with no breakdown and
(42) holds;

(4) as long as the method has not converged, the newly
constructed approximation x(k) is the unique point in
x(0) ⊕Kk that minimizes ‖e(k)‖A = ‖x− x(k)‖A,

(5) the convergence is monotone in A-norm, that is,
‖e(k)‖A < ‖e(k−1)‖A and e(m) = 0 will be achieved
for some m ≤ n.

For a proof of the above theorem consult, for instance,
[29] or [6].

Since the method is optimal, that is it gives the smallest
error on a subspace of growing dimension, it terminates
with the exact solution (ignoring round-off errors) in at
most n steps (the dimension of the whole vector space x ∈
Rn ). In fact, it can be readily seen that the CG algorithm
terminates after m steps, where m is the degree of the
minimal polynomial Qm to A with respect to the initial
residual vector, in other words, Qm has the smallest degree
of all polynomials Q for which Q(A)r(0) = 0. Therefore, the
CG method can be viewed also as a direct solution method.
However, in practice we want convergence to occur to an
acceptable accuracy in much fewer steps than n or m. Thus,
we use CG as an iterative method.

For further discussions of the CG methods, see [6, 34,
35].

When one experiments with CG to solve systems with
various matrices one observes some phenomena which need
special attention. This can be illustrated by a simple example.
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Consider the solution of Ax = b by the standard
conjugate gradient, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1

−1 2 −1

. . .
. . .

−1 2 −1

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

The exact solution is x̂ = [1, 1, . . . , 1]T . Starting with
x(0) = [0, 0, . . . , 0]T one finds that after k iterations

x(k) =
[

k

k + 1
,
k − 1
k + 1

, . . . ,
1

k + 1
, 0, . . . , 0

]T
, (44)

for 1 ≤ k ≤ n − 1 and x(n) = x̂. Hence, the information
travels one step at a time from left to right and it takes n steps
before the last component has changed at all. The algorithm
converges exactly in n steps and terminates due to the final
recurrence property of the method.

Another detail one observes is that the norm of the error,
‖x−x(k)‖, can be much larger than the norm of the iteratively
computed residual.

These examples illustrate the fact that although the
method has an optimal order of convergence rate in the
energy norm, its actual convergence rate in spectral norm
can be different and depends both on the distribution of
the eigenvalues of the (preconditioned) system matrix and
on the initial approximation (or residual). (For comparison,
we note that the rate of convergence for steepest descent
depends only on the ratio of the extremal eigenvalues of A.)
Faster convergence for the CG method is expected when the
eigenvalues are clustered.

One way to get a better eigenvalue distribution is to
precondition A by a proper preconditioner B. Hence, in
order to achieve a better eigenvalue distribution it is crucial
in practice to use some form of preconditioning, that is,
a matrix B which approximates A in some sense, which
is relatively cheap to solve systems with and for which the
spectrum of B−1 A (equivalently B−1/2AB−1/2 if B is s.p.d.)
is more favorable for the convergence of the CG method.
As it turns out, if B is symmetric and positive definite, the
corresponding preconditioned version, the PCG method, is
best derived by replacing the inner product with (u, v) =
uTBv. It takes the following form, see Algorithm 2.

Here, [B]−1 denotes the action of B−1, that is, one does
not multiply with the inverse matrix B−1, but normally solves
a linear system with matrix B.

In order to understand what is wanted of a good
preconditioning matrix, we discuss first some issues of major
importance related to the rate of convergence of the CG
method. Thereby it becomes clear that the standard spectral
condition number is often too simple to explain the detailed
convergence behaviour. In particular we discuss the sub- and
superlinear convergence phases frequently observed in the
convergence history of the conjugate gradient method.

Given x(0), ε initial guess and
stopping tolerance

Set x(0), g = Ax− b,
h = [B]−1g

δ0 = gTh
d = −h initial search direction

Repeat until convergence
h = Ad
τ = δ0/(dTh)
x = x + τd new approximation
g = g + τh new (iterative) residual
δ1 = gTg
h = [B]−1g new pseudoresidual
δ1 = gTh
if δ1 ≤ ε then stop
β = δ1/δ0, δ0 = δ1

d = −h + βd new search direction

Algorithm 2: Preconditioned conjugate gradient algorithm.

A preconditioner can be applied in two different man-
ners, namely, as B−1A or BA. The first form implies the
necessity to solve a system with B at each iteration step while
the second form implies a matrix-vector multiplication with
B (a multiplicative preconditioner). In the latter, case B can
be seen as an approximate inverse of A. One can also use a
hybrid form αB−1

1 + βB2.
The presentation here is limited to symmetric positive

semidefinite matrices. It is based mainly on the articles
[29, 31].

3.3. On the Rate of Convergence Estimates of the Conjugate
Gradient Method. Let A be symmetric, positive semidefinite
and consider the solution of Ax = b by a preconditioned
conjugate gradient method. In order to understand how an
efficient preconditioner to A should be chosen we must
first understand some general properties of the rate of
convergence of conjugate gradient methods.

3.3.1. Rate of Convergence Estimates Based on
Minimax Approximation. As is well known (see e.g., [6,
30]), the conjugate gradient method is a norm minimizing
method. For the preconditioned standard CG method, we
have

∥∥∥ek
∥∥∥
A
= min

Pk∈πk

∥∥Pk(B)e0
∥∥
A, (45)

where ‖u‖A = {uTAu}1/2, ek = x − xk is the iteration error
and πk denotes the set of polynomials of degree k which are
normalized at the origin, that is, Pk(0) = 1. This is a norm
on the subspace orthogonal to the mullspace of A, that is, on
the whole space, if A is nonsingular.

Consider the C-innerproduct (u, v) = uTCv, and
note that B = C−1A is symmetric with respect to this
innerproduct, let v1, v2, . . . , vn be orthonormal eigenvectors
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and let λi, i = 1, . . . ,n be the corresponding eigenvalues of
B. Let

e0 =
n∑

j=1

αjv j , (46)

be the eigenvector expansion of the initial vector where αj =
(e0, vi), i = 1, . . . ,n. Note further that the eigenvectors are
both A- and C-orthogonal. Then, by the construction of the
CG method, it follows

ek =
n∑

j=1

αjPk
(
λj
)

v j , (47)

and, using the nonnegativity of the eigenvalues, we find

∥∥∥ek
∥∥∥
A
=
∥∥∥∥∥∥

n∑

j=1

αjPk(λj)v j

∥∥∥∥∥∥
A

=
⎧⎨
⎩

n∑

j=1

α2
j λ jP

2
k

(
λj
)
⎫⎬
⎭

1/2

≤
⎧⎪⎨
⎪⎩

n∑

1,λj>0

α2
j λ j

⎫⎪⎬
⎪⎭

1/2

max
1 ≤ i ≤ n
λi > 0

|Pk(λi)|

= max
1 ≤ i ≤ n
λi > 0

|Pk(λi)|
∥∥e0

∥∥
A.

(48)

Here we have used the A-orthogonality of the eigenvectors.
Similarly, using the C-orthogonality, we find

∥∥∥ek
∥∥∥
C
=
⎧⎨
⎩

n∑

j=1

α2
j P

2
k

(
λj
)
⎫⎬
⎭

1/2

≤ max
1≤i≤n

∣∣∣Pk
(
λj
)∣∣∣∥∥e0

∥∥
C. (49)

Due to the minimization property (45) there follows
from (48) the familiar bound

∥∥∥ek
∥∥∥
A
≤ min

Pk∈π1
k

max
1 ≤ i ≤ n
λi > 0

|Pk(λi)|
∥∥e0

∥∥
A.

(50)

Estimate (50) is sharp in the respect that for every k there
exists an initial vector for which equality is attained. In fact,
for such a vector we necessarily have that αj /= 0 if and only
if αj belongs to a set of k + 1 points ( the so-called Haar
condition) where maxi|Pk(λi)| is taken. For such an initial
vector (49) shows that, if the eigenvalues are positive, we have
also

∥∥∥ek
∥∥∥
C
= min

Pk∈π1
k

max
1≤i≤n

|Pk(λi)|
∥∥e0

∥∥
C. (51)

The rate of convergence of the iteration error ‖ek‖A is
measured by the average convergence factor

⎧⎪⎨
⎪⎩

∥∥∥ek
∥∥∥
A

‖e0‖A

⎫⎪⎬
⎪⎭

1/k

. (52)

Inequality (50) shows that this can be majorized with an
estimate of the rate of convergence of a best polynomial
approximation problem (namely the best approximation of
the function ≡ 0, of polynomials in π1

k ) in maximum
norm on the discrete set formed by the spectrum of B.
Clearly, multiple eigenvalues are treated as single so the
actual approximation problem is

min
Pk∈π1

k

max
1≤i≤m

∣∣∣Pk
(
λ̃i
)∣∣∣, (53)

where the disjoint positive eigenvalues λ̃ j have been ordered

in increasing value, 0 < λ̃i < · · · < λ̃m, and m is the
number of such eigenvalues. However, the solution of this
problem requires knowledge of the spectrum, which is not
available in general. Even if it is known, the estimate (53) can
be troublesome in practice, since it involves approximation
on a general discrete set of points.

Besides being costly to apply, such estimates do not give
any qualitative insight in the behaviour of the conjugate
gradient method for various typical eigenvalue distributions.

That is why we make some further assumptions on the
spectrum in order to simplify the approximation problem
and at the same time, present estimates which can be used
both to estimate the number of iterations and to give some
insight in the qualitative behaviour of the iteration method.

3.3.2. Standard Condition Number: Linear Convergence. If
the eigenvalues are (densely) located in an interval [a,b]
where a > 0, we can majorize the best approximation
problem on the discrete set with the best approximation
problem on the interval and frequently still get a good
estimate. We have

min
Pk∈π1

k

max
1≤i≤m

∣∣∣Pk
(
λ̃i
)∣∣∣ ≤ min

Pk∈π1
k

max
a≤x≤b

|Pk(x)|. (54)

The solution to this min max problem is well known and
uses Chebyshev polynomials. One finds that

min
Pk∈π1

k

max
a≤x≤b

|Pk(x)| = 1
Tk((b + a)/(b− a))

= 2σk

1 + σ2k
, (55)

where σ = (1 − √a/b)/(1 +
√
a/b), and Tk(x) = (1/2)[(x +√

x2 − 1) + (x − √x2 − 1)k], a = λ̃1, b = λ̃m. Hence, the
average rate of convergence of the upper bound approaches
σ as k → ∞. Also, it is readily found (see [35]) that the
relative iteration error ‖ek‖A /‖e0‖A ≤ ε if

k = k∗(a,b, ε) =
⎡
⎢⎢⎢

ln
(

(1/ε) +
√

(1/ε2)− 1
)

ln σ−1

⎤
⎥⎥⎥.

(56)

Here �ξ� denotes the smallest integer not less than ξ .
It turns out that the above holds more generally if A is

nonsymmetric but the eigenvalues are contained in an ellipse
with foci a, b, where b ≥ a > 0, if one replaces σ with σ̂ =
σ
√

(1 + δ)/(1− δ), where δ is the eccentricity of the ellipse,
(i.e., the ratio of the semiaxes) and δ < 2

√
a/b/(1 + a/b).
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Also, in a similar way, the case of eigenvalues contained in
two separate intervals or ellipses can be analysed, see, for
example, [35] for further details.

When b/a → ∞, δ = 0, and ε → 0 the following
upper bound becomes an increasingly accurate replacement
of (56),

k∗ ≤
⎡
⎢⎢⎢

1
2

√
b

a
ln

2
ε

⎤
⎥⎥⎥. (57)

The above estimate of the rate of convergence and of the
number of iterations show that they depend only on the
condition number b/a and on the eccentricity of the ellipse,
containing the eigenvalues. Therefore, except in special
cases, this estimate is not very accurate. When we use a
more detailed information of the spectrum and the initial
error vector, sometimes substantially better estimates can
be derived. This holds for instance when there are well
separated small and/or large eigenvalues. Before we consider
this important case, we mention briefly another similar
minimax result which holds when we use different norms for
the iteration error vector and for the initial vector.

By (48), we have

∥∥∥ek
∥∥∥
A
=
{∑

α2
j λ jP

2
k

(
λj
)}1/2

=
{∑

α2
j λ

1−2s
j λ2s

j P
2
k

(
λj
)}1/2

≤ min
Pk∈π1

k

max
1≤λj≤m

∣∣∣λsjPk
(
λj
)∣∣∣
{∑

α2
j λ

(1−2s)
j

}1/2

= min
Pk∈π1

k

max
1≤λj≤m

∣∣∣λsjPk
(
λj
)∣∣∣∥∥e0

∥∥
A1−2s .

(58)

If the initial vector is such that Fourier coefficients for the
highest eigenvalue modes are dominating, then ‖e0‖A1−2s

may exist and take not too large values even for some s ≥ 1/2.
We consider the interesting case where s ≥ 1/2, for which the
following theorem holds (see [6, 36]).

Theorem 6. Let π1
k denote the set of polynomials of degree k

such that Pk(0) = 1. Then for k = 1, 2 . . . and for any s ≥ 1/2
such that 2s is an integer, it holds

∥∥∥ek
∥∥∥
A

‖e0‖1−2s
A

≤ min
Pk∈π1

k

max
0≤x≤1

|xsPk(x)| ≤
(

s

k + s

)2s

. (59)

Remark 1. For s = 1/2 it holds

max
0≤x≤1

∣∣∣x1/2Pk(x)
∣∣∣ = 1

2k + 1
, (60)

for Pk(x) = U2k(
√

1− x) and for s = 1, it holds

max
0≤x≤1

|xPk(x)| = 1
k + 1

tan
π

4k + 4
<

1

(k + 1)2 , (61)

for Pk(x) = (x−1(−1)k)/(k + 1) tan(π/(4k + 4)) Tk+1((1 +
cos(π/(2k+2)))x−cos(π/(2k+2))) where Tk(x) and Uk(x)
are the Chebyshev polynomials of kth degree of the first and
second kind, respectively.

For other values (59) is an upper bound only, that is, not
sharp. At any rate, it shows that the error ‖ek‖A converges
(initially) at least as fast as (s/(k + s))2s, that is, as 1/(2k + 1)
for s = 1/2 and as (1/(k + 1))2 for s = 1.

Note that this convergence rate does not depend on
the eigenvalues, in particular not on the spectral condition
number.

Conclusion 1. By computing the initial approximation vector
from a coarse mesh, the components for e0 for the first
Fourier modes will be small and ‖e0‖A1−2s may take on values
that are not very large even when s = 1 or bigger. Therefore,
there is an initial decay of the residual asO(k2s), independent
of the condition number. Note, however, that the actual
errors may not have decayed sufficiently even if the residual
has.

