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The backward and forward consecutive mean excision (CME/FCME) algorithms are diagnostic methods for outlier (signal)
detection. Since they are computationally simple, they have applications for both narrowband signal detection in cognitive radios
and interference suppression. In this paper, a theoretical performance analysis framework of the CME algorithms is presented. The
analysis provides simple tests of the detectability of the signals based on their shape in the considered domain (e.g., spectrum).
As a consequence, results can be used to quickly check whether the CME/FCME algorithms are usable for a given problem or
not without the need to resort to time consuming computer simulations. The computer simulations for random and orthogonal
frequency division multiplexing (OFDM) signals show that the presented analysis is able to predict the detectability of signals well.

1. Introduction

Real-world data may contain samples that differ from the
majority of data. These observations are called outliers [1–5].
In wireless communications, these coexisting samples are
typically caused by signals that are narrow in the considered
domain. Thus, narrowband (NB) interference suppression
and NB signal detection methods can be classified to be
outlier detection methods. Therefore, outlier detection is
applicable also in cognitive radios to detect spectrum holes,
that is, unused frequency bands [6, 7]. Additionally, outlier
detection can be used to find time domain pulses/impulses
which have relatively short duration compared with the
inspection interval.

Outlier detection is usually based on some metric which
is used to decide if a sample is an outlier or not. In the
diagnostic outlier detection [8], the basic idea is to investigate
normalized samples: the outliers are far from the mean as
illustrated in Figure 1. A classical metric is the Mahalanobis
squared distance (MSD) [9]

χi = (r− r)HC−1(r− r) > T , (1)

where r is a sample vector, C is the shape parameter (usually
the covariance matrix of r), and r is the location parameter
(usually the mean of r). The sample vector is classified as

an outlier if the MSD is larger than some predetermined
threshold value T called the cutoff point. A threshold that
separates the outliers from other samples can be solved using
the statistics of (1). The main problem is that the mean and
covariance are usually unknown and have to be estimated.
Furthermore, the outliers can affect these estimates and that
leads to unreliable results. This calls for iterative outlier
detection and/or robust parameter estimation. Luckily, in
wireless communications the signals are usually zero mean
and the noise is white, that is, the covariance matrix is a
scaled identity matrix which simplifies the procedure [10].
These assumptions are applied in this paper.

There exist several outlier detection methods, from
which the iteratively operated consecutive mean excision
(CME) algorithms [11–14] are among the most interesting
methods. The CME algorithms are able to operate in any
transform domain. The only requirement is that the outliers
are from a signal that is “narrow” (i.e., concentrated) in the
considered domain, for example, in the time or frequency or
some other domain. Besides being computationally attrac-
tive, the CME methods operate blindly (i.e., unsupervised)
without a priori knowledge about the noise level, the number
of the concentrated signals or their characteristics. The CME
algorithms can be seen to be unsupervised classification
algorithms. In unsupervised classification, the observed
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Figure 1: Outlier detection.

samples are divided into different subsets based on the
properties of the samples, such that samples in the same
cluster are, in some sense, similar to each other. Typically,
the CME and FCME algorithms are used with magnitude-
squared samples or with radiometer/energy detector outputs.
Thus, the CME algorithms can be seen to correspond to
simple energy detectors measuring the energy of the received
samples. Thus, the CME algorithms are effective regardless of
the NB signal type, used modulation or frequency-shifting.
In addition, the CME algorithms are able to operate in
any frequency range (i.e., from kHz to GHz) [13]. Both
the CME and FCME methods and their applications have
been investigated, for example, for concentrated interference
suppression both in the time and frequency domains, and
for narrowband signal detection in the frequency domain
both in military and civilian applications [14–17]. The per-
formance of the CME and FCME algorithms has already been
compared to each other and to other methods, for example,
in [12–15, 18, 19]. Therein, based on the statistical properties
of the methods, it has been observed that the FCME
algorithm outperforms the CME algorithm. It has also
been found out that the performance of the simpler CME
algorithm is adequate when the signal is very concentrated
[8, 11]. Moreover, an example for real-world frequency-
shifted signals is presented in [18]. Theoretical impulse
detection performance of the CME and FCME algorithms
was analyzed in [11]. There, the statistical analysis led up to
the results of only sample-based probability of detection. No
detection limits were derived. Asymptotic threshold setting
for the FCME algorithm with the Welch spectrum estimator
was presented in [20]. A simplified analysis of the CME
algorithms have been considered in [19] as an example
case. Therein, the signal consisted of only one lobe and no
general detection limits were defined. In [21], some simple
rules when a signal is detectable were considered briefly.
The simulations were performed for random signals only.
Enhancement of the CME algorithms called the localization
algorithm based on double-thresholding (LAD) method was

