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For single-carrier transmission over delay-spread multi-input multi-output (MIMO) channels, the computational complexity
of the receiver is often considered as a bottleneck with respect to (w.r.t.) practical implementations. Multi-antenna interference
(MAI) together with intersymbol interference (ISI) provides fundamental challenges for efficient and reliable data detection. In
this paper, we carry out a systematic study on the interference structure of MIMO-ISI channels, and sequentially deduce three
different Gaussian approximations to simplify the calculation of the global likelihood function. Using factor graphs as a general
framework and applying the Gaussian approximation, three low-complexity iterative detection algorithms are derived, and their
performances are compared by means of Monte Carlo simulations. After a careful inspection of their merits and demerits, we
propose a graph-based iterative Gaussian detector (GIGD) for severely delay-spread MIMO channels. The GIGD is characterized
by a strictly linear computational complexity w.r.t. the effective channel memory length, the number of transmit antennas, and the
number of receive antennas. When the channel has a sparse ISI structure, the complexity of the GIGD is strictly proportional to
the number of nonzero channel taps. Finally, the GIGD provides a near-optimum performance in terms of the bit error rate (BER)
for repetition encoded MIMO systems.

1. Introduction

In single-carrier mobile transmission systems not exploiting
a guard interval, there are two sources of intersymbol
interference (ISI): static ISI due to pulse shaping and receive
filtering, and dynamic ISI due to the time-varying delay
spread of the physical channel. Static ISI degrades the
receiver performance, but can be avoided or limited by
proper signal design. Dynamic ISI is particularly severe if the
delay spread exceeds the symbol period, which is likely the
case for high-rate data transmission. Dynamic ISI, however,
provides a diversity gain in the time domain (fast fading)
and the frequency domain (multipath fading). In addition
to ISI, MIMO-ISI channels are characterized by another
type of interference, namely, multi-antenna interference
(MAI), which is caused by the simultaneous transmission of
data streams via multiple antennas. MAI together with ISI
manifests a fundamental challenge for efficient and reliable
data detection. On the other hand, MAI provides a diversity
gain in the spatial domain, from an information theoretical
point of view.

There are two obvious facts that impede a practical
implementation of high-rate single-carrier transmission over
MIMO-ISI channels. First, with increasing signal band-
width the effective channel memory length increases, which
degrades the system performance in case of linear or
decision-feedback equalization. Second, state-space-based
detectors, such as the Viterbi algorithm [1, 2] and the BCJR
algorithm [3], provide an excellent performance since they
benefit from the diversity gain of dynamic ISI and MAI,
but their computational complexity is typically prohibitive.
Therefore, multi-carrier transmission schemes, particularly
orthogonal frequency-division multiplexing (OFDM) [4],
are often applied to circumvent the problem of ISI. An
important question is if it is truly impossible to implement
a single-carrier transmission system with reasonable per-
formance and complexity for MIMO-ISI channels. We will
try to answer this question by proposing a new detection
algorithm, called graph-based iterative Gaussian detector
(GIGD).

As the detection complexity of MIMO-ISI channels is
mainly caused by multi-antenna interference and intersym-
bol interference, we will first carry out a systematic study on
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the interference structure and try to find the opportunities of
easy treatment. Based on the knowledge obtained from this
study, we deduce three different Gaussian approximations,
namely, joint Gaussian approximation (JGA), grouped joint
Gaussian approximation (GJGA), and independent Gaussian
approximation (IGA), to simplify the calculation of the
global likelihood function and sequentially reduce the data
detection complexity. The JGA is already well known [5–10],
while the GJGA and the IGA are new approaches proposed
by the authors. Corresponding to these three Gaussian
approximations, three low-complexity iterative parallel soft
interference cancellation [5, 11] algorithms, namely, joint
Gaussian detector (JGD), grouped joint Gaussian detec-
tor (GJGD), and graph-based iterative Gaussian detector
(GIGD), will be described by utilizing factor graphs [12, 13]
as a general framework. From the JGD to the GJGD, and
from the GJGD to the GIGD, the detection complexity is
reduced dramatically in each step.

For severely delay-spread MIMO-ISI channels, we pro-
pose the GIGD as a promising solution. Applying the
independent Gaussian approximation, the GIGD has a
computational complexity strictly linear w.r.t. the number of
nonzero channel taps, the number of transmit antennas, and
the number of receive antennas. Meanwhile, the performance
loss incurred by the independent Gaussian approximation
can be well compensated by using a repetition code. More
importantly, the GIGD shows a satisfying capability in
exploiting the frequency/time/space diversity provided by the
MIMO-ISI fading channels.

The remainder of this paper is organized as follows.
Section 2 introduces a conventional output-oriented channel
model as well as a symbol-oriented channel model. Section 3
provides a deep insight into the interference structure of
MIMO-ISI channels, and Section 4 gives a brief introduction
on factor graphs and message passing algorithms. Section 5
revises the known joint Gaussian detector, Section 6 derives
a grouped joint Gaussian detector, and Section 7 proposes a
graph-based iterative Gaussian detector. Numerical results by
means of Monte Carlo simulations are provided in Section 8
and Section 9 to assess and compare the performance of the
three Gaussian detectors. Finally, conclusions are drawn in
Section 10.

2. Channel Model

In this section, we will first introduce a conventional MIMO-
ISI channel model, and then convert it into a symbol-
oriented channel model to facilitate the mathematical deriva-
tion of the new algorithms.