We consider now upper bound estimates which show
how the convergence history may enter a superlinear rate.

An Estimate to Show a Superlinear Convergence Rate Based
on the K-Condition Number. A somewhat rough, but simple
and illustrative superlinear convergence estimate can be
obtained in terms of the so called K-condition number, (see
[37, 38])

K = K(B) = ((1/n) tr(B))n

det(B)
=
⎛
⎝ 1
n

n∑

i=1

λi

⎞
⎠
n
(
Πn
i=1λi

)−1,

(62)

where we assume that B is s.p.d.
Note that K1/n equals the quotient between the arith-

metic and geometric averages of the eigenvalues. This
quantity is similar to the spectral condition number κ(B) in
that it is never smaller than 1, and is equal to 1 if and only if
B = αI , α > 0 (recall that B is symmetrizable).

Based on the K-condition number, a superlinear conver-
gence result can be obtained as follows.

Theorem 7. Let k < n be even and k ≥ 3 lnK . Then,

‖ek‖A
‖e0‖A ≤

(
3 lnK
k

)k/2
. (63)

Proof. Let k = 2m and the polynomial Pk be of a simplest
possible form, that is, let it vanish at the m smallest and m
largest eigenvalues of B. As follows from (48), we have then

∥∥∥ek
∥∥∥
A

‖e0‖A ≤ max
λ1≤λ≤λn

∣∣∣∣Πm
i=1

(
1− λ

λi

)(
1− λ

λn+1−i

)∣∣∣∣

= Πm
i=1 max

λi≤λ≤λn+1−i

(
λ

λi
− 1

)(
1− λ

λn+1−i

)

= Πm
i=1

(
(λi + λn+1−i)

2

4λiλn+1−i
− 1

)

≤
⎛
⎝
(
Πm
i=1

(λi + λn+1−i)
2

4λiλn+1−i

)1/m

− 1

⎞
⎠
m

.

(64)
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The latter follows from (Πm
i=1(1 − Θi))1/m + (Πm

i=1 Θi)
1/m ≤

1 with Θi = 4λiλn+1−i(λi + λn+1−i)
2. Using now twice

the inequality between the arithmetic and geometric mean
values, one has

Πm
i=1

(λi + λn+1−i)
2

4λiλn+1−i
≤
(

(1/n)− 2m
∑n−m

i=m+1 λi
)n−2m

Πn−m
i=m+1λi

× Πm
i=1(λi + λn+1−i/2)2

Πm
i=1λiλn+1−i

≤
(

1/n
(∑n−m

i=m+1 λi +
∑m

i=1(λi + λn+1−i)
))n

Πn−m
i=m+1λi Π

m
i=1λiλn+1−i

= K.
(65)

Using exp (2x) − 1 ≤ 2x/(1 − x), x < 1, we get the required
estimate,

∥∥∥ek
∥∥∥
A

‖e0‖A ≤
(
K2/k − 1

)k/2 ≤
(

2 lnK
k − lnK

)k/2

≤
(

2 lnK
2k/3(k/3− lnK)

)k/2
≤
(

3 lnK
k

)k/2
.

(66)

A somewhat better result of the same type exists. The
estimate is of similar type, that is,

‖rk‖C−1

‖r0‖C−1
≤
(
K1/k − 1

)k/2
, (67)

where rk = Aek was obtained using more complicated
techniques, see [6, 37], and the references quoted therein.
Note that here as k/ lnK → ∞, we have

‖ek‖C−1

‖e0‖C−1
≤
(

e1/k lnK − 1
)k/2 ≈

(
1 +

lnK
2k

)k/2 ( lnK
k

)k/2

≈ K1/4
(

lnK
k

)k/2
,

(68)

that is, the simpler upper bound in (63) is asymptotically
worse than this bound (albeit in a different norm) by the
factor 3k/2/ lnK1/4.

The upper bounds in the above estimates involve a
convergence factor which decreases with increasing iteration
number and show hence a superlinear rate of convergence.
Note, however, that K1/n ≤ κ(B) � 4K (see [6]) where
κ(B) = λn/λ1 is the spectral condition number, so the K-
condition number may take very large values when κ(B) is
large.

The estimates based on the K-condition number involve
only “integral” characteristics of the preconditioned matrix
(the trace and the determinant). Sometimes, it is possible
to obtain a practical estimate of K(B) which can be useful
for the a priori construction of good preconditioners and for

the a posteriori assessment of their quality, see Section 5 for
further details.

The estimate

∥∥∥rk
∥∥∥
C−1

‖r0‖C−1
≤
(
K1/k − 1

)k/2 ≤ ε (69)

shows that

K1/2
(

1− K−1/k
)k/2 ≤ ε (70)

or

k

2
log2

1
1− K−1/k

≥ log2
K1/2

ε
, (71)

which holds if

k > log2K + 2log2
1
ε
. (72)

Hence, when K � ε−2 the estimated number of iterations
depends essentially only on log2K , that is, depends little on
the relative accuracy ε, which indicates a fast superlinear
convergence, when k > log2K .

When actually estimating the number of iterations,
Theorem 6 shows a useful result only when k > O(lnK) =
n(lnK1/n), that is, the quotient between the arithmetic and
geometric averages of the eigenvalues, which equals K1/n,
must be close to unity and the eigenvalues must be very well
clustured so K1/n = 1 + O(n−ε) for some ε > 0; otherwise
the estimated number of iterations will be O(n), which is
normally a useless result. The next example illustrates this
further.

Example 1. Consider a geometric distribution of eigenvalues
of A, λj = js, j = 1, 2, . . . ,n for some positive s. Here,
asymptotically

tr(A) =
n∑

1

js ∼ 1
s + 1

ns+1, n −→ ∞. (73)

Using Stirling’s formula, we find

det (A) =
n∏

1

λj =
⎛
⎝

n∏

1

j

⎞
⎠
s

∼ (2πn)s/2
(
n

e

)ns
, n −→ ∞,

(74)

so,

κ(A)1/n ∼ es

s + 1
, n −→ ∞. (75)

Hence, s must be sufficiently small for the estimate in
Theorem 6. to be useful. On the other hand, the spectral
condition number (i) κ(A) = ns, and the simple estimate
based on κ(A) leads to k ∼ O(ns/2) and gives hence,
asymptotically, a smaller upper bound when s < 2. For
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further discussions on superlinear rate of convergence, see
[39].

3.4. Generalized Conjugate Gradient Methods. The rate of
convergence estimates as given above, holds for a restricted
class of matrices, symmetric or, more generally, for normal
matrices.

To handle more general classes of problems for which
such optimal rate of convergence results as in (45) holds,
one needs more involved methods. Much work has been
devoted to this problem. This includes methods like gener-
alized minimum residual (GMRES), see Saad and Schultz
[40], generalized conjugate residual (GCR), and generalized
conjugate gradient (GCG), see [6] and for further details
[41]. As opposed to the standard conjugate and gradient
method, they require a long version of updates for the search
directions, as the newest search direction at each stage is not
in general, automatically (in exact precision) orthogonal to
the previous search directions, but must be orthogonalized
at each step. This makes the computational expense per step
grow linearly and the total expense grows quadratically with
the iteration index. In addition, due to finite precision, there
is a tendency of loss of orthogonality, even for symmetric
problems when many iterations are required. One remedy
which has been suggested is to use the method only for a
few steps, say 10, and restart the method with the current
approximation as initial approximation.

Clearly, however, in this way, the optimal convergence
property of the whole Krylov set of vector is lost. For this
and other possibilities, see, for example, [42].

Another important version of the generalized conjugate
gradient methods occurs when one uses variable precondi-
tioners. Variable preconditioners, that is, a preconditioner
changed from one iteration to the next iteration step, are used
in many contexts.

For instance, one can use variable drop tolerance,
computed adaptively, in an incomplete factorization method
(see Section 4). When the given matrix is partitioned in two
by two blocks, it can be efficient to use inner iterations when
solving arising systems for one, or both, of the diagonal block
matrices, see, for example, [43], and the flexible conjugate
gradient method in Saad, [44, 45].

Due to space limitations, the above topics will not be
further discussed in this paper.

4. Incomplete Factorization Methods

There exist two classes of preconditioning methods that are
closely related to direct solution methods. In this paper, we
make a survey only of their main ingredients, but delete
many of the particular aspects.

The first method is based on incomplete factorization
were some entries arising during a triangular factorization
are neglected to save in memory. The deletion can be based
on some drop tolerance criterion or on a normally a priori,
chosen sparsity pattern. The factorization based on a drop
tolerance takes the following form. During the elimination
(or equivalently, triangular factorization), the off-diagonal

entries are accepted only if they are not too small. For
instance,

ai j :=
⎧⎨
⎩
ai j − aira−1

rr ar j if
∣∣∣ai j

∣∣∣ ≥ ε √aiia j j ,
0, otherwise.

(76)

Here, ε, 0 < ε 
 1 is the drop-tolerance parameter.
Such methods may lead to too much fill-in (i.e., ai j /= 0
in positions where the original entry was occupied by a
zero), because to be robust, they may require near machine-
precision drop tolerances. Furthermore, as direct solution
methods, they are difficult to parallelize efficiently.

The incomplete factorization method can readily be
extended to matrices partitioned in block form. Often,
instead of a drop tolerance, one prescribes the sparsity pat-
tern of the triangular factors in the computed preconditioner,
that is, entries arising outside the chosen pattern are ignored.
An early presentation of such incomplete factorization
methods was given by Meijerink and van der Vorst [46]. One
can make a diagonal compensation of the neglected entries,
that is add them to the diagonal entries in the same row,
possibly first multiplied by some scalar Θ,0 < Θ ≤ 1. For
discussions of such approaches, see [29, 30, 47, 48]. This
frequently moves small eigenvalues, corresponding to the
smoother harmonics, to cluster near the origin, in this way
sometimes improving the spectral condition number by an
order of magnitude (see [6, 47]).

The other class of methods are based on approximate
inverses G, for instance such that minimizes a Frobenius
norm of the error matrix I − GA, see Section 5 for further
details. To be sufficiently accurate these methods lead
frequently to nearly full matrices. This can be understood
as the matrices we want to approximate are often sparse
discretizations of diffusion problems. The inverse of such an
operator is a discrete Green’s function which, as wellknown,
often has a significantly sized support on nearly the whole
domain of definition.

However, we can use an additive approximation of the
inverse involving two, or more, terms which is approximate
on different vector subspaces. By defining in this way the
preconditioner recursively on a sequence of lower dimen-
sional subspaces, it may preserve the accurate approximation
property of the full, inverse method while still needing only
actions of sparse operators.

Frequently, the given matrices are partitioned in a natural
way in a two by two block form. For such matrices, it can be
seen that the two approaches are similar. Consider namely

A =
⎡
⎣A1 A12

A21 A2

⎤
⎦, (77)

where we assume that A1 and the Schur complement matrix
S = A2 − A21A

−1
1 A12 are nonsingular. (This holds, in

particular, if A is symmetric and positive definite.) We
can construct either a block approximate factorization of A
or approximate the inverse of A on additive form. As the
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following shows, the approaches are related. First, a block
matrix factorization of A is

A =
⎡
⎣A1 0

A21 S

⎤
⎦
⎡
⎣I1 A−1

1 A12

0 I2

⎤
⎦, (78)

where I1, I2 denote the unit matrices of proper order. For its
inverse, it holds

A−1 =
⎡
⎣I1 −A−1

1 A12

0 I2

⎤
⎦
⎡
⎣ A−1

1 0

−S−1A21A−1
1 S−1

⎤
⎦

=
⎡
⎣A

−1
1 + A−1

1 A12S−1A21A
−1
1 −A−1

1 A12S−1

−S−1A21A
−1
1 S−1

⎤
⎦,

(79)

or

A−1 =
⎡
⎣A

−1
1 0

0 0

⎤
⎦ +

⎡
⎣−A

−1
1 A12

I2

⎤
⎦S−1[−A21A−1

1 , I2
]
. (80)

A straightforward computation reveals that AṼ ≡ ṼTAṼ =
S and, hence,

A−1 =
⎡
⎣A

−1
1 0

0 0

⎤
⎦ + Ṽ

(
ṼTAṼ

)−1
ṼT

=
⎡
⎣A

−1
1 0

0 0

⎤
⎦ + ṼA−1

Ṽ
Ṽ T ,

(81)

where

Ṽ =
⎡
⎣−A

−1
1 A12

I2

⎤
⎦. (82)

LetM1 � A1 be an approximation ofA1 ( for which linear
systems are simpler to solve than for A1) and let G1 � A−1

1 be
a sparse approximate inverse. Possibly G1 =M−1

1 . Then,

M =
⎡
⎣M1 0

A21 B2

⎤
⎦
⎡
⎣I1 M−1

1 A12

0 I2

⎤
⎦

=
⎡
⎣M1 A12

A21 A2

⎤
⎦ +

⎡
⎣0 0

0 B2 + A21M−1
1 A12 − A2

⎤
⎦

(83)

is a preconditioner to A and

B =
⎡
⎣G1 0

0 0

⎤
⎦ +VB−1

2 VT (84)

is an approximate inverse, where V =
[ −G1A12

I2

]
and B2 is an

approximation of S. If B2 = VTÃV , where Ã =
[
G−1

1 A12

A21 A2

]
,

then

B =
⎡
⎣G1 0

0 0

⎤
⎦ +V

(
VTÃV

)−1
VT

=
⎡
⎣G1 0

0 0

⎤
⎦ +VS

(
Ã
)
VT ,

(85)

where S(Ã) = A2 − A21G1A12. If M1 = G−1
1 , then in this case

B =M−1. (86)

Hence, a convergence estimate for one method can be
directly applied for the other method as well. For further dis-
cussions of block matrix preconditioners, see, for example,
[49–52]. As can be seen from the above, Schur complement
matrices play a major role in both matrix factorizations.
For sparse approximations of Schur complement matrix, in
particular element, e.g., element type approximations, see,
for example [53–55].

We consider now multilevel extensions of the additive
approximate inverse subspace correction method. It is illus-
trative to consider first the exact inverse and its relation to
Gaussian (block matrix) elimination.