proposed in [16]. The LAD method uses two thresholds
and is able to localize the narrowband signal samples in the
frequency. The performance analysis of the LAD method
was considered in [22]. Therein, the clean sample rejection
and detection rates were analyzed. The optimal upper and
lower threshold values for the LAD method were analytically
confirmed. Note that the analysis results presented in [22] are
valid only for the LAD method, not for the CME algorithms.
The LAD method has been investigated, for example, for
signal detection in the frequency domain including spectrum
sensing in cognitive radios [16, 17]. The LAD method
has been implemented on the wireless open-access research
platform (WARP) in [23]. Therein, it was noticed that the
LAD method is able to sense the spectrum. In this paper, the
performance of the CME algorithms is analyzed more widely
and detailed. The analysis is based on signals shape in the
considered domain. For example, in the frequency domain,
the shape corresponds to spectrum. The main goal is to
analytically characterize the conditions at which the CME
algorithms find the outliers, that is, concentrated signals,
and provide an easy-to-use tool for checking the detectability
of signals by the CME algorithms. This leads to equations
from which the detection limits can be derived. Herein, the
term detection limit denotes at which detection parameters
(height, width, and threshold parameter) the signal can be
detected. The aim is not to compare the methods because
the comparisons have been addressed in several papers.
Further, the signal-to-noise ratio (SNR) values that limit the
signal detection are derived. According to the authors best
knowledge, the analytic detection limits for the CME and the
FCME algorithms have not been presented earlier. Extensive
simulations with random and orthogonal frequency division
multiplexing (OFDM) signals confirm the validity of the
analysis. It will be seen that the presented analysis leads to
the simple limits of detectability. Therefore, the results of
the analysis can be used, for example, in cognitive radios
for fast checking if a signal is detectable or not without
time-consuming simulations. A typical example is detecting
future mobile digital video broadcasting Handheld (DVB-H)
systems.

This paper is organized as follows. In Section 2, the CME
algorithms are described. In Section 3, the CME and FCME
algorithms are analyzed and general detection limits as well
as detailed information about the detection alternatives are
derived. Numerical results are presented in Section 4, and
conclusions are drawn in Section 5.

2. Consecutive Mean Excision Algorithms

The considered received signal consists of outliers (i.e., sig-
nals to be detected), the noise, and a possible noise-like
signal which is below the noise level (such as wideband signal
in the frequency domain). Therein, the noise and noise-
like signals form the base signal. The considered ith signal
sample is assumed to be ri = ci + si + ηi, where ci is a
concentrated signal sample caused by outliers, si is a possible
noise-like signal sample, and ηi is the noise process. Therein,
the concentrated signal consists of n ≥ 0 lobes. Note that the
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notations are general and not specified to some particular
domain, that is, samples ri can be in time, frequency or in
some other domain.

The observed ith scalar sample ri, corresponding now to
the base data without outliers, is assumed to be zero mean,
independent, identically distributed random variable, that is,
the covariance is a scaled identity matrix [10]. This means
that (1) reduces to

ζi = |ri|2 > Tζ = Th, (2)

where

ζ = 1
Q

Q∑

i=1

ζi (3)

is an estimator corresponding to the shape parameter, T > 1
is a threshold, multiplier, Th denotes the threshold and Q is
the size of the so-called clean set (in the first iteration called
an initial set).

The value of the threshold multiplier T can be calculated
based on the desired false alarm probability PFA,DES in the
outlier-free case [11]. Since the threshold depends on
samples, the CME algorithms can be considered constant
false alarm rate (CFAR) type detectors that often use the so-
called reference samples to find the threshold. Gaussianity is
a generally used noise model in communication [10]. For
example, if it is assumed that noise sample ri is a complex
Gaussian variable, ζi follows a chi-squared distribution
with two degrees of freedom. Thus, assuming that the
sample mean converges to the actual value (ergodicy), the
probability that a normalized sample ξi = ζi/ζ exceeds T is
P(ζi > Tζ) = e−T . From that, T = − ln(PFA,DES). When the
degrees of freedom is >2 (e.g., in a multiantenna case), the
proper value of T has been determined in [14]. Respective
values for T can be also defined for other distributions, for
example, when the Welch spectrum estimator is used [20].