2.1. Output-Oriented Channel Model. The equivalent
discrete-time model of a MIMO-ISI channel (including
transmit and receive filters, physical channel and symbol-
rate sampling) can be written in complex baseband notation
as

yn[k] =
NT∑

m=1

L∑

l=0

hln,m · xm[k − l] +wn[k], 1 ≤ n ≤ NR, (1)

where NR denotes the number of receive (Rx) antennas,
NT the number of transmit (Tx) antennas, L the effective
memory length of all subchannels, and k ∈ {0, 1, . . . ,K − 1}
the discrete time index with K denoting the block length.
yn[k] ∈ C is the channel output sample at the nth Rx antenna
at time index k, and xm[k] is the channel input symbol at
the mth Tx antenna at time index k. hln,m ∈ C marks the lth
tap of the subchannel connecting the nth Rx antenna and the
mth Tx antenna. wn[k] represents a complex additive white
Gaussian noise (AWGN) sample at the nth Rx antenna at
time index k with zero mean and variance σ2

w. By convention,
the single-sided noise spectral density in the passband is
denoted by N0. Noting that wn[k] is a complex noise sample,
we have σ2

w = N0/2 + N0/2 = N0. Throughout this paper,
the signal-to-noise ratio per info bit will be defined as Eb/N0,
where Eb stands for the energy used for transmitting one info
bit. In case of coded transmission, we have Eb = Es/R with
Es

.= E{|xm[k]|2} denoting the energy used for transmitting
one symbol and R denoting the coding rate.

We assume that all channel taps are constant within
each data burst while varying independently from burst
to burst. Moreover, we assume that the fading processes
of channel taps all have the same average power and are
mutually independent. This equal delay power profile is
often used for the purpose of equalizer test, for example,
in the 3GPP GSM standard, since it is the most challenging
case for linear equalization. Nevertheless, we will show that
low-complexity high-performance data detection is in fact
possible for this type of MIMO-ISI channel, by means of the
receiver algorithm proposed in this paper.

If we take a second look at (1), we may recognize that
it is actually an output-oriented channel model, that is, this
channel model explains how a channel output sample is
formed given multiple channel inputs. Such kind of channel
model is convenient to derive state-space-based detection
algorithms, but inconvenient for the derivation of factor-
graph-based detection algorithms, which requires a channel
model that explicitly states the information spread of a data
symbol over multiple channel outputs.

2.2. Symbol-Oriented Channel Model. Let us consider an
arbitrary data symbol xm[k]. Due to multiple Rx antennas
and delay spread, there will be in total NR(L + 1) channel
outputs containing the information of xm[k]. From now on,
we call these channel outputs the observations of symbol
xm[k]. To facilitate the following mathematical elaboration,
we collect the observations of xm[k] into a matrix

Y[k] =

⎡
⎢⎢⎢⎢⎢⎣

y1[k] y1[k + 1] . . . y1[k + L]

y2[k] y2[k + 1] . . . y2[k + L]
...

...
. . .

...
yNR [k] yNR [k + 1] . . . yNR [k + L]

⎤
⎥⎥⎥⎥⎥⎦

(2)

which may be termed the observation matrix of xm[k]. Note
that Y[k] is shared by all xm[k] for m = 1, 2, . . . ,NT. Hence,
there is no necessity for Y[k] to have a subscript m making
this distinction.
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Figure 1: Relationship between a data symbol and one of its
observations.

Revisiting (1), we find that the relationship between
xm[k] and one of its observations yn[k + l] (1 ≤ n ≤ NR,
0 ≤ l ≤ L) can be written as

yn[k + l] =
NT∑

i=1

L∑

j=0

h
j
n,ixi

[
k + l − j

]
+wn[k + l]

= hln,m xm[k] +
L∑

j=0, j /= l
h
j
n,m xm[k + l − j]

︸ ︷︷ ︸
ISI

+
NT∑

i=1,i /=m

L∑

j=0

h
j
n,ixi[k + l − j]

︸ ︷︷ ︸
MAI

+wn[k + l]︸ ︷︷ ︸
AWGN

.

(3)

Defining the summation of ISI, MAI, and AWGN as an
effective noise term vk,l

n,m, the relationship between xm[k] and
yn[k + l] can be simplified as

yn[k + l] = hln,mxm[k] + vk,l
n,m, (4)

c.f. Figure 1. Combining (2) and (4), we obtain the following
symbol-oriented channel model:

Y[k] = Hmxm[k] + Vk
m, (5)

with

Hm =

⎡
⎢⎢⎢⎢⎢⎣

h0
1,m h1

1,m . . . hL1,m

h0
2,m h1

2,m . . . hL2,m
...

...
. . .

...
h0
NR,m h1

NR,m . . . hLNR,m

⎤
⎥⎥⎥⎥⎥⎦

Vk
m =

⎡
⎢⎢⎢⎢⎢⎢⎣

vk,0
1,m vk,1

1,m . . . vk,L
1,m

vk,0
2,m vk,1

2,m . . . vk,L
2,m

...
...

. . .
...

vk,0
NR,m vk,1

NR,m . . . vk,L
NR,m

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

being the channel matrix of the mth Tx antenna and the
effective noise matrix in Y[k] w.r.t. xm[k], respectively.