4.1. The Exact Inverse on Additive Form. Let then A(0) = A
and consider a matrix

A(k) =
⎡
⎣A

(k)
1 A(k)

12

A(k)
21 A(k)

2

⎤
⎦, (87)

in a sequence defined by

A(k+1) ≡ S(k)
2 = A(k)

2 − A(k)
21 A

(k)−1

1 A(k)
21 , k = 0, 1, . . . , k0,

(88)

where each A(k)
1 in nonsingular, being a block diagonal of

a symmetric positive definite matrix. Hence, the following
recursion holds

A(k)−1 =
⎡
⎣A

(k)−1

1 0

0 0

⎤
⎦

+

⎡
⎢⎣
−A(k)−1

1 A(k)
12

I(k+1)
2

⎤
⎥⎦A(k+1)−1

[
A(k)

21 A
(k)−1

1 , I(k+1)
2

]
,

(89)

k = 0, 1, . . . , k0. Here, I(k+1)
2 is the identity matrix on level

k + 1. Note that in this example the dimensions decrease
with increasing level number and the final matrix (i.e., Schur

complement) in the sequence is A(k0) = S(k0+1)
2 . The above

recursion can be rewritten in compact form

A−1 =
⎡
⎣A

(0)−1

1 0

0 0

⎤
⎦ +UD−1L, (90)

where the kth column of the block upper triangular matrix

U equals

[
−A(k)−1

1 A(k)
12

I(k+1)
2

]
and L = UT . Further,

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(k)
1 0

A(2)

. . .

0 A(k0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (91)
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Hence, this is the (block matrix) Gaussian elimination
method applied directly to form the inverse matrix. In this
way, there is no need to first form the factorization A = L̃DŨ

and then A−1 = Ũ−1D−1L̃−1. As is wellknown and readily
seen, the columns of Ũ−1 and L̃−1 are formed directly with no
additional computation, from those of Ũ and L̃, respectively.
Note that Ũ−1 is upper (block) triangular and L̃−1 is lower
(block) triangular).

The matrix D contains the (block) pivot matrices which
arise during the factorization. Permutations to increase
the stability by finding dominating pivots can be done
by replacing A(k+1) with P(k)T Ã(k+1)P(k) where Ã(k+1) =
P(k)A(k+1)P(k)T is the permuted matrix on which the next
elimination step takes place.

An incomplete factorization method for approximate
inverses can be defined by approximating each arising Schur
complement matrix with some sparse matrix B̃(k+1) and

possibly also approximating A(k)−1

1 with some matrix B(k)
1 , to

yield the approximate inverse

B(k) =
⎡
⎣B

(k)
1 0

0 0

⎤
⎦ +V (k)B̃(k+1)V (k)T , (92)

where V (k) =
[
−B(k)

1 A(k)
12

I(k+1)
2

]
.

In forming the approximate Schur complement one can

use a simpler matrix D(k)
1 than B(k)

1 , often a diagonal matrix

suffices. The intermediate Schur complement matrix S̃(k)
2 =

A(k)
2 − A(k)

21 D
(k)
1 A(k)

12 can be possibly further approximated
by deleting certain off-diagonal entries to preserve sparsity.
These entries can be compensated for by modifying the

diagonal of S̃(k)
2 to form the final approximation B̃(k+1).

Thereby, it can be important to make the approximate Schur
complement exact on some particular vector or vector space.
(We do not go into these aspects further here, see [43, 56] for
details.)

The eigenvectors for the smallest eigenvalues of A
provide efficient column vectors for the matrix V to reduce
significantly the condition number of B A as compared to
that of A. However, in general the eigenvectors are not
known, and even if they are known it would be costly to
apply the corresponding preconditioner as V would be a full
matrix. A more viable choice is to let V be defined by the

basis functions {ϕ(H)
i } of a coarse mesh (or coarsened matrix

graph) so that

ImV = span
{
ϕ(H)
i

}
. (93)

V ,VT acts then, respectively, as prolongation and restriction
operators and

V =
⎡
⎣J12

I2

⎤
⎦, (94)

where J12 is the interpolation matrix from the coarse mesh
(ΩH) to the fine mesh (Ωh), and we assume ΩH ⊂ Ωh.

Further, letting the matrices be variationally defined, as in
a finite element method, we have

AH = VTAV , (95)

where A is the finite element matrix on the fine mesh.
Now, the eigenvectors for the smaller eigenvalues of AH

are normally accurate approximations of the corresponding
eigenvectors for A. Furthermore, the eigenvectors of AH are
members of Im V . Therefore, the matrix V in (94) acts
nearly as well as the eigenvector matrix but, in addition, is
sparse. Hence the approximate inverse takes the form

B = G + σVA−1
H VT , (96)

where σ = λmax(GA), AH = VTAV .
Here, the projection matrix

P = VA−1
H VTA, (97)

projects vectors on the subspace Im V , containing normally
good approximations of the eigenvectors for the smallest
eigenvalues of A, that is, those who may cause severe ill-
conditioning. Clearly, the approximation is more accurate
as closer ΩH is to Ωh. However, the cost of the action of
P (mainly the coarse mesh solver for the action of A−1

H )
increases when ΩH expands. One can balance ΩH to Ωh

in order to let the action of P involve the same order of
computational complexity as an action of A, that is, O(h−2)
for a sparse matrix A. Assuming that the cost of an action
of A−1

H is O(H−2.5) in a 2D diffusion problem (e.g., using a
modified incomplete factorization method as preconditioner
for the conjugate gradient method), we find H = h4/5. The
number of outer iterations with preconditioner B depends
also on the choice of G. We refer the discussion of how G can
be chosen properly to [56].

As an example, for a model diffusion problem with
constant coefficients on a regular mesh, say for the Laplacian
operator on unit square, the eigenvectors for the Laplacian
(−Δ) on Ωh with Dirichlet boundary conditions are

v(h)
k,l = sin kπ sin lπ y, x, y ∈ Ωh, (98)

where k, l = 1, 2, . . . , h−1 − 1, for the eigenvalues

λ(h)
k,l =

(
2 sin

kπh

2

)2

+
(

2 sin
lπh

2

)2

. (99)

For the coarse mesh, it holds

v(H)
k,l = sin kπx sin lπ y, x, y ∈ ΩH , (100)

where k, l,= 1, 2, . . . ,H−1, and here Vv(H)
k,l are good

approximations (interpolants) of the eigenvectors v(h)
k,l on Ωh

for the smallest eigenvalues.
An alternative choice of matrix V is to take eigenvectors

from a nearby problem, normally defined by taking limit
values of some problem parameter, see [56].

Multigrid, algebraic multilevel and algebraic multigrid
methods have been presented thoroughly in, for example
[29, 43, 57, 58]. Because of space limitations, they can not
be presented here.
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4.2. Symmetrization of Preconditioners; the SSOR and ADI
Methods. As we have seen, the incomplete factorization
methods require first a factorization step. There exists sim-
pler preconditioning methods that require no factorization
but have a form similar to the incomplete factorization
methods. We will present two methods of this type. As an
introduction, consider first an iterative method of the form

M
(

xl+1 − xl
)
= b− Axl, l = 0, 1, . . ., (101)

to solve Ax = b, where A and M are nonsingular. As
we saw in Section 2, the asymptotic rate of convergence is
determined by the spectral radius of the iteration matrix

B = I −M−1A. (102)

For a method such as the SOR method (which also requires
no factorization), with optimal overrelaxation parameter
ω (assuming that A has property Aπ or A is s.p.d., see
Section 2), the eigenvalues of the corresponding iteration
matrix B are situated on a circle. No further acceleration is
then possible.

There is, however, a simple remedy to this, based on
taking a step in the forward direction of the chosen ordering,
followed by a backward step, that is, a step in the opposite
order to the vector components. This method is said to have
its origin in the early days of computers when programs were
stored on tapes that had to be rewound before a new forward
SOR step could begin. It was found that this otherwise useless
computer time for the rewinding could be better used for a
backward SOR sweep!

As we will see, for symmetric and positive definite matri-
ces the combined forward and backward sweeps correspond
to a s.p.d. matrix which, contrary to the SOR method, has
the advantage that it can be used as a preconditioning matrix
in an iterative acceleration method. This method, called the
SSOR method, will be defined later.

For an early discussion of the SSOR method, used as a
preconditioner, see [59]. For discussions about symmetriza-
tion of preconditioners, see [6, 60, 61]. More generally, ifA is
s.p.d, we consider the symmetrization of an iterative method
in the form

xl+1 = xl +M−1
(

b−Axl
)
. (103)

For the analysis only, we consider the transformed form of
(103),

yl+1 =
(
I − A1/2 M−1A1/2

)
yl + b̃, (104)

where

yl = A1/2xl, b̃ = A1/2M−1b̃. (105)

If M is unsymmetric, the iteration matrix I − A1/2M−1A1/2

is also unsymmetric. We will now consider a method using
M and another preconditioner chosen so that the iteration
matrix for the combined method becomes symmetric. We
call this the symmetrization of the method.

Let M1, M2 be two such preconditioning matrices. Let

Bi = I − M̃−1
i , M̃i = A−1/2MiA−1/2, (106)

and consider the combined iteration matrix B2B1. As we will
now see, it arises as an iteration matrix for the combined
method

M1

(
xl+1/2 − xl

)
= b− Axl ,

M2

(
xl+1 − xl+1/2

)
= b− Axl+1/2, l = 0, 1, . . . .

(107)

For the analysis only, we transform this to the form

yl+1/2 − yl = b̃(1) − M̃−1
1 yl,

yl+1 − yl+1/2 = b̃(2) − M̃−1
2 yl+1/2,

(108)

where

b̃(i) = A(1/2)M−1
i b. (109)

This iteration takes the form

yl+1 = b̃(2) +
(
I − M̃−1

2

)
b̃(1) +

(
I − M̃−1

1 yl
)

, (110)

that is,

yl+1 = b̃(2) +
(
I − M̃−1

2

)
b̃(1) +

(
I − M̃−1

2

)(
I − M̃−1

1

)
yl ,

(111)

or

yl+1 = b̂ + B2B1yl, l = 0, 1, . . . , (112)

where

b̂ = b̃(2) +
(
I − M̃−1

2

)
b(1). (113)

For the following we need a lemma.

Lemma 2. If A, B, and C are Hermitian positive definite and
each pair of them commute, then ABC is Hermitian positive
definite.

Proof. We have (ABC)∗ = CBA and use commutativity to
find

CBA = BCA + BAC = ABC. (114)

Hence, ABC is Hermitian. Next, we show that the product of
two s.p.d matrices that commute is positive definite. We have

A−1/2ABA1/2ABA1/2 = A1/2BA1/2, (115)

which is Hermitian positive definite. Hence, by similarity, the
eigenvalues of AB are positive and, since

(AB)∗ = AB, (116)

AB is Hermitian positive definite. In the same way, (AB)C is
Hermitian positive definite.
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Lemma 3. Let A be s.p.d. and assume either of the following
additional conditions:

(a) M∗
2 =M1.

(b) M1, M2 are s.p.d. ρ(A1/2M−1
i A1/2) < 1, i = 1, 2, and

the pair of matrices M1, M2, commutes.

Then, the combined iteration method (107) converges if and
only if M1 +M2 − A is s.p.d.

Proof. It is readily seen that y = b̂ + B2B1y (i.e., the iteration
method is consistent with Ax = b ), where y = A1/2x and
x = A−1b. Hence,

y − yl+1 = B2B1

(
y − yl

)
, (117)

and the iteration method (112), and hence (107) converges
for any initial vector if and only if ρ(B2B1) < 1, where ρ(·)
denotes the spectral radius. But

B2B1 = I − M̃−1
1 − M̃−1

2 + M̃−1
1 M̃−1

2

= I −A1/2M−1
1 (M1 +M2 − A)M−1

2 A1/2.
(118)

It is readily seen that under either of the given conditions (a)
or (b),

M−1
1 (M1 +M2 − A)M−1

2 =M−1
1 +M−1

2 −M−1
1 AM−1

2

(119)

is symmetric. Further, it is positive definite if and only if
M1 + M2 − A is positive definite. Hence, I − B2B1 is s.p.d.
Further, B2B1 = (I − M̃−1

2 )(I − M̃−1
1 ) is symmetric, and

a similarity transformation shows that B2B1 is similar to
(I − M̃−1

2 )1/2 (I − M̃−1
1 )(I − M̃−1

2 )1/2, which is a congruence
transformation of I − M̃−1

1 , whose eigenvalues are positive.
Hence, B2B1 has positive eigenvalues, so the eigenvalues of
B2B1 are contained in the interval (0, 1) and, in particular,
ρ(B2B1) < 1.

The proof of Lemma 3 shows that B2B1 is symmetric, so
the combined iteration method is a symmetrized version of
either of the simple methods.

Let us now consider a special class of symmetrized
methods. We let A be split as A = D + L + U , where we
assume that D is s.p.d., and let

V =
(

1− 1
ω

)
D + L, H =

(
1− 1

ω

)
D +U , (120)

D̂ = (2/ω − 1)D, where ω is a parameter, 0 < ω < 2. (Here,
L and U are not necessarily the lower and upper triangular
parts of A.) Note that

D̂ +V +H = A, (121)

so this is also a splitting of A. As an example of a
combined, or symmetrized, iteration method, we consider
the preconditioning matrix

C =
(
D̂ +V

)
D̂−1

(
D̂ +H

)
, (122)

and show that this leads to a convergent iteration method

C
(

xl+1 − xl
)
= b− Axl, l = 0, 1, . . . . (123)

This corresponds to choosing M1 = D̂−1/2(D̂ + H) and
M2 = (D̂+V)D̂−1/2, and it can be seen that the conditions of
Lemma 3 hold if the conditions in the next theorem hold.

Theorem 8. Let A = D + L + U , whereD is s.p.d. Let V ,H , D̂
be defined by (120), and assume that either (a) or (b) holds,
where

(a) U = L∗

(b) L,U are s.p.d. and each pair of matrices L, U, D
commute. Then the eigenvalues λ of the matrix C−1A,
where C is defined in (122), are contained in the
interval 0 < λ ≤ 1.

Proof. This can be shown either by verifying the conditions
in Lemma 3 or more directly as follows. As in the proof of
Lemma 3, it follows that C is s.p.d. Hence, the eigenvalues of
C−1A are positive. Further,

C = D̂ +V +H +VD̂−1H , (124)

so, by (121)

C = A +VD̂−1H. (125)

Under either condition (a) or (b),C = VD̂−1H is symmetric
and positive semidefinite.

This shows that x∗Cx ≥ x∗Ax for all x, so the eigenvalues
of C−1A are bounded above by 1.