The CME algorithm operates backward. In the first
iteration of the backward CME algorithm, estimate ζ is based
on all the samples, that is, Q = N . The CME algorithm
operates, in this case, using the current mean energy of
the samples ζi and by multiplying that mean value with
the threshold multiplier T . In every iteration, sample ri is
rejected from the clean set Q if its energy ζi > Tζ , after which
the mean (energy) is estimated again from the remaining set.
This continues until new outliers cannot be found.

Unlike the CME algorithm, the FCME algorithm oper-
ates forward. First, the samples are rearranged in an ascend-
ing order according to their energies. The sorting can be
done, for example, using Heapsort or Quicksort, whose aver-
age computational complexities are N log2N and 2 log2N ,
respectively, [24]. After that, the FCME algorithm calculates
the mean ζ of a small initial set consisting of samples that
are the smallest in energy and are assumed to be free of the
outliers. The size of the initial set is usually selected so that it
is about 10% of the total data set [11]. Too small an initial
set may lead to the situation that the algorithm does not
converge. On the other hand, if the initial set is too large,
it may be possible that it contains outlier samples so the

algorithm does not operate properly. In the first iteration,
Q = Nc, where Nc is the number of samples in the initial set.
The FCME algorithm iteratively calculates a new value for
the mean ζ and a new threshold until there are no samples
below the threshold. That is, in every iteration, sample ri is
added to the clean set Q if ζi < Tζ .

The number of considered samples has an effect on the
performance of the CME algorithms. Usually, 1024 or 512
samples have been used [11, 19]. It has been noticed that
the CME algorithms are able to operate properly when the
number of samples is 256 or more. The more samples there
are, the more samples are used when calculating the mean of
the whole data set (CME)/initial set (FCME), so single strong
outliers do not have very strong effect on the estimate of the
mean [3]. In addition, if the number of samples is small, the
initial set in the FCME algorithm may come too small, and
the algorithm may not start to operate properly at all.

3. Performance Analysis

The aim of the performance analysis is to find simple rules
for the outlier detection capability of the CME algorithms.
Therefore, several simplifications have to be made, but
their validity is confirmed by the computer simulations in
Section 4. For simplicity and without the loss of generality,
the signal samples are sorted in a descending order according
to their heights (magnitudes) so that the sample with the
largest magnitude is the first sample, and so on, until
the sample with the lowest magnitude is the last sample.
The purpose of the reordering is to clarify the analysis.
Reordering does not have any impact on the analysis results
nor the operation of the CME algorithms, because the CME
algorithm does not care what the order of the samples is,
and the FCME algorithm reorders the samples anyway. For
those reasons, the analysis is valid also when the samples are
not reordered. Subsequently, the signal samples are divided
into different parts or lobes according to their amplitudes
so that every lobe consists of signal samples with equal
amplitude. The width of the lobe states how many samples
with equal amplitude the lobe includes, while the height
of the lobe reflects the sample magnitude. Thus, one lobe
consists of samples (i.e., bins) which have exactly equal
height (i.e., amplitude or magnitude). The presented shape-
based analysis corresponds to the power spectral density
(PSD) in the frequency domain, where one lobe includes
the frequency domain signal samples with equal energy. A
simplified example of reordering and developing the signal
lobes is shown in Figure 2. In real life, the amplitudes of the
lobe samples are not equal, because the probability that two
realizations of continuous valued random variables are equal
is zero. Therefore, average magnitude, that is, the mean of the
lobe samples, may present the amplitude of the lobe.