With this new channel model, it is clear that all infor-
mation about xm[k] that we can extract from the channel
outputs is fully represented by the following global likelihood
function:

p(Y[k] | xm[k]) = p
(

Vk
m = Y[k]−Hmxm[k]

)
. (7)

Now, the question is how to calculate this likelihood function
in an efficient manner. According to (7), the key for this
task is the probability density function (PDF) of the effective
noise matrix, that is, p(Vk

m). As a matter of fact, the
main differences between the three Gaussian detectors to be
described are in their way of dealing with p(Vk

m).

3. Statistical Properties of
the Effective Noise Matrix

From (3), (4), and (5), we see that the effective noise matrix
Vk
m consists of multi-antenna interference, intersymbol

interference, and additive noise samples. Due to the large
amount of variables involved in Vk

m, an exact calculation of
p(Vk

m) typically incurs a prohibitive complexity. Therefore,
reasonable approximations are necessary to make things
easier. In this section, we will carefully study the statistical
properties of the effective noise matrix and try to find a way
towards complexity reduction.

3.1. Distribution of Effective Noise Samples. Noting that each
effective noise sample vk,l

n,m is a sum of NT(L+ 1) independent
random variables, its probability density function may be
approximated by a complex Gaussian distribution:

p
(
vk,l
n,m

)
≈ 1
πσ2

v
exp

⎛
⎜⎝−

∣∣∣vk,l
n,m − μv

∣∣∣
2

σ2
v

⎞
⎟⎠, (8)

where μv and σ2
v are defined as

μv
.= E

{
vk,l
n,m

}
, σ2

v
.= E

{∣∣∣vk,l
n,m − μv

∣∣∣
2
}
. (9)

(Here, we neglect the correlation between the real part and
the imaginary part. Concerning this issue, interested readers
may refer to [7].) According to the rule of thumb, as long as
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Figure 2: Average magnitude of correlation coefficient between
effective noise samples, NT = NR = 4, L = 4, BPSK mapping, and
Eb/N0 = 4 dB.

NT(L + 1) ≥ 12 holds, the accuracy of (8) is satisfying. This
approximation is often called Gaussian approximation, and
its feasibility in the scenario of MIMO-ISI channels has been
proven in the available literature [6, 8, 9].

3.2. Dependence between Effective Noise Samples. Due to
more or less common sources of randomness, the elements
of Vk

m are in general statistically dependent on each other.
However, it is so far unclear whether this dependence is
strong or weak. In the following, we will carry out some
numerical measurements to obtain a deeper insight into this
issue. Many previous works [6–10] show that p(Vk

m) can be
well approximated by a joint Gaussian distribution, as long
as the product NT(L + 1) is large enough. Besides, it is well
known that two jointly Gaussian distributed variables are
independent if they are uncorrelated, and their dependence
structure is completely defined by the correlation coefficient.
Therefore, by measuring the correlation between the ele-
ments of Vk

m, we will be able to get a rough impression on
the dependence between the elements of Vk

m.
First, we define that

v = [
v1, v2, . . . , vQ

]T .= vec
{

Vk
m

}
, (10)

with Q
.= NR(L + 1). vec{·} denotes the column stacking

operator and (·)T denotes the matrix/vector transpose
operator. Since for a block-fading channel the statistics of
Vk
m do not change with m and k, the subscript m and the

superscript k are omitted in v. Next, we define the magnitude
of the correlation coefficient between two effective noise
samples as

ϕi, j
.=

∣∣∣∣E
{(
vi − μvi

)(
vj − μvj

)∗}∣∣∣∣

σviσvj
, (11)

where (·)∗ denotes complex conjugate. Since ϕi, j is in fact a
function of the random channel taps, we further define

φi, j
.= E

{
ϕi, j

}
, (12)

where the expectation is taken over random realizations of
channel taps. Last, we collect φi, j into a matrix

Φ
.=

⎡
⎢⎢⎢⎢⎢⎣

φ1,1 φ1,2 . . . φ1,Q

φ2,1 φ2,2 . . . φ2,Q

. . . . . .
. . . . . .

φQ,1 φQ,2 . . . φQ,Q

⎤
⎥⎥⎥⎥⎥⎦
. (13)

Clearly, the entries on the main diagonal of Φ will always
be 1, because these entries are the magnitudes of autocor-
relation coefficients. For entries not on the main diagonal of
Φ, their values reflect the strongness of correlation between
effective noise samples and sequentially the strongness of
dependence between effective noise samples.

Figure 2 demonstrates the measured values of Φ in a
BPSK system with independent Rayleigh fading channel taps
and an equal delay power profile. Observing Figure 2, we
see that the values of φi, j(i /= j) are small, which means
that the correlation between the elements of Vk

m is actually
very weak. As a matter of fact, the correlation between
effective noise samples drops steadily as the productNT(L+1)
increases [14]. This observation delivers a good message: it
may be feasible to partially or even fully neglect the mutual
dependence between the effective noise samples, for the sake
of complexity reduction. Certainly, the detailed dependence
structure of effective noise samples will be different from
Figure 2 if one uses another type of channel delay power
profile. However, the contour of Figure 2 holds in general.

4. Factor Graph and Message Passing

Before specific algorithm derivation, we briefly revisit the
concept of factor graphs and message passing.