We will now show that the matrix C can also efficiently be
used as a preconditioning matrix, which for a proper value
of the parameter ω, and under an additional condition, can
even reduce the order of magnitude of the condition number.
In this respect, note that when C is used as a preconditioning
matrix for the Chebyshev iterative method, it is not necessary
to have C scaled so that λ(C−1A) ≤ 1, because it is suffices
then that 0 < m ≤ λ(C−1A) ≤ M, for some numbers m, M.
Hence, the factor 2/ω− 1 in D̂−1 can be neglected.

Theorem 9. Let A = D + L + U be a splitting of A, where A
and D are s.p.d. and either (a) U = L∗ or (b) L, U are s.p.d.
and each pair of D, L, U commute. Then, the eigenvalues of
matrix C−1A, where

C =
(

1
ω
D + L

)
D̂−1

(
1
ω
D +U

)
(126)

and 0 < ω < 2, D̂ = (2/ω− 1)D, are contained in the interval
⎡
⎣ (2− ω){

1 + ω(1/ω− 1/2)2δ−1 + ωγ
} , 1

⎤
⎦, (127)

where

δ = min
x /= 0

xTAx
xTDx

γ = max
x /= 0

xT
(
LD−1U − 1/4D

)
x

xTAx
.

(128)



16 Journal of Electrical and Computer Engineering

Further, if there exists a vector for which xT(L +U)xT(L +
U)x ≤ 0, then γ ≥ −1/4, and if

ρ
(
L̃Ũ

)
≤ 1

4
, (129)

then γ ≤ 0, and if

ρ
(
L̃Ũ

)
≤ 1

4
+O(δ), then γ ≤ O(1), δ −→ 0. (130)

Here, L̃ = D−1/2LD−1/2.

Proof. It is readily seen that

C = 1
2− ω

(
1
ω
D + L

)(
1
ω
D
)−1( 1

ω
D +U

)

= 1
2− ω

[
A +

(
1
ω
− 1

)
D + ωLD−1U

]

= 1
2− ω

[
A + ω

(
1
ω
− 1

2

)2

D + ω
(
LD−1U − 1

4
D
)]

.

(131)

This shows the lower bound in (127); the upper bound
follows by Theorem 8. By choosing a vector for which xT(L+
U)x ≤ 0, it follows that

xT
(
LD−1U − (1/4)D

)
x

xTAx
≥ xT

(
LD−1x − (1/4)Dx

)

xTDx
≥ −1

4
,

(132)

which shows γ ≥ −1/4. The remainder of the theorem is
immediate.

4.2.1. The Condition Number. Theorem 9 shows that the
optimal value of ω to minimize the upper bound of the
condition number of C−1A is the value that minimizes the
real-valued function

f (ω) = 1 +ω(1/ω − 1/2)2δ−1 +ωγ

2− ω . (133)

It is readily seen (see Axelsson and Barker, 1984 [30]), that
f (ω) is minimized for

ω∗ = 2

1 + 2
√(

1/2 + γ
)
δ

,

min
ω

f (ω) = f (ω∗) =
√(

1
2

+ γ
)
δ−1 +

1
2
.

(134)

In general, δ is not known, but we may know that δ = O(h2),
for some problem parameter, h → 0 (such as for the step
length in second-order elliptic problems). Then, if γ = O(1),
h → 0, we let ω = 2/(1 + ξh) for some ξ > 0, in which case

f (ω) = O
(
h−1) = O

(√
δ−1

)
, h −→ 0. (135)

This means that C−1A has an order of magnitude smaller
condition number than A itself, which latter is O(δ−1).

We consider now two applications of Theorem 9.

4.2.2. The SSOR Method. In the first case, L is the lower
triangular part of A or the lower block triangular part, if A
is partitioned in block matrix form and U = L∗. Then,

C = 1
2−ω

(
1
ω
D + L

)(
1
ω
D
)−1( 1

ω
D + L∗

)
, (136)

is a symmetrized version of the SOR method and is called the
SSOR (symmetric successive overrelaxation) method.

As an example, for an elliptic differential equation of
second order it can be seen that the condition ρ(L̃L̃T) ≤ 1/4
holds for problems with Dirichlet boundary conditions and
constant coefficients. For extensions of this, see Axelsson and
Barker [30]. For the model difference equation on a square
domain with side π, we have

δ = 2
(

sin
h

2

)2

, γ ≤ 0, (137)

and we find

ω∗ = 2
1 + 2 sin h/2

∼ 2
1 + h

,

f (ω∗) =
√

1
2δ

+
1
2
∼ h−1 +

1
2

, h −→ 0.

(138)

4.3. The ADI Method. In the second case of methods of
(101), we let L denote the off-diagonal part of the difference
operator working in the x-direction and U off-diagonal part
of the difference operator in the y-direction. D is its diagonal
part. Then, the matrix

Ĉ =
(

1
ω
D + L

)(
1
ω
D
)−1( 1

ω
D +U

)
, (139)

is called an alternating direction preconditioning matrix
and the corresponding iteration method is called the ADI
(alternating direction iteration) method. In this method, we
solve alternately one-dimensional difference equations in x-
and y-directions. Much has been written on the ADI-method
which was originally presented in Peaceman and Rachford
[62]; see Varga [10], for an early influential presentation and
Birkhoff et al. [63] and Wachspress [64], for instance.

As we will see, for the model difference equations we
get the same optimal value of ω as in (138). The condition
γ = O(1) may be less restrictive, for the ADI-method, but
the condition of commutativity is much more restrictive, as
the following lemma shows.

Lemma 4. Let A, B be two Hermitian matrices of order n.
Then AB = BA if and only if A and B have a common set
of orthonormal eigenvectors.

Proof. If such a common set of eigenvectors {vi} exists, then
Avi = σivi, Bvi = τivi and

ABvi = σiτivi i = 1, 2, . . . ,n. (140)
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Since the eigenvector space of an Hermitian matrix is
complete, we therefore have

ABx = BAx, ∀x ∈ Cn, (141)

which shows that AB = BA. Conversely, suppose that AB =
BA. As A is Hermitian, take U to be a unitary matrix that
diagonalizes A, that is

Ã = UAU∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γ1I1 0

γ2I2

. . .

0 γr Ir

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (142)

where γ1 < γ2 < · · · < γr are the distinct eigenvalues of A
and I j is the identity matrix of order nj , the multiplicity of γj .

(HereA is posssibly permuted accordingly.) Let B̃ = U BU∗

and partition B̃ corresponding to the partitioning of A, that
is,

B̃ =

⎡
⎢⎢⎢⎢⎣

B11B12 · · ·B1r

...

Br1Br2 · · ·Brr

⎤
⎥⎥⎥⎥⎦
. (143)

Since AB = BA, we have

ÃB̃ = U ABU∗ = U BAU∗ = B̃Ã. (144)

Carying out the block multiplication ÃB̃ = B̃Ã, we find
that this, in turn, implies Bi j = 0, i /= j, since γi /=γj , i /= j.
Simply stated, a (block) matrix commutes with a (block)
diagonal matrix if and only if it is itself (block) diagonal.
Hence, B̃ is block diagonal and each Hermitian submatrix
Bi,i has ni orthonormal eigenvectors that are also eigenvectors
of the submatrix γiIi of Ã. Since

∑r
i=1 ni = n and all

eigenvectors are orthonormal, A and B must have the same
set of eigenvectors.

For the second-order elliptic difference equation in two
space dimensions, it turns out that the commutativity of
L and U essentially corresponds to the property that the
original problem is separable, that is, that solutions of Lu =
f can be written in the form u = ϕ(x)ψ(y). This means
that the coefficients a(x, y) and b(x, y) in the differential
operator ∂/∂x[a(x, y)∂u/∂x] + ∂/∂y[b(x, y)∂u/∂x] + c(x, y)u
must satisfy a(x, y) = a(x),b(x, y) = b(y), and c(x, y) =
c, a constant. Hence, if a(x, y) = b(x, y), then a(x, y) =
b(x, y) = a, a constant. Furthermore, the convex closure of
the meshpoints must be a rectangle with sides parallel to the
coordinate axes (Varga, [10] 1962). If A = A1 + A2, the ADI-
method can be written in the form

(I + τ1A1)xl+1/2 = (I − τ1A2)xl + τ1b,

(I + τ2A2)xl+1 = (I − τ2A1)xl+1/2 + τ2b, l = 0, 1, . . . .
(145)

This is the Peaceman-Rachford [62] iteration method. The
iteration matrix M is similar to

(I − τ2A1)(I + τ1A1)−1(I − τ1A2)(I + τ2A2)−1. (146)

When A1, A2 are Hermitian positive definite, their eigenval-

ues λ(1)
i , λ(2)

i are positive, and

∥∥∥(I − τ2A1)(I + τ1A1)−1
∥∥∥

2
= ρ

(
(I − τ2A1)(I + τ1A1)−1

)

= max
i

∣∣∣∣∣
1− τ2λ

(1)
i

1 + τ1λ
(1)
i

∣∣∣∣∣.

(147)

Thus,

ρ(M) =ρ
(

(I−τ2A1)(I+τ1A1)−1(I−τ1A2)−1(I+τ2A2)−1
)

≤
∥∥∥(I − τ2A1)(I + τ1A1)−1(I − τ1A2)(I + τ2A2)−1

∥∥∥
2

≤
∥∥∥(I − τ2A1)(I + τ1A1)−1

∥∥∥
2

×
∥∥∥(I − τ1A2)(I + τ2A2)−1

∥∥∥
2

= μ(τ1, τ2),

ρ(M) ≤ μ(τ1, τ2) = max
i

∣∣∣∣∣
1− τ2λ

(1)
i

1 + τ1λ
(1)
i

∣∣∣∣∣max
i

∣∣∣∣∣
1− τ1λ

(2)
i

1 + τ2λ
(2)
i

∣∣∣∣∣.

(148)

Note that for τ1 = τ2 = τ > 0, μ(τ1, τ2) = μ(τ, τ) < 1,
so we have ρ(M) < 1, that is convergence for any τ > 0. This
holds even ifA1,A2 do not commute. Note also that when A1

and A2 commute, we have

ρ(M) = μ(τ1, τ2). (149)

Let us continue the analyses for the general case where
A1, A2 do not necessarily commute. We want to compute the
optimal values of τ1 and τ2 such that μ(τ1, τ2) is minimized.
For simplicity, we assume that α, β are the same lower and
upper bounds of the eigenvalues of A1 and A2, that is, 0 <

α ≤ λ
( j)
i ≤ β, j = 1, 2. We have

μ(τ1, τ2) ≤ max

{∣∣∣∣
1− τ2α

1 + τ1α

∣∣∣∣,

∣∣∣∣∣
1− τ2β

1 + τ1β

∣∣∣∣∣

}

×max

{∣∣∣∣
1− τ1α

1 + τ2α

∣∣∣∣,

∣∣∣∣∣
1− τ1β

1 + τ2β

∣∣∣∣∣

}
.

(150)

We want to choose τ1, τ2 > 0 such that this bound is as small
as possible. Note, then, that for such values of τ1, τ2 we must
have 1 − τiα > 0 and 1 − τiβ < 0. Next note that each factor
in the bound (150) is minimized when

1− τ2α

1 + τ1α
= τ2β − 1
τ1β + 1

,
1− τ1α

1 + τ2α
= τ1β− 1
τ2β + 1

, (151)
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respectively, that is, when

τ1τ2 − α + β

2αβ
(τ1 − τ2)− 1

αβ
= 0,

τ1τ2 +
α + β

2αβ
(τ1 − τ2)− 1

αβ
= 0,

(152)

respectively. Thus, both factors are simultaneously mini-

mized when τ1 = τ2, and then τ1 = τ2 = 1/
√
αβ.

Theorem 10. Let A = A1 + A2, where A1, A2, are s.p.d., and
consider the Peaceman-Rachford ADI method (145) to solve

Ax = b with τ1 = τ2 = 1/
√
αβ. The spectral radius of the

corresponding iteration matrix M satisfies

ρ(M) ≤ min
τ1,τ2

μ(τ1, τ2) ≤
⎛
⎝1−

√
α/β

1 +
√
α/β

⎞
⎠

2

∼ 1− 4

√
α

β
,

(153)

if α/β → 0.

Proof. For τ1 = τ2 = 1/
√
αβ, we have

μ(τ1, τ2) =
⎛
⎝1−

√
α/β

1 +
√
α/β

⎞
⎠

2

. (154)

Remark 2. For a model difference equation for a second-
order elliptic differential equation problem on a square with
side π, we have with stepsize h,

α =
(

sin(h/2)
h/2

)2

∼ 1,

β =
(

cos(h/2)
h/2

)2

∼ 4
h2

, h −→ 0.

(155)

Then,

μ(τ1, τ2) =
(

1− tan(h/2)
1 + tan(h/2)

)2

= 1− sin(h)
1 + sin(h)

∼ 1− 2h, h −→ 0.

(156)

Note that this is just the convergence factor we get for the
SOR method with an optimal overrelaxation parameter.

Since ρ(M) ≤ μ(τ1, τ2), this means that the ADI method
with parameters (chosen as above) converges at least as fast
as the SOR method. Note, however, that in the ADI-method
we must solve two systems of equations with tridiagonal
coefficient matrices (I − τAi) on each step, while the
pointwise SOR method requires no solution of such systems.

4.4. The Commutative Case. Assume now that A1, A2

commute. Then, as we have seen, M is symmetric and

has real eigenvalues, and we can apply the Chebyshev
acceleration method. The eigenvalues of the corresponding
preconditioned matrix C̃ are related to the eigenvalues of M
by

λ
(
C̃
)
= 1− λ(M). (157)

Since −ρ(M) ≤ λ(M) ≤ ρ(M), where

ρ(M) =
⎛
⎝1−

√
α/β

1 +
√
α/β

⎞
⎠

2

∼ 1− 4

√
α

β
, (158)

we have

4

√
α

β
∼ 1− ρ(M) ≤ λ

(
C̃
)

= 1 + ρ(M) ∼ 2− 4

√
α

β
∼ 2,

α

β
−→ 0.

(159)

The asymptotic rate of convergence of the Chebyshev
accelerated method therefore is

2

√√√1− ρ(M)
1 + ρ(M)

∼ 2
√

2

(
α

β

)1/4

, α/β −→ 0. (160)

For the model difference equation, we have the asymptotic
rate of convergence

∼ 2h1/2, h −→ 0. (161)

4.5. The Cyclically Repeated ADI Method. The real power of
the ADI method is brought forth when we use a sequence of
parametrs τl. Assume that A1, A2 commute, then we choose
the parameters τl cyclically. With a cycle of q parameters and
with the assumption

0 < α ≤ λ
( j)
i ≤ β, j = 1, 2, (162)

we get the iteration matrix

M(q) =
q∏

p=1

(
I + τpA2

)−1(
I − τpA1

)(
I + τpA1

)−1(
I − τpA2

)
.