Assume that the base signal has width W and height S.
The outlier signal consists of n ≥ 1 lobes with widths Wi,∑n

i=1 Wi ≤ W , and heights Si, i = 1, . . . ,n, S1 > S2 > · · · >
Sn. The first signal lobe S1W1 is called the main lobe and the
other n − 1 lobes are the side lobes. The widths and heights
of the lobes can be presented to be relative to the width and
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Figure 2: A simplified example of reordering and developing of
signal lobes. There are 7 signal samples whose magnitudes are in
three different levels. This leads to three signal lobes.

the height of the base signal, respectively. Thus, Si = αiS
and Wi = βiW , or αi = Si/S and βi = Wi/W , αi,βi > 0.
For example, when the CME algorithm is used and n = 3
(Figure 3), we get from (2) that only the main lobe S1 is
detected in the first iteration if

S1 + S > Tζ = T

(
SW +

∑3
i=1 SiWi

W

)
(4)

and if

S2 + S < T

(
SW +

∑3
i=1 SiWi

W

)
. (5)

In the practical applications, the relative signal powers are
usually of interest. The power of the base signal is SW , that
is, S presents the “density”. The ith lobe power is (S + Si)Wi.
When S is the noise, SNR can be defined to be

γ =
∑n

i=1(S + Si)Wi

SW
=

n∑

i=1

(1 + αi)βi. (6)

Here, SNR is defined per total bandwidth. SNR could also be
defined per NB signals bandwidth.

There are three different alternatives for the detection.
The extreme alternatives are that (a1) all the lobes are
detected at the same time or (a2) all the lobes are detected
one-by-one. The third alternative includes all other possible
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Figure 3: An example of base signal and three signal lobes. The total
number of samples is N .

lobe detection combinations (a3). Naturally, it is also pos-
sible that only some of these alternatives are possible, or
that the lobes are totally undetectable. However, it is not
always necessary to detect all the lobes in practice. Instead,
depending on the used application, the detection of only the
highest(s) lobe(s) may be sufficient. In practice, the samples
that are decided to belong to the signal can be defined, for
example, using 3 dB bandwidth.

It appears that detectability can be solved with respect to
the heights of the lobes and the used threshold multiplier.
They depend on each other and their relationship is of
interest. Next, the conditions at which the outlier signal can
be detected are analysed in terms of the heights of the lobes
and threshold multiplier. The main focus is to get conditions
at which the CME and FCME algorithms find the signals. The
different detection alternatives give additional information in
what way the detection is performed.

Let k = 0, . . . ,n − 1 denote the number of lobes rejected
(for the CME algorithm) or added (for the FCME algorithm)
from/to the clean set Q in the previous iterations. Let j =
1, . . . ,n denote the step size, that is, how many lobes are
rejected/added at one iteration, and k + j ≤ n. In our
examples we have selected to use threshold multiplier values
T = 2.303, 4.6052, and 6.9078 which have been noticed to
be proper choices, for example, in [14, 18], and which have
been used in the earlier papers. However, from the analysis
results, the detection limits can be calculated using any other
desired threshold multiplier values.

3.1. Analysis for the CME Algorithm. First, the effect of the
heights of the detected lobes is considered. Using a geo-
metrical approach for defining ζ , we get from (2) that the
conditions for the heights of the detected lobes can be
expressed using function

f
(
k, j

) =
T − 1 + T

∑n
i=k+1,i /= k+ j

(
αiβi/

(
1−∑k

i=1 βi
))

1− T
(
βk+ j /

(
1−∑k

i=1 βi
)) .

(7)

The (k+ j)th lobe (Sk+ jWk+ j) is detected if αk+ j > f (k, j)
and if αk+ j+1 < f (k, j + 1). For example, in the first iteration,
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only the highest lobe, that is, the main lobe (S1W1) is
detected if α1 > f (0, 1) and if α2 < f (0, 2), as can be seen by
(4) and (5), respectively. The corresponding alternatives for
the detection as a function of the heights of the lobes are (a1)
all the lobes are detected in the same (first) iteration when
αn > f (0,n), and (a2) all the lobes are detected one-by-one
when αk+1 > f (k, 1) and αk+2 < f (k, 2) for all k. Importantly,
the detection is not possible at all if

α1 < f (0, 1). (8)

In the special case when there are only the noise and the
main lobe (S1W1), that is, n = 1, the main lobe is detected
if α1 > f (0, 1) = (T − 1)/(1 − Tβ1). This coincides with the
result shown in [19].

The conditions for the used threshold multiplier T are
considered next. From (2) we can define another function

g
(
k, j

) = 1 + αk+ j

1 +
(∑n

i=k+1 αiβi/
(

1−∑k
i=1 βi

)) . (9)

The (k + j)th lobe (Sk+ jWk+ j) is detected next if g(k, j +
1) < T < g(k, j). Because in every iteration the samples with
the strongest energy are removed, the mean decreases as k
increases. For example, in the first iteration, only the highest
lobe, that is, the main lobe (S1W1) is detected if g(0, 2) < T <
g(0, 1).