4.1. Factor Graphs and Factorization. A factor graph is a type
of bipartite graph which visualizes the factorization of certain
global functions object to maximization or minimization. To
easily understand it, let us consider a simple example. Sup-
pose that we have a BPSK symbol x with three observations:

y1 = x + n1, y2 = x + n2, y3 = x + n3, (14)

where n1, n2, and n3 are additive noise terms. Assuming that
no a priori information is available for x, an optimal detector
tries to maximize the global likelihood function according to

x̂ = arg max
x̃∈{±1}

{
p
(
y1, y2, y3 | x̃

)}
. (15)

If n1, n2, and n3 are mutually independent, we may factorize
the above global likelihood function into a product of local
likelihood functions:

p
(
y1, y2, y3 | x

) = p
(
y1 | x

)
p
(
y2 | x

)
p
(
y3 | x

)
, (16)

which can be visualized by the factor graph given in Figure 3,
where a circle represents a symbol node and a square box
represents an observation node.
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Figure 3: A symbol node connected with three observation nodes.
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Figure 4: Message exchange at different nodes.

4.2. Iterative Message Passing Algorithms. Given a factor
graph, the task of variable estimation can be accomplished
by combining and exchanging the messages (knowledge)
from various sources over this probabilistic network. Such
an algorithm is often called an iterative message passing
algorithm. For message passing over factor graphs, only
extrinsic information should be exchanged and propagated.
Although different type of nodes often apply different type
of message processing operations, this rule must be carefully
followed.

4.3. Message Exchange at Symbol Nodes. For binary variables,
it is often convenient to use log-likelihood ratios (LLRs).
Define that

LLRi
.= ln

p
(
yi | x = +1

)

p
(
yi | x = −1

) , (17)

the message exchanging at a BPSK symbol node proceeds as
Figure 4(a). The underlying principle is that LLR messages
from independent observations are additive. In practice,
LLRsum

.= ∑
i LLRi is first calculated, then each new message

is obtained as (LLRsum−LLRi). Consequently, the complexity
of this operation is always proportional to the amount of
edges diverging from this symbol node.

4.4. Message Exchange at Observation Nodes. Considering
an observation node connected with three BPSK symbols,
the message exchange proceeds as illustrated in Figure 4(b),
where f (·) denotes a certain message combining function,

often called a message update rule. Different from the
situation at symbol nodes, here message combining can no
longer be accomplished by a simple linear addition. As a
matter of fact, f (·) is the major source of complexity in
a graph-based detection algorithm, and hence will be the
object of simplification in the remaining part of this paper.

5. Joint Gaussian Detector

According to Section 3, the elements of Vk
m are roughly

Gaussian distributed, and they are in general dependent on
each other, although weakly. Hence, a straightforward way
to calculate p(Vk

m) is to approximate the elements of Vk
m as

jointly Gaussian distributed. This approach is usually termed
joint Gaussian approximation (JGA), and the algorithm
based on this approach is called joint Gaussian detector
(JGD), which has been known for years [6–10]. In this
section, we will give a clean mathematical derivation of the
JGD (For the sake of simple mathematical expression, BPSK
mapping is assumed in the rest of the paper.).

5.1. Joint Gaussian Approximation. Using the symbol-
oriented channel model (5), the joint Gaussian approxima-
tion can be written as

p
(

Vk
m

)
≈ 1

πQ|Σ|Q exp
(
−(v − µ

)H
Σ−1(v − µ

))
(18)

with

v
.= vec

{
Vk
m

}
, µ

.= E{v},

Σ
.= E

{(
v − µ

)(
v − µ

)H}, Q
.= NR(L + 1).

(19)

Note that v is a Q × 1 column vector. Therefore, the order of
the covariance matrix Σ is Q = NR(L + 1). In the literature,
however, this covariance matrix usually has an order NRK ,
where K is the burst length, due to using an output-oriented
channel model. The concept of sliding windows is introduced
in [6] in order to reduce this order from NRK to NR(L + 1).
Nevertheless, with the symbol-oriented channel model, it is
clarified that there is in fact no reason for the order of Σ to be
related to the burst length.

5.2. Factor Graph with Joint Gaussian Approximation. Apply-
ing the joint Gaussian approximation, we admit the mutual
dependence between the elements of Vk

m, and hence the
PDF p(Vk

m) as well as the global likelihood function
p(Y[k]|xm[k]) will not be factorizable at all. We also notice
that the observation matrices for neighboring data symbols,
namely, Y[k], Y[k + 1], . . . , Y[k + L], partially overlap with
each other. For these two reasons, the factor graph of a
MIMO-ISI channel will look like Figure 5, where Y denotes
the matrix which collects all channel outputs within the
current data burst. No factorization exists and also no cycles
are present.
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Y

Figure 5: Factor graph of a MIMO-ISI channel with joint Gaussian
approximation, NT = 2.

5.3. Message Update Rule at Observation Node. Revisiting (7)
and applying (18), the message from an observation node to
a symbol node can be calculated as

LLR(xm[k]) = ln
p(Y[k] | xm[k] = +1)
p(Y[k] | xm[k] = −1)

= −(v1 − µ
)H
Σ−1(v1 − µ

)

+
(

v2 − µ
)H
Σ−1(v2 − µ

)

(20)

with

v1 = vec{Y[k]−Hm}, v2 = vec{Y[k] + Hm}. (21)

µ and Σ, covering the statistical properties of the effective
noise matrix Vk

m, are calculated according to (19), utilizing
the incoming LLR messages from all relevant symbol nodes.
Due to limited space, we would like to refer interested readers
to [6] for a detailed description of this calculation.

5.4. Computational Complexity. The computational com-
plexity of (20) mainly comes from the inversion of the
covariance matrix Σ. Noting that (20) needs to be calculated
for NT data symbols per time index and matrix inversion is
an operation with complexity cubic in the matrix order, we
have

O(JGD) ∝ NTNR
3(L + 1)3. (22)

This complexity is much lower than that of the BCJR
algorithm, but still is a considerable problem whenever the
system possesses many Rx antennas or the channel is severely
delay-spread.