(163)

The eigenvalues of M(q) are

q∏

p=1

1− τpλ(1)
i

1 + τpλ
(1)
i

· 1− τpλ(2)
i

1 + τpλ
(2)
i

. (164)

In the same way as above, ρ(M(q)) is minimized when

d
(
α,β, q

) = max
α≤x≤β

q∏

p=1

∣∣∣∣∣
1− τpx
1 + τpx

∣∣∣∣∣. (165)
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4.6. A Preconditioning Method for Complex Valued Matrices.
Complex valued systems of equations arise in many applica-
tions. A commonly occuring case is the solution of a matrix
polynomial equation

Qm(A)x = b, (166)

where A is a real square matrix and Qm is a polynomial of
degree m that has no zeroes at the eigenvalues of A. Here
Qm can be factored in the product of second degree, and
possibly some factors of first degree polynomials with real
coefficients.

The second degree polynomials can be factored in prod-
ucts of first degree polynomials with complex coefficients.

Consider then a linear system

Az = b. (167)

in the form

(R + iS)
(
x + iy

) = c + id, (168)

where R, S are real matrices of order n and x, y, c,d ∈Rn.
The system can be solved in complex arithmetic. How-

ever, complex arithmetic leads to heavier computational
complexity and it is in general difficult to precondition
complex valued matrices, as the eigenvalues of the given
matrix or the preconditioned matrix can be spread in the
whole complex plane and the iterative solution method may
then converge too slowly.

One can alternatively apply a preconditioned conjugate
gradient method to the Hermitian positive definite normal
matrix system AHAu = AHb for which the eigenvalues are
real. At any rate, this involves complex arithmetic that costs
typically three to four times as much as corresponding real
arithmetic.

Complex arithmetic can be avoided by rewriting (168) in
real valued form, such as

A(1)

⎡
⎣x
y

⎤
⎦ =

⎡
⎣R −S
S R

⎤
⎦
⎡
⎣x
y

⎤
⎦ =

⎡
⎣c
d

⎤
⎦, (169)

or

A(2)

⎡
⎣ x

−y

⎤
⎦ =

⎡
⎣R S

S −R

⎤
⎦
⎡
⎣ x

−y

⎤
⎦ =

⎡
⎣c
d

⎤
⎦. (170)

The block matrices are here real but, in general, non-
symmetric and/or indefinite. For the solution, one can use a
generalized conjugate gradient method such as GMRES [40]
or GCG [65].

ForA(1) it holds that any eigenvalue λ appears in complex
conjugate pairs λ, λ. For A(2), which is real symmetric, for
any eigenvalue λ /= 0,−λ is also an eigenvalue. Thus, the
spectrum σ(A(1)) is symmetric with respect to the real axes
and the spectrum σ(A(2)) is symmetric with respect to the
imaginary axes, that is, in both cases the spectrum embraces
the origin. From best polynomial approximation properties
it is known that such point distributions leads to polynomials
of essentially a square degree as for the same approximation
accuracy compared to the case with a one-sided spectrum.

In [21], one finds further explanations why Krylov
subspace methods can be inefficient for solving complex
valued systems, represented in the above real forms. Several
iterative solution methods, such as the QMR [22] have been
developped and proven to be efficient for these types of
problems. However, it is difficult to precondition complex
valued matrices and unpreconditioned methods converge in
general very slowly.

Following [66], we consider here instead an approach
based on rewriting the equation in the form (170).

Instead of solving the full block matrix system we apply
a Schur complement approach by the elimination of one
component, which results in the following reduced system

Cx = f , (171)

where

C = R + SR−1S,

f = c + SR−1d.
(172)

As an introduction, assume first that R is symmetric and pos-
itive definite and S is symmetric and positive semidefinite. As
a preconditioner to the matrix C in (171) we take R + S.

For the generalized eigen value problem,

μ(R + S)z = (R + SR−1S
)
z, (173)

it holds then

μ(I +H)y = (I +H2)y, (174)

where μ = R1/2z and H = R−1/2SR−1/2.
If λRz = Sz, z /=0, or, equivalently, Hy = λy, y /=0, it

follows from (174) that

μ = 1 + λ2

(1 + λ)2 , (175)

that is,

μ = 1
1 + (2λ/(1 + λ2))

. (176)

Since, by assumption λ ≥ 0, it follows

1
2
≤ μ ≤ 1, (177)

and the condition number satisfies the bound K((R +
S)−1C) ≤ 2.

The correspondingly preconditioned conjugate gradient
method to solve (174) converges therefore rapidly

There exists an even more efficient form of the iteration
matrix that also shows that we can weaken the assumptions
made on R and S. Hence, consider

Rx − Sy = c,

Sx + Ry − d
(178)

and assume that α is a real parameter such that R + αS is
nonsingular. Such a parameter exists if ker (R)∩ker (S) = �0.
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Multiplying the first equation by −α(R + αS)−1, the
second by (R + αS)−1 and adding yields

(R + αS)−1(S− αR)x + y = (R + αS)−1(d − αc). (179)

Now multiplying this equation by S, using Sy = Rx − c, and
rewriting the equation properly, we find

r ≡ Rx− c + S(R + αS)−1((S− αR)x + αc − d) = 0.
(180)

When solving the system by iteration, such as by
Chebyshev iterations, r will be the residual and we observe
that r can be written in the form (see (179))

y = (R + αS)−1((S− αR)x + αc − d),

r = Rx − Sy − c.
(181)

In this form there is no need to compute the right hand
side vector f initially as if (168) is used and the vector y is
found during the iteration process. This saves two solutions
with the matrix R + αS. Since we need few iterations, such a
saving can be important to decrease the total expense of the
method.

To solve (179) we use R + αS as a preconditioner. The
resulting preconditioned matrix takes the form

Mα = (R + αS)−1
[
R + S(R + αS)−1(S− αR)

]

= (R + αS)−1[(R + αS)− αS](R + αS)−1R

+ (R + αS)−1S(R + αS)−1S

=
(

(R + αS)−1R
)2

+
(

(R + αS)−1S
)2
.

(182)

This form can also be used to derive eigenvalue estimates
in more general cases than was done above. If R is nonsingu-
lar, we find

Mα =
(
I + αR−1S

)−2(
I + R−1S

)2
. (183)

Therefore, the preconditioned matrix is a rational function in
the matrix R−1S. It follows that the eigenvalues μ of Eα satisfy

μ = 1 + λ2

(1 + αλ)2 , (184)

were λ is an eigenvalue of R−1S.
We want to choose α to minimize the spectral condition

number

K(Mα) = μmax

μmin
. (185)

Theorem 11. Assume that R is s.p.d and S is s.p.s-d. Then,
the extreme eigenvalues of the preconditioned matrix Mα,
defined in (182) satisfy

μmin =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
1 + α2

if 0 ≤ α ≤ λ̂,

1 + λ̂2

(
1 + αλ̂

)2 if α ≥ λ̂,

μmax =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if α̂ ≤ α,

1 + λ̂2

(
1 + αλ̂

)2 if 0 ≤ α ≤ α̂,

(186)

where λ̂ is the maximal eigenvalue of R−1S,

R−1S ≤ λ̂I ,

α̂ = λ̂

1 +
√

1 + λ̂2
.

(187)

The spectral condition number is minimized when α = α̂, in
which case

μmin = 1
1 + α̂2

, μmax = 1,

K (Mα) = 1 + α̂2 = 2

√
1 + λ̂2

1 +
√

1 + λ̂2
.

(188)

Proof. The bounds of the extreme eigenvalues follow by

elementary computations of μ = (1+λ2)/(1+αλ)2, 0 ≤ λ ≤ λ̂.
Similarly, it is readily seen that μmax/μmax is minimized for

some α in the interval α̂ ≤ α ≤ λ̂, where μmax = 1. Hence,
it is minimized for α = arg maxα̂≤α(1 + α2)−1, that is, for
α = α̂.

For applications, see [66]. An important application
arises when one uses Padé type approximations, and related
implicit Runge-Kutta methods (see [67]), to solve initial
value problems.

4.7. Historical Remarks. Because incomplete factorization
methods has had a strong influence on the development
of preconditioning methods we give here some historical
remarks.

The idea of an incomplete factorization method goes
back to early papers by Buleev [68], Varga [10], Oliphant
[69], Dupont et al. [70], Dupont [71], and Woźnički [72],
where it was presented for matrices of a type arising from
difference approximations of elliptic problems. The first
more general form (unmodified methods for pointwise
matrices) was studied for M-matrices by Meijerink and van
der Vorst [46]. For a review and general formalism for
describing such methods, see Axelsson [18], Birkhoff et al.
[63], Beauwens [12], and Il’in [60]. For a similar but more
involved type of methods for difference matrices, which
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allowed for variable parameters from one iteration to the
next, see Stone [73].

A modified form of the method, where a certain row
sum criterion was imposed, was studied by Gustafsson [47].
Actually, as is readily seen, the method of Dupont et al.
[70] and as further discussed in Axelsson [59], using a
perturbation technique, can be seen as a modified version of
the general incomplete factorization method when applied
to the five-point elliptic difference matrices, assuming that
no fill-in is accepted outside the sparsity structure of A itself
and assuming a natural ordering of the grid points. The
advantage of modified versions is that they can give condition
numbers of the iteration matrices that are of an order of
magnitude smaller than for the original matrix.

The incomplete factorization method can be readily gen-
eralized to matrices partitioned in block matrix form. This
was done first for matrices partitioned in block tridiagonal
form in Axelsson et al. [49] and Concus et al. [50], the latter
being based on earlier work by Underwood [74]. A general
form was presented in Axelsson [67] and Beauwens and Ben
Bouzid [52], where existence of the method was proven for
M-matrices.

The existence, that is, the existence of nonzero pivot
entries of pointwise incomplete factorization methods for
M-matrices was first shown by Meijerink and van der Vorst
[46] and, for pointwise H-matrices, by Varga et al. [75].
The existence of incomplete factorization methods for M-
matrices in block form was shown in Axelsson et al. [49] and
Concus et al. [50] for block tridiagonal matrices; in Axelsson
[76] and Beauwens and Ben Bouzid [52], for general block
matrices; and in Axelsson and Polman [51] for relaxted
versions of such methods.

Kolotilina [77] shows the existence of convergent split-
tings for block H-matrices, and Axelsson [78] shows the
existence of general incomplete factorizations for block H-
matrices.

5. Approximate Inverses Methods

In many applications, it is of interest to compute approxi-
mations of the inverse (A−1) of a given matrix A, such that
these approximations can be readily used in various iterative
methods.

Let G denote an approximation of A−1.
Following [6], first we present an example of an explicit

and an implicit method, which is followed by a general
framework for computing approximate inverses. At the end,
we present an efficient way to construct symmetric and
positive definite approximate inverses.

An approximate inverse to a given operator may be
constructed in several ways. The simplest way is to use a
Neumann expansion, that is let D−1A = I − E, where D is
the diagonal of A, for instance.

Assuming that ‖E‖ < 1, then the expansion

A−1 = (I − E)−1D−1 = (I + E + E2 + · · · )D−1 (189)

is convergent and any truncated part of this series provides an
approximate inverse. However, this will normally give poore

approximations. As we will see, more accurate approximate
inverses can be constructed as best, possibly weighted,
Frobenius norm approximations.

In many applications the matrix A is sparse, but the exact
inverse will be just a full matrix. A natural condition on G
then arises: we can impose that G has some a priori chosen
sparsity pattern (the same as A or different) which will make
the calculations with G easy and cheap, and also will provide
a sufficient accuracy.

Let A have order n and S = {(i, j), 1 ≤ i ≤ n; 1 ≤
i ≤ j ≤ n}. Any proper subset S of S will be referred to
as a sparsity pattern S ⊂ S.SL denotes the corresponding
sparsity pattern for the lower triangular matrix and SL̃
denotes the corresponding sparsity pattern for the strictly
lower triangular matrix.

For simplicity, we use the same notation S for matrices
having sparsity pattern S. Thus, A ∈ S if ai j /=0 ⇔ (i, j) ∈ S.

5.1. Explicit Methods . In these methods, an approximation
of the inverse A−1 of a given nonsingular matrix A is
computed explicitly, that is, without solving a linear globally
coupled system of equations.

Let S be a sparsity pattern. We want to compute G ∈ S,
such that

(GA)i j = δi j ,
(
i, j
) ∈ S, (190)

that is
∑

k:(i,k)∈S
gikak j = δi j ,

(
i, j
) ∈ S. (191)

Some observations can be made from (191):

(i) the elements in each row of G can be computed
independently;

(ii) even if A is symmetric, G in not necessarily sym-
metric, because gi, j , j /= i, and gj,i are, in general, not
equal.

5.2. Implicit Methods . These methods require that A is
factored first. In practice, they are used mainly for band or
“envelope” matrices. The algorithm was presented in [79]. It
is based on an idea in [80]; see also [81].

Suppose that A = LD−1U is a triangular matrix
factorization of A. If A is a band matrix then L and U are
also band matrices.

Let

L = I − L̃, U = I − Ũ , (192)

where L̃ and Ũ are strictly lower and upper triangular
matrices correspondingly.

The following lemma holds.

Lemma 5. Using the above notations it holds that

(i) A−1 = DL−1 + ŨA−1,

(ii) A−1 = U−1D + A−1 L̃.
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Proof. Consider the following

A = LD−1U =⇒ A−1 = U−1DL−1 =⇒
(
I − Ũ

)
A−1

= DL−1 =⇒ A−1 = DL−1 + ŨA−1.
(193)

Also,

A−1
(
I − L̃

)
= U−1D =⇒ A−1 = U−1D + A−1L̃. (194)

Since DL−1 is lower triangular and Ũ is upper triangular,
using (i) we can compute entries in the upper triangular part
of A−1 with no need to use entries of L−1. Similarly, using
(ii) we can compute entries of the lower triangular part A−1

without computing U−1.
Suppose now that A is a block banded matrix with a

semibandwidth p, and we want to form A−1 also as block
banded with a semibandwidth q : q ≥ p. The identities (i)
and (ii) can be used then for the computation of the upper
and lower parts of A−1.

Remark 3. (i) The algorithm involves only matrix × matrix
operations.

(ii) There is no need to compute any entries outside the
bands.

(iii) If A is symmetric then it suffices executing only (i)
or (ii).