From (9), the alternatives for the detection as a function
of T are (a1) 1 < T < g(0,n) and (a2) g(k, 2) < T < g(k, 1)
for all k. Because αi > αi+1, we get from the above-mentioned
equations that g(k, 2) > g(0,n). Therefore, (a3) is achieved
when g(0,n) < T < g(k, 2). In other words, the smaller
the threshold is, the more lobes are detected at the same
time. However, small T leads to more false detections. The
detection is not possible at all if

T > g(0, 1). (10)

Let us next consider the case when the detection is not
possible at all. In general, from the denominator of (8), the
limiting value is β1 > 1/T . This means that the detection is
impossible if (8) holds and if β1 ≥ 0.4343 (for T = 2.303),
β1 ≥ 0.217 (for T = 4.6052) and β1 ≥ 0.145 (for T =
6.9078). This result holds in general regardless of the value
of n. Since β1 means the width of the main lobe, that main
lobe can cover 43, 23, and 15% of the studied “spectrum”,
respectively.

Assume next that the signal has only the main lobe, that
is, n = 1. It follows from (8) that the detection is impossible
when α1 < (T − 1)/(1 − Tβ1), β1 > (1 − T + α1)/Tα1 and
T > (1 + α1)/(1 + α1β1), respectively. The values of α1 when
the signal detection is impossible via the CME algorithm are
presented in Table 1 as a function of T and β1. For example, if
T = 2.3026 and β1 = 0.1 (10% of the total width), the signal
detection is impossible if α1 < 1.692. That is when the height
of the signal lobe S1 is smaller than 1.692 times the height of
the base signal level S. In terms of SNR per total bandwidth,
the signal detection is impossible if SNR < −6 dB. When
considering SNR per NB signals bandwidth, 13 dB (β1 =
0.05), 10 dB (β1 = 0.1), 7 dB (β1 = 0.2), 5 dB (β1 = 0.3),

or 4 dB (β1 = 0.4) should be added to the given SNR values.
As seen, the narrower the signal is, the lower its height can
be, that is, the lower SNR is required for the detection.

The relative height of the signal versus the relative width
of the signal when detection is impossible via the CME
algorithm is presented in Figure 4 such that above the curve is
the area where the detection is impossible. As can be seen, the
curves converge to the limiting values presented in Table 1.
For example, if T = 2.3026 and the relative height of the
signal is α1 = 5, the signal detection is impossible if the
relative width of the signal is β1 = 0.32 = 32% or more.

Let us next consider the detection alternatives in more
detail. Assume that the outlier signal has two lobes, that is,
n = 2. Based on (7), there are two different possibilities to
make the detection when the CME algorithm is used: (a1)
Both the lobes are detected at the same time, if α2 > f (0, 2) =
(T − 1 +Tα1β1)/(1−Tβ2) holds, and (a2) both the lobes are
detected separately if α1 > f (0, 1) = (T−1+Tα2β2)/(1−Tβ1)
and α2 < f (0, 2) = (T−1+Tα1β1)/(1−Tβ2) holds. Next, the
second lobe is detected if α2 > f (1, 1) = (T − 1)/(1 − Tβ2).
Note that in all the cases, α1 > α2 must hold.

Next, the case (a1) is considered. Note that β1 < 1/T
must hold and α1 > α2 forms the upper limit. Let the
width of the lobes be equal, that is, β1 = β2. The relative
height of the main lobe α1 versus the relative height of
the second lobe α2 when detection is possible via the CME
algorithm is presented in Figures 5 and 6. Therein, the
detection is possible above the curves but below the upper
limit. In Figure 5, β1 = β2 = 0.05 (5%) and T varies [11].
For example, when T = 4.6052 and α1 = 10, 8 ≤ α2 < 10 in
order to detect both the lobes at the same time. When β1 =
β2 ≥ 0.1 and T = 4.6052 or 6.9078, it follows that α2 > α1,
so that only the results for T = 2.3026 can be presented.
In Figure 6, T = 2.3026 and β1 = β2 varies. The case (a2)
is straightforward but algebraically cumbersome because of
several variables.