6. Grouped Joint Gaussian Detector

In this section, we introduce a grouped joint Gaussian
approximation (GJGA) of p(Vk

m), which brings a significant
complexity reduction w.r.t. the joint Gaussian approxima-
tion.

6.1. Grouped Joint Gaussian Approximation. From Figure 2
we see that the average magnitude of correlation coefficient
between vk,i

n1,m and vk,i
n2,m is constant for all n1 /=n2, while the

average magnitude of correlation coefficient between vk,i
n,m

and v
k, j
n,m drops steadily as the distance (i- j) increments. This

observation inspires us for a new approximation of p(Vk
m)

(Initial work has been presented in [15].). As illustrated in
the following expression:

Vk
m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vk,0
1,m vk,1

1,m · · · vk,L
1,m

vk,0
2,m vk,1

2,m · · · vk,L
2,m

...
...

. . .
...

vk,0
NR,m vk,1

NR,m · · · vk,L
NR,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

we assume that the columns of Vk
m are linearly independent

from each other while the elements in each column are
jointly Gaussian distributed. Mathematically, this approxi-
mation can be written as

p
(

Vk
m

)
≈

L∏

l=0

p
(

vk,l
m

)
(24)

with

vk,l
m

.=
[
vk,l

1,m, vk,l
2,m, . . . , vk,l

NR,m

]T
,

p
(

vk,l
m

)
∝ exp

(
−
(

vk,l
m − µ

)H
Σ−1

(
vk,l
m − µ

))
,

(25)

where µ and Σ are the mean vector and the covariance matrix
of vk,l

m , respectively. Note that the order of Σ is now only NR.
In the following, we refer to the receiver algorithm based
on this approximation as grouped joint Gaussian detector
(GJGD).

6.2. Factor Graph with Grouped Joint Gaussian Approxima-
tion. Applying the grouped joint Gaussian approximation,
we achieve the following factorization:

p(Y[k] | xm[k]) ≈
L∏

l=0

p
(

y[k + l] | xm[k]
)

(26)

with

y[k + l]
.= [

y1[k + l], y2[k + l], . . . , yNR [k + l]
]T
. (27)

The resulting factor graph will look like Figure 6. Now the
observation matrix Y[k] is split into observation vectors
y[k + l]. Compared to the factor graph with the JGA, the
factor graph with the GJGA becomes more complicated, that
is, there are more edges diverging from each symbol node.
However, the corresponding detection complexity actually
becomes much lower, as explained in Section 6.4.
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Figure 6: Factor graph of a MIMO-ISI channel with grouped joint
Gaussian approximation, NT = 2, L = 1.

6.3. Message Update Rule at Observation Nodes. With the new
approximation, the message updating rule at an observation
node can be written as

LLR(xm[k]) = ln
p
(

y[k + l] | xm[k] = +1
)

p
(

y[k + l] | xm[k] = −1
)

= −(v1 − µ
)H
Σ−1(v1 − µ

)

+
(

v2 − µ
)H
Σ−1(v2 − µ

)

(28)

with

v1
.= y[k + l]− hlm,

v2
.= y[k + l] + hlm,

hlm
.=
[
hl1,m,hl2,m, . . . ,hlNR,m

]T
.

(29)

The statistical properties µ and Σ can be calculated by
utilizing the incoming LLR messages from all relevant
symbol nodes. Due to limited space, we would like to refer
interested readers to [15] for more details on this topic.

6.4. Computational Complexity. By checking (26) and (28),
and noting that the covariance matrix Σ is now only of order
NR, we have

O(GJGD) ∝ NTNR
3(L + 1). (30)

Comparing (30) with (22), it is clear that the computational
complexity of the GJGD is much lower than that of the JGD,
particularly for MIMO systems with severe delay spread.
Nevertheless, a cubic term is still present due to matrix
inversion.

7. Graph-Based Iterative Gaussian Detector

In this section, we introduce an independent Gaussian
approximation (IGA) which completely eliminates matrix
inversion and a graph-based iterative Gaussian detector
(GIGD) based on that (Initial work has been presented in
[14].).

x1[0] x1[1] x1[2] x1[3]

x2[0] x2[1] x2[2] x2[3]

y1[0] y2[0] y1[1] y2[1] y1[2] y2[2] y1[3] y2[3]

Figure 7: Factor graph of a MIMO-ISI channel with independent
Gaussian approximation, NT = NR = 2, L = 1.

7.1. Independent Gaussian Approximation. In Section 3.2,
we mentioned that the cross-correlation between effective
noise samples drops steadily as the product NT(L + 1)
increases. Therefore, if NT(L + 1) is sufficiently large, we
might completely neglect the mutual dependence, that is, to
approximate all effective noise samples to be independently
Gaussian distributed, as illustrated in the following:

Vk
m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vk,0
1,m vk,1

1,m · · · vk,L
1,m

vk,0
2,m vk,1

2,m · · · vk,L
2,m

...
...