(iv) It can be seen that (A−1)nn = D−1
nn .

There are two drawbacks with the above algorithm. It
requires first the factorization A = LD−1U and even if A is
s.p.d, the band matrix part of A−1, which is computed, need
not be s.p.d. The next example illustrates this.

Example 2. Consider an s.p.d. matrix

G =

⎡
⎢⎢⎢⎣

1 −2 1

−2 5 −3

1 −3 4

⎤
⎥⎥⎥⎦,

Gband =

⎡
⎢⎢⎢⎣

1 −2 0

−2 5 −3

0 −3 4

⎤
⎥⎥⎥⎦,

(195)

is indefinite.

5.3. A General Framework for Computing Approximate
Inverses. It turns out that both the explicit and implicit
method can be characterized as methods to compute best
approximations of A−1 of all matrices having a given sparsity
pattern, in some norm. The basic idea is due to Kolotilina
and Yeremin [38, 79], see [6]. Recall that the trace function
is defined by tr(A) = ∑n

i=1 aii, which also equals
∑n

i=1 λi(A).
Let a sparsity pattern S be given. Consider the functional

FW(G) ≡ ‖I −GA‖2
W = tr

(
(I −GA)W(I −GA)T

)
,

(196)

where the weight matrixW is s.p.d. IfW ≡ I then ‖I −GA‖I
is the Frobenius norm of I −GA.

Clearly FW(G) ≥ 0. IfG = A−1 then FW (G) = 0. We want
to compute the entries ofG in order to minimize FW(G), that
is, to find Ĝ ∈ S, such that

∥∥∥I − ĜA
∥∥∥
W
≤ ‖I −GA‖W , ∀G ∈ S. (197)

The following properties of the trace function will be
used

trA = trAT , tr(A + B) = trA + trB. (198)

Then,

FW (G) = tr(I −GA)W(I −GA)T

= tr
(
W −GAW −W(GA)T +GAW(GA)T

)

= trW − trGAW − tr (GAW)T + trGAWATGT.
(199)

Further, as we are interested in minimizing FW with
respect to G ∈ S, we consider the entries gi, j as variables.
The necessary condition for a minimizing point are then

∂FW(G)
∂gi j

= 0,
(
i, j
) ∈ S. (200)

From (199) and (200), we get

−2
(
WAT

)
i j

+ 2
(
GAWAT

)
i j
= 0, (201)

or
(
GAWAT

)
i j
=
(
WAT

)
i j

,
(
i, j
) ∈ S. (202)

Depending on the particular matrix A and the choice of S
and W , (202) may or may not have a solution. We give some
examples where a solution exists.

Example 3. Let A be s.p.d. Choose W = A−1 which is also
s.p.d. Then, (202) implies

(GA)i j = δi j ,
(
i, j
) ∈ S, (203)

which is the formula for the previously presented explicit
method which, hence, is a special case of the more gen-
eral framework for computing approximate inverses using
weighted Frobenius norm.

Example 4. Let W = (ATA)
−1

. Then (202) implies

(G)i j =
(
A−1)

i j ,
(
i, j
) ∈ S, (204)

which is the relation for the previously presented implicit
method. In this case the entries of G are the corresponding
entries of the exact inverse.
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Example 5. Let W = I . Then,

FW(G) = n− tr(GA),
(
GAAT

)
i j
=
(
AT
)
i j

,
(
i, j
) ∈ S.

(205)

This method is also explicit.
We can expect that such methods will be accurate only

if all elements of A which are not used in the computations
are zero or are relatively small. In some cases the quality of
the computed approximation G to A−1 can be significantly
improved using diagonal compensation of the entries of A
which are outside S. The best approximation G to A−1 in a
(weighted) Frobenius norm is in general not symmetric and,
as we have seen, not always positive definite. For this reason,
the next, alternate method, is considered.

5.4. Constructing a Symmetric and Positive Definite
Approximate Inverse. For some methods (as in the precon-
ditioned Chebyshev and the conjugate gradient iteration
methods) it is of importance to use s.p.d. preconditioners.
As we have seen, the methods described till now do not
guarantee that G will be such a matrix.

In order to compute an s.p.d. approximate inverse of
an s.p.d. matrix, we can proceed as follows. It will be
shown that this approximation gives a best approximation
to minimize the K-condition number of the correspondingly
preconditioned matrix.

A Symmetric and Positive Definite Approximate Factorized
Inverse. Seek an approximate inverse in the form G = LLT ,
where L ∈ SL,

SL =
{(
i, j
) ∈ S, i ≥ j

}
, (206)

and let

SL̃ =
{(
i, j
) ∈ SL, i > j

}
, (207)

that is, denote by SL and SL̃ the lower and strictly lower
triangular part of the sparsity set S.

Theorem 12. Let A be s.p.d. and consider matrices L with
sparsity pattern Sl. Let the matrix L̂ be computed by the
following steps.

(i) Compute first L̃ such that

(
L̃A
)
i j
= Aij ,

(
i, j
) ∈ SL̃, (208)

and L̃i j = 0, (i, j) ∈ Sc
L̃

(the complement set).

(ii) Let L̂ = D(I − L̃), where

D = diag(d1,d2, . . . ,dn),

di = 1[(
I − L̃

)
A
(
I − L̃T

)]1/2

i,i

.
(209)

Then, L̂ ∈ SL and minimizes the K-condition number
of L̂AL̂T , that is,

(
(1/n) tr

(
L̂AL̂T

))n

det
(
L̂AL̂T

) = inf
L∈SL

(
(1/n ) tr

(
LALT

))n
det(LALT)

. (210)

Proof. Let D = diag (d1, . . . ,dn) denote the diagonal part of
a matrix X ∈ SL and let X̃ = I − D−1X, that is, X̃ ∈ SL̃.
Then,

(
(1/n) tr

(
XAXT

))n
det(XAXT )

=
(
(1/n)

∑
i

(
XAXT

)
ii

)n

(det(X))2 det(A)

=

(
(1/n)

∑
i

[
D
(
I−X̃

)
A
(
I−X̃T

)
D
]
i,i

)n

(det(X))2 det(A)

=

(
(1/n)

∑
i d

2
i

[(
I−X̃

)
A
(
I−X̃T

)]
i,i

)n

(
Πid2

i

)
det(A)

=
(
(1/n)

∑
i α

2
i

)n

Πiα2
i

·
Πi

[(
I−X̃

)
A
(
I−X̃T

)]
i,i

det(A)
,

(211)

where α2
i = d2

i [(I − X̃)A(I − X̃T)]i,i.
Note now that

Πi

[(
I − X̃

)
A
(
I − X̃T

)]
i,i

, (212)

does not depend on di, so we can minimize this factor
independently of di.

Consider then the general weighted Frobenius norm
minimization problem

min
G∈S

tr(I −GB)W(I −GB)T . (213)

As we have seen, its solution G satisfies the relation
(
GBWBT

)
i, j
=
(
WBT

)
i, j

, ∀(i, j) ∈ S. (214)

Let now G = X̃, W = A, B = I , S = SL̃. Then,

(
GBWBT

)
i j
=
(
WBT

)
i j

(215)

takes the form
(
X̃A

)
i j
= Aij ∀i, j ∈ SL̃. (216)

This is an explicit method and since the minimization is done
rowwise it follows from (213), with the chosen matrices G, B
and W , that each of

[(
I − X̃

)
A
(
I − X̃

)T]

i,i
i = 1, . . . ,n (217)
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is minimized separately. By construction L̃ satisfies (216), so
the minimization problem is has the solution X̃ = L̃. Hence,

min
X̃

Πi

[(
I − X̃

)
A
(
I − X̃

)T]

i,i
= Πi

[(
I − L̃

)
A
(
I − L̃

)T]

i,i
.

(218)

Consider next the first factor in (211). Here,
(

(1/n)
∑

j α
2
j

)n

Π jα
2
j

≥ 1, (219)

since a geometric average is less or equal to an arithmetic
average. Equality is taken if and only if all αj are equal and
with no limitation we can take αj = 1, j = 1, . . . ,n. Hence,

d2
i =

1[(
I − L̃

)
A
(
I − L̃

)T]

i,i

(220)

which completes the proof.

The method above provides a simple and cheap method
to compute approximate inverses on factorized form. The
proof of the theorem shows that the K-condition number is
reduced in a way as follows from the next corollary.

Corollary 2. Let L̂, D be defined as in Theorem 12. Then,

K
(
L̂AL̂T

)
≡
(

(1/n) tr
(
L̂AL̂T

))n

det
(
L̂AL̂T

)

=
Πn

1

[(
I − L̃

)
A
(
I − L̃T

)]
ii

det(A)
,

(221)

where L̃ = I −D−1L.

Hence, the trace is replaced by a product, that is the n′th
power of the arithmetic average is replaced the n′th power of
a geometric average. This is illustrated in the next example.

Example 6. Let SL = {(1, 1), (2, 2), . . . , (n,n)}, that is, let L
be a diagonal matrix. Then, we find d2

i = aii and Corollary 2
shows that

K
(
LALT

)
= min

L∈SL

(
(1/n) tr

(
LALT

))n
det(LALT)

= Πn
1aii

det(A)
, (222)

which is to be compared with

K(A) = ((1/n) tr(A))n

det(A)
=
(
(1/n)

∑n
1 aii

)n
det(A)

, (223)

that is, we have

K
(
LALT

)
=
(
g

a

)n
K(A). (224)

Hence, the K-condition number K(LALT) of the diagonally
scaled matrix LALT is substantially smaller than K(A) if the

geometric average g of the diagonal entries aii of A are much
smaller than their arithmetic average a. This holds when the
entries aii vary significantly. Note that it always holds that
g ≤ a.

We conclude this section by mentioning that the K-
condition number can be take large values even for seemingly
harmless eigenvalue distributions.

Example 7 (Arithmetic distribution). Let 0 < λ1 < λ2 <
· · · < λn, the eigenvalues of B be distributed uniformly as
an arithmetic sequence in the interval [a,b], a = λ1, b = λn.
For simplicity, assume that n/2 is even. Then,

K(B) = (b + a)/2)n∏n
1λi

. (225)

On the other hand, (57) shows k ≤ (1/2)
√
b/a ln 2/ε, which

is asymptotically smaller than n if (b/a)n−2 = o(1). In
particular, if b/a does not depend on n then we have k ≤
O(ln 1/ε). Therefore, the estimate in Theorem 6 inferior
even to the simple estimate in (56). For other distributions,
however, Theorem 6 can give a smaller upper bound.

6. Augmented Subspace
Preconditioning Method

6.1. Introduction; Preconditioners for Very Ill-Conditioned
Problems. In this section, we consider the solution of systems
Ax = b, where A is an n × n matrix which is symmetric and
positive definite (s.p.d) and can have a very large condition
number, that is, be ill-conditioned. Such systems arise
typically for near-limit values of some problem parameter.
(Ratio of material coefficients, aspect ratio of the domain,
nearly incompressible materials in elasticity theory, etc.) The
condition number can be additionally very large due to the
size of the matrix A (a small value of the discretization
parameter) and also due to an irregular mesh and/or large
aspect ratios of the mesh in partial differential equation
(PDE) problems.

If the size of the system is not too large one can use
direct solution methods, possibly coupled with an iterative
refinement method.

Let B = LDLT ( or B = L̃L̃T ) be a triangular matrix
or the Cholesky factorization of A. Due to finite precision
computations (say, in single precision) in general B is only an
approximation of A. The iterative refinement method takes
the following form.

Algorithm 1 (Iterative refinement method). Given x(0) = 0
for k = 0, 1, 2, . . ., until convergence

(i) compute r(k) = b− Ax(k),

(ii) solve Bd(k) = rk,

(iii) let x(k+1) = x(k) + d(k), and repeat (i)–(iii).

Frequently, it suffices with one iterative refinement step.
The ability of iterative refinement to produce a more accurate
solution vector depends crucially on how the computation of
the residual vector r(k) in (i) is implemented. A safe way is to
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use double precision for this computation but possibly single
precision in (ii) and (iii). However, as described in [30], if
one rewrites the computation ofAx(k) as a sum of differences,
in some cases it suffices to use single precision in (i) also.

The computational labor is normally dominated by the
initial factorization of A. For large systems this cost can
become too big as it grows in general fast with problem size.
(For an elliptic difference problem on a 3D N × N × N
mesh it grows as O(N 7) for certain band-matrix orderings.
Furthermore, the demand of memory to store the factor
L grows as O(N 5). For certain nested dissection and other
orderings, the complexity is somewhat reduced, however.)

Therefore, iterative solution methods become the ulti-
mate methods of choice. As we have seen in Section 1, the
basic idea behind the iterative solution technique is to use a
cheaper (incomplete) factorization or other approximation B
of A and to compensate for this approximation by repeating
the steps in the iterative refinement method until the residual
is sufficiently small. In addition, to speed up the convergence
of the method, one or more acceleration parameters are
introduced, for instance, (iii) becomes x(k+1) = x(k) + αkd(k)

for certain parameters αk .
By a proper choice of B the number of required iterations

may not be too big while the expense in solving systems with
matrix B may not be larger than the order of some “work
units”, for instance, can correspond to a few actions (matrix-
vector multiplications) of A on a vector. In this way, one can
gain significantly in computational labor and less demand
of memory resources as compared with a direct solver.
Actually, the direct solver can be viewed as an approximate
factorization with the full amount of fill-in allowed, while
as we have seen, in a incomplete factorization method one
controls the amount of fill-in either by using a predetermined
sparsity pattern in L or by allowing a variable pattern, which
depends on some relative drop tolerance. (Such a drop
tolerance is to delete a fill-in entry ai j if there holds |ai j| ≤
ε√aiia j j , j /= i for some ε, 0 < ε < 1. More details can be
found in [82]).

A problem with iterative solution methods for ill-
conditioned systems is that they may stagnate, that is, there
is no further improvement as the method proceeds. This
occurs typically for minimum residual or minimum A-norm
methods. For other type of methods even divergence may
be observed. Another problematic issue is the fact that if
the residual norm has taken a small value, this does not
necessarily mean that the error norm is sufficiently small,
since

∥∥∥x− x(k)
∥∥∥

2
=
∥∥∥A−1A

(
x− x(k)

)∥∥∥
2
≤ ∥∥A−1

∥∥
2

∥∥∥r(k)
∥∥∥

2

= 1
λmin(A)

∥∥∥r(k)
∥∥∥

2
,

(226)

and here λmin(A) takes very small values for ill-conditioned
systems. Hence, even if ‖r(k)‖ is small, ‖x − x(k)‖ may still
be large. For ill-conditioned systems one sees then typically
a reduction of the residual to some limit value while the
errors hardly decay at all. This was illustrated in Section 3.

For studies on the influence of inexact arithmetics, see for
example [83–85].

This situation can be significantly improved by using a
proper preconditioner. Then,

∥∥∥x− x(k)
∥∥∥

2
=
∥∥∥(B−1A

)−1
B−1A

(
x− x(k)

)∥∥∥
2

≤ 1
λmin(B−1A)

∥∥∥r̃(k)
∥∥∥

2
,

(227)

where r̃(k) = B−1A(x − x(k)) = B−1r(k) is the so called pre-
conditioned or pseudo-residual. Here λmin(B−1A) � λmin(A)
with a proper preconditioner. Therefore, the importance of
choosing a proper preconditioner is twofold:

(1) to increase the rate of convergence while keeping the
expense in solving systems with B low, and

(2) to enable a small error norm when the pseudoresid-
ual is small.

Preconditioning methods, such as the modified incom-
plete factoriztion method, multigrid and multilevel methods,
aim at reducing arror components correponding both to
the large eigenvalues with rapidly oscillating components
and the smaller eigenvalues for smoother eigen functions. In
the modified method, this is partly achieved by letting the
preconditioner by exact for a particular smooth component
of the solution, such as for the constant component vector.
It has been shown, see [6, 47] when applied for elliptic
difference problems, that under certain conditions the spec-
tral condition number is reduced from O(h−2) to O(h−1).
In multigrid methods, one works on two or more levels of
meshes where the finer grid component should smooth out
the fast, oscillating components in the iteration error, while
the coarser mesh should handle the smooth components.
Under certain conditions, such methods way reduce the
above condition number to optimal order, O(1), as h → 0.

The multigrid method was first introduced for finite
difference methods in the 1960s by Fedorenko [86], and
Bakhvalov [87], and further developed and advocated by
Brandt in the 1970s, see, for example, Brandt [88]. For finite
elements it has been pursued by, for example, Braess [89],
Hackbusch [90], Bramble et al. [91], Mandel et al. [92],
McCormick [57], Bramble et al. [93] and Bank et al. [94],
among others.

As it turns out, such standard preconditioning methods,
namely (modified) incomplete factorization ((M)ILU), [46,
47], Multigrid (MG) [90], or Algebraic Multilevel Iteration
(AMLI), [95–97], methods may not be efficient in both
and in particular, in the second of the above mentioned
requirements. This might be due to the fact that the smallest
eigenvalue (in the preconditioned system) is caused by some
problem parameter which these methods leave unaffected.
Therefore there is a demand for new types of preconditioners
(or new combinations of already known preconditioners).
To satisfy the above need, two types of preconditioners have
been constructed:

(a) deflation methods,

(b) augmented matrix methods,

which we now describe.
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6.2. Deflation Methods. The deflation technique is based on
a projection matrix. Assume that A has a number of (very)
small eigenvalues, say m̃, 0 < λ1 ≤ λ2 . . . ≤ λm̃, and let
W = {w(i)}, i = 1, . . . , m̃ be their corresponding eigenvectors
(Awi = λiwi). Let V be a rectangular matrix of order n×m,
where m < n (in practice m
 n ) of full rank, where the m
columns of V span a subspace γ, such that Im γ contains the
eigenvectors corresponding to the “bad” subspace W . Hence,
m ≥ m̃.

Lemma 6. Let P = AVA−1
V VT , where AV = VTAV . Then,

the following holds:

(a) P2 = P, that is a projector;

(b) P(AV) = AV ;

(c) (I − P)b = 0 if b ∈ Im(AV);

(d) PTV = V ;

(e) (I − P)A is symmetric and positive definite and has a
nullspace of dimension m.

Proof. Note first that AV is nonsingular since V has a full
rank (= m). The statements follow now by straightforward
computations.

Lemma 6 shows that P is projection matrix which maps
any vector onto AV . Similarly, PT is a projection matrix
which maps Vonto itself. We will use the matrix P in three
slightly different ways to solve ill-conditioned systems

We split first the right-side vector b in two components:

b = Pb + (I − P)b. (228)

(These components are A−1 orthogonal, i.e.,
(Pb)TA−1(I − P)b = 0.) The first splits the computation of
thesolution vector corresponding.

Method 1 (Splitting of the solution vector).

Let

x(0) = VA−1
V VTb. (229)

Then,

Ax(0) = Pb. (230)

Solve

Az = (I − B)b. (231)

The solution x of Ax = b is then

x = x(0) + z. (232)

Here, x(0) and z are A-orthogonal.

Note that Az = b − Ax(0). The matrix AV is normally
of small order and the arising system in (229) can be
solved with relatively little expense using a direct solution
method. Furthermore, the system (231) is well-conditioned
on the solution subspace, because, as follows from part (c) of
Lemma 6, (I − P)b, and hence z do not contain components
of any of the first m “small” eigenvectors wi, i = 1, 2, . . . ,m.
Hence, (231) can be solved by the CG method with a rate
of convergence determined by the effective condition number
λn/λm+1, which is expected to be substantially smaller than
λn/λ1.

However, the method requires exact solution of systems
with AV and for some problems m is not that small. Also,
it is assumed that the projection Pb is computed exactly (or
to a sufficient accuracy), which may be unfeasible in many
applications.

Method 2 (Defect-correction with projectors). In the pres-
ence of round-off errors, x(0) may not be sufficiently
accurate and b − Ax(0) may still contain components in the
“bad” subspace. A defect-correction (iterative refinement)
procedure may then help. Let x(0) = 0 for k = 0, 1, 2, . . ., until
convergence. Compute r(k) = b−Ax(k). SolveAd(k) = b−Ax(k)

as follows:

(i) d(k,0) = VA−1
V VTr(k),

(ii) Az(k) = (I−P)r(k), or Ay(k)=r(k)−Ad(k,0),

(iii) d(k) = d(k,0) +y(k).

Let x(k+1) = x(k)+d(k).
In this method, it normally suffices with few defect-

correction steps.
For some extremely ill-conditioned systems, the imple-

mentation of the defect-correction method as a precondi-
tioning method may be necessary. Note then that as follows
from Lemma 6, (I − P)A is symmetric so the standard
conjugate gradient method can be used.

Method 3 (Preconditioning by a projection matrix). Let
x(0) = VA−1

V VTb. Solve (I−P)Az = (I−P)b, or (I−P)Az =
b− Ax(0) by CG iteration. Let x = z + x(0).

Note that x(0) is contained in the null-space of (I − P)A,
since (I − P)Ax(0) = (I − P)Pb = (P2 − P)b = 0. Here,
the system (I − P)A is well-conditioned on the orthogonal
complement to the null-space and, in addition, the right-
hand-side has no or only small components in the bad
subspace.

Methods 1, 2, and 3 require accurate solution of systems
with the matrix AV . It is a viable step for small values of
m. However, when the dimension of the “bad” subspace of
A is relatively big, it may be too costly. Furthermore, the
iteration Method 3 involves two multiplications with A (one
involved in P and one required to compute Az(k)) at each
iteration step when computing the search direction vectors
and is therefore particularly expensive.

Another issue to comment on is that the above methods
are assumed to move the components of the eigenvectors
for the smallest eigenvalues of A to become exactly zero.
However, this can be sensitive to perturbations and occurs
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only in exact arithmetic. As we have seen, it is a viable
method for small dimensions of the subspace causing the ill-
conditioning but it may be inefficient for larger dimensions.

Deflation methods have been used and analysed by [98–
100], among others.

In the next section and Section 4, we present a method
which move the small eigenvalues to the cluster of bigger
eigenvalues which is much less dependent on having the right
subspace spanned by the columns of V and which do not
require exact solution of systems with AV .

6.3. Augmented Matrix Preconditioning Methods, the Ideal
Case. We now present an alternative method to handle ill-
posed problems. In this method the small eigenvalues are
moved to the cluster of bigger eigenvalues, instead of being
deflated to zero, as in the deflation method. The method is an
extension of the method presented in [101]. The presentation
here is based in [25, 102]. First, we consider B = I +VVT as
a (multiplicative) preconditioner to A.

In this case one must scale the column vectors appearing
in V properly. A method involving an automatic scaling is
based on a projection matrix. Let then

B = I + σVA−1
V VT , AV = VTAV. (233)

Let (λi, vi)
m
i=1 be the eigenpairs of A for the smallest eigenval-

ues, 0 < λ1 ≤ λ2 ≤ · · · λm. If V = [v1, . . . , vm], we get then

λ̃i = λi(BA) =
⎧⎨
⎩
λi + σ , 1 ≤ i ≤ m,

λi, m + 1 ≤ i ≤ n.
(234)

Hence, σ determines how much the smallest eigenvalues
are moved. If λm+1 ≤ λ1 + σ and λm + σ ≤ λn, then
λm+1 ≤ λ̃i ≤ λn, that is, the m smallest eigenvalues have been
moved to the cluster [λm+1, λn] of bigger eigenvalues and
the spectral condition number of BA is κ(BA) = λn/λm+1,
which normally means a significant reduction, compared to
κ(A) = λn/λ1.

The above illustrates what can be achieved in an ideal
case. In practice, the exact eigenvectors {v1, . . . , vm} (or the
subspace spanned by them) are not known. Even if the
eigenvectors are known it is not efficient to use them to form
the matrix V because they are in general not sparse and the
matrix vector multiplications with V will be costly. Hence, in
practice other vectors which are sparse but spans about the
same subspace as the smoothest eigenvectors must be used;
otherwise the expense of the preconditioner would be too
high. We consider therefore more general subspaces spanned
by the column vectors of V . The next lemma will be useful.

Lemma 7. Let A be s.p.d. Then,

P = A1/2V
(
VTAV

)−1
VTA1/2, (235)

is an orthogonal projection, that is, P2 = P and P∗ = P.
Therefore, the only eigenvalues of P are 0 and 1.

Proof. Consider the following

P2 = A1/2V
(
VTAV

)−1
VTA1/2A1/2V

(
VTAV

)−1
VTA1/2

= A1/2V
(
VTAV

)−1
VTA1/2 = P.

(236)

The next theorem shows (what can also be expected) that
the clustering can never get worse for expanding subspaces
spanned by the column-vectors of V , that is, there holds a
monotonicity principle.

Theorem 13 (¡xref ref-type=”bibr” rid=”B97”/¿])). Let A

and Â be s.p.d. matrices of order n×n and letVk be rectangular
matrices of order n × mk, k = 1, 2 such that rankVk = mk ,
k = 1, 2. If ImV1 ⊆ ImV2, then for all i, 1 ≤ i ≤ n the
following inequality holds

λi

((
I +V2

(
VT

2 ÂV2

)−1
VT

2

)
A
)

≥λi
((
I +V1

(
VT

1 ÂV1

)−1
VT

1

)
A
)
.

(237)

Proof. It is readily seen that the proposition holds if F =
V2(VT

2 ÂV2)
−1
VT

2 − V1(VT
1 ÂV1)

−1
VT

1 is negative definite.
But since ImV1 ⊆ ImV2, there exists some matrixQ of order
m2 ×m1 such that V1 = V2Q. Then, with DK = VT

k ÂVk , we
have

F = V2

(
D−1

2 −QD−1
1 QT

)
VT

2

= V2D
−1/2
2

(
I −D−1/2

2 QD−1/2
1 QTD−1/2

2

)
D−1/2

2 VT
2 ,

(238)

where

P ≡ D−1/2
2 QD−1/2

1 QTD−1/2
2 = D−1/2

2 Q
(
QTD2Q

)−1
QTD−1/2

2 ,

(239)

is an orthogonal projector (P2 = P), whose eigenvalues are 0
and 1.

Corollary 3. If ImV1 = ImV2 then I + V2D
−1
2 VT

2 = I +
V1D−1

1 VT
1 .

Proof. In this case, Q in V1 = V2Q is invertible. Thus,
D−1/2

2 Q(QTD2Q)
−1
QTD−1/2

2 = I .

Remark 4. The above corollary shows that the individual
eigenvectors of A are not needed when constructing the
matrix V ; we are rather interested in the subspace spanned
by them.

The most interesting case for us is when ImV ⊃
span {v1, . . . , vm}, where vi are the eigenvalues of A for the
smallest eigenvalues λ1, . . . ,λm. Then, the preconditionerB =
I + σVA−1

V VT moves the smallest eigenvalues λi at least to
λi + σ , where σ is a scaling parameter.
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Theorem 14. Let B = I + σVA−1
V VT and let λ1, . . . ,λm be the

smallest eigenvalues of A. Then, for the eigenvalues of BA there
holds.

λ̃i ≥
⎧⎨
⎩
λi + σ , 1 ≤ i ≤ m

λi, m + 1 ≤ i ≤ n.
(240)

Proof. Let V1 = [v1, . . . , vm], where {vi}m1 are the first m
eigenvalues of A and let V2 = V . Then, Lemma 7 and (234)
show the result.

It may happen that the eigenvalues are moved too far so
that the maximum eigenvalue of BA is much larger that of A.

Theorem 15. Let A be s.p.d. of order n × n and let the
rectangular matrix V of order n × m be defined as V =
[v1, v2, . . . , vm]. Assume that rankV = m. Further, define Ã =
(I + σVA−1

V VT)A, where AV = VTAV . Then,

λmax

(
Ã
)
≤ σ + λmax(A). (241)

Proof. The result follows from the following relations:

λmax

(
Ã
)
≤ λmax(A) + σ sup

xTV
(
VTAVV

)−1
VTx

xTA−1x

= λmax(A) + σ sup
xTA1/2V

(
VTAV

)−1
VTA1/2x

xTx

= λmax(A) + σ ,
(242)

where the last equality follows from Lemma 7

It follows from Theorems 6.3 and 16 that the optimal
value of σ = λm+1, in which case κ(BA) ≤ (λn + σ)/λm+1.
In general, λm+1 may not be known. With σ = λn, we obtain
κ(BA) ≤ (2λn)/λm+1.

The moral we can draw from the above is that the
suggested technique can be a very useful means to reduce
the condition number of a given matrix A if we have
information about the eigenvectors corresponding to the
smallest eigenvalues of A. Since in practice this is hardly ever
the case, a natural step to undertake is to consider not the
individual eigenvectors but the subspace spanned by some
approximation of them.

In the next section, we present a generalized form of
the augmented matrix preconditioner which allows for both
approximate subspaces and the replacement of AV by a
simpler matrix BV .