. . .
...

vk,0
NR,m vk,1

NR,m · · · vk,L
NR,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (31)

Mathematically, we may write this approximation as

p
(

Vk
m

)
≈

NR∏

n=1

L∏

l=0

p
(
vk,l
n,m

)
(32)

with

p
(
vk,l
n,m

)
≈ 1
πσ2

v
exp

⎛
⎜⎝−

∣∣∣vk,l
n,m − μv

∣∣∣
2

σ2
v

⎞
⎟⎠, (33)

where μv and σ2
v are defined as

μv
.= E

{
vk,l
n,m

}
, σ2

v
.= E

{∣∣∣vk,l
n,m − μv

∣∣∣
2
}
. (34)

7.2. Factor Graph with Independent Gaussian Approximation.
Revisiting (7) and applying (32), we achieve the following
factorization:

p(Y[k] | xm[k]) ≈
NR∏

n=1

L∏

l=0

p
(
yn[k + l] | xm[k]

)
. (35)

The resulting factor graph will look like Figure 7. Now all
observations are separately represented in the factor graph,
and there are even more edges diverging from each symbol
node. However, the corresponding detection complexity is
again much lower than that of the GJGD.
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7.3. Message Update Rule at Observation Nodes. Combining
(4) with (33), the message updating rule at an observation
node can be written as

LLR(xm[k]) = ln
p
(
yn[k + l] | xm[k] = +1

)

p
(
yn[k + l] | xm[k] = −1

)

= −
∣∣∣yn[k + l]− μv − hln,m

∣∣∣
2

σ2
v

+

∣∣∣yn[k + l]− μv + hln,m

∣∣∣
2

σ2
v

= 4
Re

{
hln,m

(
yn[k + l]− μv

)∗}

σ2
v

,

(36)

with μv and σ2
v as defined in (34) and the way of calculating

them described in the following.
Revisiting Figure 7, we see that each observation node

is connected with G
.= NT(L + 1) symbol nodes. Replacing

complicated indices n, m, k, and l by a single index i, we
may simplify the relationship between an observation and its
associated data symbols as

y =
G∑

i=1

hixi +w

= hjxj +
G∑

i=1,i /= j

hixi +w

= hjxj + vj ,

(37)

with vj =
∑G

i=1,i /= j hixi + w denoting the effective noise sam-
ple w.r.t. xj . Since all data symbols are mutually independent,
the following statement is straightforward:

μvj =
G∑

i=1,i /= j

hi · μxi ,

σ2
vj =

G∑

i=1,i /= j

|hi|2 · σ2
xi + σ2

w,

(38)

where μxi and σ2
xi are calculated by utilizing the incoming LLR

message from the symbol node:

μxi =
eLLR(xi) − 1
eLLR(xi) + 1

, σ2
xi = 1− μ2

xi . (39)

Note that the principle of extrinsic information is implicitly
applied in this message updating operation.

7.4. Computational Complexity. The computational load of
the GIGD comes from the message updating at the symbol
nodes and the observation nodes. Revisiting Figure 7, we
find that there are NT symbol nodes per time index, each
connected with NR(L + 1) edges. Since the complexity of

message exchange at a symbol node is always proportional
to the amount of associated edges (c.f. Section 4.3), we have

O
(
operation at symbol nodes

)∝ NTNR(L + 1). (40)

In each iteration, an observation node needs to calculate the
LLR values of G = NT(L+ 1) data symbols associated with it.
In practice, this task is accomplished in two steps. In step one,
μxi and σ2

xi are first calculated for i = 1, 2, . . . ,G, according

to (39). Afterwards, the products hiμxi and |hi|2σ2
xi as well

as the summations
∑G

i=1 hiμxi and (
∑G

i=1 |hi|2σ2
xi + σ2

w) are
calculated and stored. Obviously, the complexity of this step
is proportional to G. In step two, the following calculation:

μvj =
G∑

i=1

hiμxi − hjμxj , (41)

σ2
vj =

⎛
⎝

G∑

i=1

|hi|2σ2
xi + σ2

w

⎞
⎠−

∣∣∣hj
∣∣∣

2
σ2
xj , (42)

is performed and then LLR(xj), j = 1, 2, . . . ,G, is obtained
according to (36). Since the two sums in (41) and (42) have
already been stored in step one, the complexity of step two is
proportional toG = NT(L+1) as well. Given this explanation
and noting that there are NR observation nodes per time
index, we may conclude that

O
(
operation at observation nodes

)∝ NTNR(L + 1). (43)

We may recognize that NTNR(L + 1) actually gives the
number of channel taps. In reality, however, the discrete-time
channel model often has a sparse ISI structure, that is, many
channel taps are quasi zero. In this case, the edges associated
with zero taps can safely be removed from the factor graph
(c.f. Figure 7). Given this knowledge, and combining (40)
and (43), we obtain the following expression:

O(GIGD) ∝ number of nonzero channel taps

≤ NTNR(L + 1).
(44)

Due to the complete elimination of matrix inversion, the
complexity of the GIGD is truly linear. Besides, the GIGD is
very attractive for sparse ISI channels, where the maximum
delay spread is large while many zero taps are present. Note
that neither the JGD nor the GJGD is able to benefit from
the sparse ISI channel structure in such a straightforward
manner, because of multivariate Gaussian approximations.

8. Performance in Uncoded Systems

In previous sections, we have introduced three low-
complexity Gaussian detection algorithms, namely, joint
Gaussian detector (JGD), grouped joint Gaussian detec-
tor (GJGD), and graph-based iterative Gaussian detector
(GIGD). In this section, we provide numerical results
from Monte Carlo simulations to assess and compare the
performance of these three algorithms in uncoded systems,
and ultimately illustrate the merits and demerits of the GIGD
algorithm.
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Figure 8: Performance of the three Gaussian detectors in an
uncoded system, NT = NR = 4, L = 4, and K = 400.