7. Preconditioners with an Approximate
Subspace Correction Term

The preconditioner presented in the previous subsection
will now be extended to include an approximate subspace
correction term.

We replace first AV with a possibly simpler matrix BV .
The resulting eigenvalue bounds are found in the next
theorem.

Theorem 16. Let A be s.p.d. Define the preconditioner B as
B = I + σVB−1

V VT ,where,σ > 0, ImV ⊇ span {v1, . . . , vm},
where vi are the eigenvectors of A for the smallest eigenvalues
and BV is an m × m s.p.d. approximation of AV . Then, the
eigenvalues λ(BA) of BA are bounded as follows:

(a)

min
{
σλmin

(
B−1
V AV

)
+ λ1,λm+1

}

≤ λ(BA) ≤ σλmax
(
B−1
V AV

)
+ λmax(A).

(243)

(b) With σ = λmax(A)/λmax(B−1
V AV ), we have

min
{
λmax(A)/κ

(
B−1
V AV

)
+ λ1,λm+1

} ≤ λ(BA) ≤ 2λmax(A).
(244)

Proof. The minimal eigenvalue of BA can be estimated as

λmin(BA) =inf
x

{
xT
(
I + σVB−1

V VT
)

x
xTA−1x

}

=inf
x

{
xTx

xTA−1x
+ σ

xTVB−1
V VTx

xTVA−1
V VTx

· xTVA−1
V VTx

xTA−1x

}

=inf
x

{
xTx

xTA−1x
+σλmin

(
B−1
V AV

)xTVA−1
V VTx

xTA−1x

}
.

(245)

Here, infx xTx/xTA−1x = λ1 and inf x;VTx=0 xTx/xTA−1x =
λm+1.

The lower bound equals the minimal eigenvalue of the
matrix B̂A, where

B̂ = B̂(V) ≡ I + σ̂V A−1
V VT

σ̂ = σλmin
(
N−1
V AV

)
.

(246)

By Theorem 14, we have with V1 = span {v1, . . . , v+m} and
V2 a matrix satisfying ImV2 ⊇ ImV1, that

λi
(
B̂(V2)A

)
≥ λi

(
B̂(V1)A

)
≥ min

{
λ1 + σ̂ ,λm+1

}
(247)

and, in particular, for V2 = V

λmin(BA) ≥ min(λ1 + σ̂ ,λm+1)

= min
{
λ1 + σλmin

(
B−1
V AV

)
,λm+1

} (248)

which is the lower bound in part (a). The upper bound
follows in a similar way. Since there is no upper bound
assumed on rank V , and since supx,VT x=0 xTx/xTA−1x ≤
λmax(A), we obtain

λmax(BA) ≤ σλmax
(
B−1
V AV

)
+ λmax(A). (249)

If we let σ = λmax(A)/λmax(B−1
V AV ), we get the stated lower

bound in (b) and λmax(BA) ≤ 2λmax(A).
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Since normally λmax(A) and λmax(B−1
V AV ) are readily

estimated, the given choice of σ is viable. It may increase the
maximal eigenvalue with a factor 2, which is acceptable.

Corollary 4. If κ(B−1
V AV ) ≤ λmax(A)λm+1, then

κ(BA) ≤ 2λmax(A)
λm+1

, (250)

that is, the upper bound, coincides with the bound where BV =
AV . In particular, if κ(AV ) ≤ λmax(A)/λm+1, then one can
simply let BV = I or

BV = diag(AV ). (251)

Hence, seen that the matrix AV in the preconditioner can
be replaced with a simpler matrix BV where the action of B−1

V

is cheap, without deteriorating the eigenvalue bounds.
It still remains to weaken the assumption

ImV ⊇ span{v1, . . . vm}, (252)

as this is not easy to satisfy in practice. Due to space
limitations this will not be presented here. Instead, refer to
[56].

8. Krylov Subspace Methods for
Singular Systems

Singular systems, that is, with a nontrivial kernel, arise in
various applications, such as in boundary value problems
with pure Neumann type boundary conditions imposed on
the whole boundary. Nullspaces of large dimension may arise
in finite element methods using edge element methods, see,
for example, [104] and in the analysis of Markov chains
when stationary probability vectors of stochastic matrices are
computed, see [105, 106], see also [107].

A singular system does not always have a solution and it is
more appropriate to consider the least squares problem: find
x ∈ Rn such that ‖b − Ax‖ ≤ ‖b − Ax‖ for all x ∈ Rn. We
recall that a basic iterative solution method to solve a linear
system, either has the form

xk+1 = xk + τkrk, rk = b− Axk, k = 0, 1, . . . ,
(253)

or the preconditioned form

solve Bδk = τkrk, (254)

and update

xk+1 = xk + δk, k = 0, 1, . . . . (255)

Here, B is a preconditioner to A. Similarly, as we have seen,
more involved methods, such as (generalized) CG-methods
(GCG, GMRES, GCR, etc.) are based on approximations
taken from a Krylov subspace

K
(
A, r0, k

) =
{

r0,Ar0, . . . ,Akr0
}

or K
(
B−1A, r0, k

)
.

(256)

In general, they are based on a minimum residual approach
where, at each iteration step, we compute an updated
solution that satisfies the best approximation property

min
x∈K(A,r0,k)

‖b− Ax‖ or min
x∈K(B−1A,r0,k)

‖b− Ax‖. (257)

We will show that the convergence of such iterative
solution methods can stall, or suffer a breakdown, when
applied to certain singular systems. For the analysis, we
will use the following properties of relevant subspaces for
matrix A. In this generality, they can be stated for rectangular
matrices.

Definition 2. Let A ∈ Rm×n. Then R(A) of dimension ≤ n,
called the range of A, is the subspace spanned by the column
vectors a. j that is

y ∈R(A) ⇐⇒ y =
n∑

j=1

αja. j . (258)

Definition 3. N (A), of dimension ≤ n, is the nullspace of A,
that is, the subspace of vectors v ∈ Rn s.t. Av = 0.

By a classical result (see e.g., [6]), it holds R(A)⊥ =
N (AT)

Definition 4. A linear system Ax = b is called consistent if
b ∈ R(A) and inconsistent otherwise. If Ax = b is consistent,
there exists a solution. Cle arly, any system with a nonsingular
matrix A is consistent.

To provide a general method, applicable for all types of
systems, we will use a least squares type of method, that is
determine an approximate solution to x s.t. minx‖b − Ax‖
(or, similarly, a preconditioned form).

In practice, the approximations are mostly computed by
a Krylov subspace method, where at each step a solution xk

is computed such that

∥∥∥b− Axk
∥∥∥ ≤ ‖b− Ax‖, ∀x ∈K

(
A, r0, k

)
, (259)

or a preconditioned form of the method. As the next
Theorem shows even if the system is consistent, a breakdown
can occur.

Theorem 17. Any minimum residual Krylov subspace method
may suffer a breakdown for some initial vector if and only if
R(A)∩N (A) contains a nontrivial vector.

Proof. The sufficiency follows since if R(A) ∩ N (A) /={0},
there exists a nonzero vector x ∈ N (A) which is also in
R(A). Then, at some stage k, there exists a vector rk = y,
where Ay = x, x ∈ N (A). Hence, Ark = Ay = x, which
implies A2rk = Ax = 0, so a zero vector arises in the
Krylov subspace at some stage. This means that convergence
stalls. On the other hand, R(A) ∩ N (A) = {0} implies
the existence of nonzero vectors Akr0 of any order in the
Krylov subspace, which implies that there is an improved
approximate solution for each higher stage k + 1.
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Example 8. Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 −1 0

−1 2 −1 0

1/2 1/2 −1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (260)

Here, Ae = 0, eT = (1, 1, , 1, 0), that is, e ∈ N (A).
Furthermore, there is a solution of Ay = e, for instance

y = 1/2

⎡
⎢⎢⎢⎢⎢⎢⎣

3

3

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (261)

Hence, e ∈ R(A)∩N (A), where e /= 0. Since A2r0 = 0, with
y as initial vector, the Krylov subspace for the system Ax = 0
stalls at the second step.

Corollary 5. (a) If N (A) = N (AT), in particular if A
is symmetric, then minimal residual type methods-based the
Krylov subspace converges.

(b) More generally, this holds if A is a (H−) normal matrix.

Proof. (a) Since R(A)⊥ = N (AT), it holds

R(A)⊥ = N (A) and, hence

R(A)∩N (A) = R(A)∩ R(A)⊥ = {0
}
.

(262)

(b) For a normal matrix, there exists a unitary matrix U
that diagonalizes A, that is

UTAU = D. (263)

Hence,

UTATU = DT = D. (264)

Therefore, if AUx = Dx = 0 for some x /=0, then also
ATUx = Dx = 0, so

Ux ∈ N (A), Ux ∈ N
(
AT
)

, (265)

for any such vector x. Since U is nonsingular, this implies
N (A) = N (AT).

Remark 5. Corollary 5 can be extended to H-normal matri-
ces, that is matrices for which A commutes with its H-
adjoint,

A′ = H−1A∗H , (266)

for some Hermitian matrix H see, for example, [6].
A remedy to avoid breakdowns for matrices A for which

the vector space V = R(A) ∩N (A) is nontrivial, is to work
in a subspace orthogonal to V. This can be achieved by use
of the augmented subspace projection method in Section 6.
This method works also to avoid situations, where R(A) ∩
N (A) contains eigenvectors to A corresponding to nearly
zero eigenvalues, causing a near breakdown or, in finite
precision computations, an actual breakdown. For further
comments on near breakdowns, see, for example, [83–85].

9. Concluding Remarks

Some milestones in the development iterative solutions
methods have been presented. By the combination of
improved methods and the developments of computer
hardware one can presently solve problems with a degree of
freeadoms nearly billionfold compared to that in the early
ages of the computer age.

There remains still, however, very difficult problems
such as in multiphysics and heterogeneous media problems
and various forms of inverse problems, which need further
improvement of solution methods.

Some problems, such as those arising in constrained
optimization and mixed finite element methods, lead to
matrices on saddle pointform. Due to space limitations,
they have not been discussed in this paper, however, see,
for example, [108]. In the last centuries, much work has
been devoted to multigrid, algebraic multigrid and multilevel
iteration methods which have shown an optimal order of
performance for many types of problems, for example see
[58]. Also, domain decomposition methods which go back to
the Schwarz alternating decomposition method, have shown
developments, see, for example, [109–112]. For an early
survey of domain decomposition methods, see [113]. For
the same reason, they could not be discussed in this paper.
Much work has also been developed to parallelization aspects
of solution methods. This topic deserves a separate survey
article and has also not been discussed in this paper.
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aufzulösen,” Abhandlungen der Bayerischen Akademie
der Wissenschaften. Mathematisch-Naturwissenschaftliche
Abteilung, vol. 11, pp. 81–108, 1814.

[14] S. P. Frankel, “Convergence rates of iterative treatments of
partial differential equations,” Mathematical Tables and Other
Aids to Computation, vol. 4, pp. 65–75, 1950.

[15] D. M. Young, Iterative methods for solving partial difference
equations of elliptic type, Doctoral Thesis, Harward Univer-
sity, 1950, Cambridge, MA.

[16] D. M. Young, Iterative Solution of Large Systems, Academic
Press, Orlando, Fla, USA, 1971.

[17] O. Axelsson, H. Lu, and B. Polman, “On the numerical radius
of matrices and its application to iterative solution methods,”
Linear and Multilinear Algebra, vol. 37, pp. 225–238, 1994.

[18] O. Axelsson, “Solution of linear systems of equations:
iterative methods,” in Sparse Matrix Techniques, V. A. Barker,
Ed., LNM no. 572, pp. 1–51, Springer, Berlin, Germany, 1977.

[19] G. H. Golub and R. S. Varga, “Chebyshev semi-iterative
methods, successive overrelaxation iterative methods, and
second-order Richardson Iterative Methods—part I and II,”
Numerische Mathematik, vol. 3, pp. 147–168, 1961.

[20] D. M. Young, “Second degree iterative methods for the
solution of large linear systems,” Journal of Approximation
Theory, vol. 5, pp. 137–148, 1972.

[21] R. Freund, “On conjugate gradient type methods and
polynomial preconditioners for a class of complex non-
Hermitian matrices,” Numerische Mathematik, vol. 57, pp.
285–312, 1990.

[22] R. Freund, “Conjugate gradient-type methods for linear
systems with complex symmetric matrices,” SIAM Journal
on Scientific and Statistical Computing, vol. 13, pp. 425–448,
1992.

[23] B. Fischer and R. Freund, “Chebyshev polynomials are not
always optimal,” Journal of Approximation Theory, vol. 65, no.
3, pp. 261–272, 1991.

[24] T. A. Manteuffel, “The Tchebychev iteration for nonsymmet-
ric linear systems,” Numerische Mathematik, vol. 28, no. 3, pp.
307–327, 1977.

[25] M. R. Hestenes and E. Stiefel, “Methods of conjugate
gradients for solving linear systems,” Journal of Research of the
National Bureau of Standards. Section B, vol. 49, pp. 409–436,
1952.

[26] G. H. Golub and D. P. O’Leary, “Some history of the
conjugate gradient and Lanczos alghorithms: 1948–1976,”
SIAM Review, vol. 31, pp. 50–102, 1989.

[27] J. K. Reid, “The use of conjugate gradients for systems of
linear equations posessing ”Property A”,” SIAM Journal on
Numerical Analysis, vol. 9, pp. 325–332, 1972.

[28] P. Concus, G. H. Golub, and D. P. O’Leary, “A generalized
conjugate gradient method for the numerical solution of
elliptic partial differential equations,” in Sparse Matrix
Computations, J. R. Bunch and D. J. Rose, Eds., pp. 309–332,
Academic Press, New York, NY, USA, 1976.

[29] O. Axelsson, “Optimal preconditioners based on rate of
convergence estimates for the conjugate gradient method,” in

Lecture Notes of IMAMM ’99, S. Mika and M. Brandner, Eds.,
pp. 5–56, University of West Bohemia in Pilsen, 1999.

[30] O. Axelsson and V. A. Barker, Finite Element Solution of
Boundary Value Problems. Theory and Computations, Aca-
demic Press, Amsterdam, The Netherlands, 1984.

[31] O. Axelsson, “Condition numbers for the study of the
rate of convergence of the conjugate gradient method,” in
Iterative Methods in Linear Algebra II, S. Margenov and P. S.
Vassilevski, Eds., pp. 3–33, IMACS, NJ, USA, 1999.

[32] O. Nevanlinna, Convergence of Iterations for Linear Equations,
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