8.1. Simulation Setup. Each burst from each Tx antenna
contains 400 data symbols. After one burst is transmitted,
each Tx antenna ceases transmission for an interval of L
symbol durations to avoid interburst interference, where L
denotes the effective channel memory length. All Tx and
Rx antennas are assumed to be perfectly synchronized. For
simplicity, the signal mapping scheme is always BPSK. The
channel coefficients hln,m of every subchannel are normalized
to form an equal delay power profile with an average

sum power of one, that is, E{|hln,m|2} = 1/(L + 1) with
∑L

l=0 E{|hln,m|2} = 1. For a fair comparison, for all three
Gaussian detection algorithms, 5 iterations are performed,
that is, the operations of message updating and message
exchanging are repeated 5 times.

8.2. Theoretical Performance Bound. Observing the archi-
tecture of the JGD, the GJGD, and the GIGD, these three
algorithms clearly fall into the class of symbol-by-symbol
detectors, as they all try to maximize the global likelihood
function w.r.t. individual symbols. Therefore, the symbol-
by-symbol MAP detector provides a lower bound for the
achievable BER performance in uncoded systems. Here, we
use the BCJR algorithm [3] to implement the symbol-by-
symbol MAP detector. Certainly, given the BCJR algorithm,
no receiver iterations are necessary for uncoded transmis-
sion.

8.3. Performance Comparison. Figure 8 displays the BER
performances of the three Gaussian detection algorithms. As
can be seen, the JGD algorithm achieves a BER performance
very close to that of the BCJR algorithm. It shows a trivial
error floor at high SNRs due to the inaccuracy of (18) and
feeding back intrinsic information as a priori information.
(In an uncoded system, the factor graph for the JGD is cycle-
free, c.f. Figure 5. Therefore, a self-feedback is enforced at all
symbol nodes in order to implement an iterative detection.

The JGD algorithm for uncoded systems in fact falls into
the class of probabilistic data association (PDA) algorithms
[16]. Nevertheless, it is not necessary and also not proper to
do so in a coded system, since the existence of code nodes
enables rigorous extrinsic information exchange.) Compared
to the JGD, the GJGD algorithm shows a performance loss
of approximately 1 dB at BER = 10−4. Due to the further
inaccuracy introduced by (24), the error floor of the GJGD
is higher than that of the JGD and is no longer trivial. The
performance of the GIGD algorithm is undesirable in this
scenario. It shows a significant error floor at BER ≈ 5× 10−4

due to the coarseness of the approximation given in (32).

8.4. Complexity Comparison. As a matter of fact, the
introduced three Gaussian detection algorithms do not
really differ in the necessary number of iterations. Though
applying different type of approximations, these algorithms
never change the amount of channel outputs (yn[k]) that a
symbol node can extract information from. Consequently,
the speed of information aggregation does not change for
these three algorithms, and the required number of iterations
for a satisfactory BER performance basically stays constant
for a fixed system setup. Given a reasonable burst length, 5
iterations are already good enough, empirically.

For the current system setup, the covariance matrices to
be inverted are of orderNR(L+1) = 20 in the JGD algorithm.
The covariance matrices are only of order NR = 4 in
the GJGD algorithm. Finally, matrix inversion is completely
eliminated in the GIGD algorithm. Revisiting (22), (30), and
(44), we will find that the complexity of the GJGD is about
25 times lower than that of the JGD, and the complexity of
GIGD is about 16 times lower than that of the GJGD. In total,
a complexity reduction of factor 400 is achieved by the GIGD
algorithm w.r.t. the JGD algorithm. As such a complexity
reduction is rather attractive, it is worthwhile to study the
error floor behavior of the GIGD algorithm.

8.5. Error Floor of the GIGD. The error floor of the GIGD
algorithm is mainly caused by approximating the elements
of the effective noise matrix to be mutually independent. As
mentioned in Section 3.2, the average correlation coefficient
between effective noise samples drops when the product
NT(L + 1) increases. Therefore, we may expect the error
floor of the GIGD to drop when the channel memory
length becomes larger or when the system deploys more
antennas. To verify our conjecture, we again utilize Monte
Carlo simulations.

Figure 9 demonstrates the behavior of the GIGD under
different channel memory lengths. Since the complexity of
the BCJR algorithm and the JGD algorithm both become
prohibitive for severely delay spread MIMO channels, we
use the BER bound of an AWGN channel as an asymptotic
performance bound if L approaches infinity. As predicted,
the error floor drops as the channel memory length increases
and/or the number of antennas increases. This observation
reveals two issues. First, the independent Gaussian approx-
imation (32) benefits from a large amount of channel taps.
Second, despite its extremely low complexity achieved by
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Figure 9: Performance of the GIGD in uncoded systems, K = 400, 5 iterations.

making a very coarse approximation, the GIGD is able to
exploit the diversity provided by additional channel taps or
receive antennas. The cross-over at NT = NR = 8 and
L = 96 is mainly caused by the zero-padding burst structure.
Both at the beginning and the end of the burst, the channel
outputs are composed of few data symbols and a lot of zeros,
which degrades the accuracy of the independent Gaussian
approximation. This effect is significant at L = 96, given
the burst length is K = 400. By applying a tail-biting
burst structure or a cyclic prefix, this problem can be well
eliminated, and the resulting performance will be very close
to the AWGN bound.

The above results suggest that the GIGD algorithm is
very attractive for large systems with severe delay spread.
Nevertheless, the GIGD causes a significant error floor when
NT(L + 1) is not sufficiently large. The question that remains
is if this error floor can be eliminated by means of channel
coding.

9. Performance in Coded Systems

In this section, we check the BER performance of the three
Gaussian detectors in coded systems.

9.1. Simulation Setup. For simplicity and for an easy deriva-
tion of performance bounds, we adopt repetition encoding
with scrambling. The scrambling pattern is fixed, that is,
every second bit of a code word is flipped. In case of short
data bursts, scrambling is very helpful for the three Gaussian
detectors, since they assume that all data symbols come with
zero mean. Random interleaving is applied after scrambling
in order to make neighboring data symbols as independent as
possible. No matter which coding rate is used, the number of
symbols per burst per antenna is always K = 400. Due to the

presence of channel decoding, local iterations in the graph
of Gaussian detection are no longer desirable, particularly
for the case of JGD. Hence, each receiver iteration contains
the following sequential operations: message updating at
observation nodes, message updating at symbol nodes,
channel decoding, and message updating at symbol nodes.
As the use of different Gaussian approximations does not
really change the speed of information aggregation at symbol
nodes, in the following we will always apply a fixed number of
iterations for comparing the performance of using different
Gaussian approximations.

9.2. Performance Comparison. Figure 10(a) illustrates the
performance of the three Gaussian detectors in a rate 1/2
repetition encoded system. Surprisingly, all three Gaussian
detectors as well as the BCJR algorithm show nearly the same
performance at L = 4, regardless of their huge complexity
difference. A purely theoretical analysis of this phenomenon
appears difficult. An empirical answer is that the strongest
detector for an uncoded system is not necessarily the best
one for a coded system. From the JGD to the GJGD,
and from the GJGD to the GIGD, more and more coarse
approximations are made, which makes the detector outputs
less and less accurate. However, this also makes the detector
outputs less and less correlated, which is beneficial to the
following channel decoder. From Figure 10(a), it seems that
the effect of less accuracy is partially compensated by the
effect of less correlation. Figure 10(b) further supports our
supposition on this issue. In a rate 1/4 repetition encoded
system, the performance of the BCJR algorithm is even
worse than that of the three Gaussian detectors at L =
4. When the coding rate drops, the strong correlation of
the outputs of the BCJR algorithm noticeably degrades the
system performance, while the three Gaussian detectors
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Figure 10: Performance comparison in repetition encoded systems, NT = NR = 4, K = 400, 5 iterations.

stay robust. Among the four algorithms, the GIGD has a
decisively lower complexity, meanwhile its BER performance
is not worse than that of any other. Therefore, it is the most
attractive solution.

9.3. Error Floor of the GIGD. Figures 10(a) and 10(b) also
demonstrate the BER performance of the GIGD in repetition
encoded systems with various channel memory lengths.
Since a repetition code does not provide any coding gain,
the AWGN bound still holds. At R = 1/2, error floors are
still present, but are no longer significant. At R = 1/4, error
floors nearly disappear, even for L = 0, that is, flat-fading
channels. The reason of the cross-over at L = 96 and R = 1/2
is still the zero-padding burst structure. Nevertheless, this
effect is well mitigated by the rate 1/4 repetition code. So far
we may recognize that repetition encoding is really helpful in
mitigating the estimation errors caused by the independent
Gaussian approximation, and meanwhile the approximation
errors do not present a problem to the convergence property
of the repetition decoder. The asymptotic AWGN bound is
quasi-approached at NT = NR = 8, L = 96. Note that
with this system setup, it is practically impossible to run
the BCJR algorithm and it is computationally prohibitive
to run the JGD. For systems with short memory lengths,
repetition encoding is truly helpful for the GIGD. Necessary
to be mentioned, the AWGN bound is only achievable for
systems with very large channel memory lengths, since only
then the channel instant power tends to be constant. By
checking the performance of GIGD with small L values, we
may recognize that these curves should also be quasi-bound
approaching. Therefore, in repetition encoded systems, the
GIGD is applicable for systems with moderate number of
antennas and short channel memory lengths as well.

10. Conclusions and Future Work

In this paper, we revisited and slightly revised the joint
Gaussian detection (JGD) algorithm, derived the grouped
joint Gaussian detection (GJGD) algorithm, and proposed
the graph-based iterative Gaussian detection (GIGD) algo-
rithm. A mathematical derivation as well as a detailed
performance analysis is provided. From the JGD to the
GJGD and from the GJGD to the GIGD, the computational
complexity dramatically decreases. The GIGD algorithm has
a linear complexity and provides a promising performance
for MIMO channels with severe delay spread. In [17], the
incorporation of the GIGD algorithm with soft channel
estimation has been studied.

The adopted channel model within this paper is very
specific, in the sense that it presents the biggest challenge
for conventional linear equalizers. Using such a channel
model effectively exhibits the high potential of the proposed
low-complexity Gaussian detection algorithms, particularly
GIGD. Nevertheless, from an engineering standpoint, it
deserves to be an interesting topic to test the performance
of Gaussian detection with more realistic channel models.
Repetition coding is considered within this paper for the sake
of easy analysis as well as its strength in mitigating estimation
errors due to approximation. Future work should also be
targeted at more advanced code structures, particularly
concatenations of a repetition code and a sparse graph code,
for example, an LDPC code.
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