3.2. Analysis for the FCME Algorithm. The analysis of the
FCME algorithm is somewhat simpler than that of the CME
algorithm. Let κW , 0 < κ < 1 denote the size of the initial set
and Wclean = W −∑n

i=1 Wi. Assume first that the initial set
is clean of outliers, that is, κW ≤Wclean. Using a geometrical
approach for defining ζ , we get from (2) that the mean of
the clean set Q when it contains k lobes can be defined using
function

fF(k) = βclean +
∑k

i=1 βn−i+1(1 + αn−i+1)

βclean +
∑k

i=1 βn−i+1

. (11)

In the considered iteration, the lobes n−k− j+1, . . . ,n−k are
added to the clean setQ if αn−k− j+1 < T fF(k)−1 and αn−k− j >
T fF(k)− 1.

The alternatives for the detection as a function of heights
of the lobes are (a1) αn > T fF(0) − 1 = T − 1 [19]. In
that case, the clean set Q includes only outlier-free samples.
The other alternative is that (a3) only part of the lobes,
lobes S1W1, . . . , SiWi, i ∈ {1, . . . ,n}, are detected when αi >
T fF(k) − 1 and αi+1 < T fF(k) − 1. In that case, the clean
set Q includes both the outlier-free samples and some outlier
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Table 1: The values of α1 and SNR [dB] when signal detection via the CME algorithm is impossible with different values of T and β1. The
signal has only one lobe. Note that SNR is defined per total bandwidth.

β1 = 0.05 β1 = 0.1 β1 = 0.2 β1 = 0.3 β1 = 0.4

T α1 (SNR [dB]) α1 (SNR [dB]) α1 (SNR [dB]) α1 (SNR [dB]) α1 (SNR [dB])

2.3026 <1.472 (−9 dB) <1.692 (−6 dB) <2.415 (−2 dB) <4.213 (2 dB) <16.497 (8 dB)

4.6052 <4.684 (−5 dB) <6.683 (−1 dB) <45.659 (10 dB) —∗ —∗

6.9078 <9.025 (−3 dB) <19.106 (3 dB) —∗ —∗ —∗
∗

Detection is not possible.
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Figure 4: The relative height of the main lobe versus the relative
bandwidth of the main lobe. The signal has one lobe. The detection
via the CME algorithm is impossible above the curves and possible
below the curves.

samples (lobes). Because the FCME algorithm operates in
the forward direction increasing the clean set Q, the signal
cannot be detected lobe by lobe. Furthermore, the signal
cannot be detected at all when the main lobe is not detected,
that is,

α1 < T fF(k)− 1. (12)

When considering the threshold multiplier T , the alter-
natives are (a1) T < αn + 1 and (a3) only part of the
lobes, lobes S1W1, . . . , SiWi, i ∈ {1, . . . ,n}, are detected when
(αi+1 + 1)/ fF(k) < T < (αi + 1)/ fF(k). The signal cannot be
detected at all when when the threshold is larger than the
main lobe, that is,

T >
(α1 + 1)
fF(k)

. (13)

The FCME algorithm is able to detect signal lobes regard-
less of their bandwidths when the initial set is clean, that is,
when

∑n
i=1 Wi < W − κW , assuming sufficient threshold

multiplier T . Usually, the initial set size has been about
10% of the considered data set (samples), so the FCME
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Figure 5: The relative height of the main lobe versus the relative
height of the second lobe for joint detection of two lobes when β1 =
β2 = 0.05 and T = 2.3026, 4.6052 or 6.9078. The limits of detection
via the CME algorithm.

algorithm is able to detect signals with widths less than 90%
of the considered samples. Because the FCME algorithm is a
concentrated signal detection method, it can be assumed that
the initial set is usually clean.

If the initial set is not clean, it includes some samples
from the signal lobes. Thus, the mean of the initial set is
higher than the ideal value leading to too high a threshold.
In that case, the signal lobes may be below the threshold,
and, thus, the detection may fail. Assume that the number
of iterations is one and the initial set includes part of the
samples from hth lobe (ShWh), h ∈ {1, . . . ,n}, and all the
samples of smaller lobes Sh+1Wh+1, . . . , SnWn. The initial set
size is κW = W −∑h

i=1 Wi + νWh, where 0 < ν ≤ 1. For the
detection, there are two possibilities: the lobe ShWh or lobe
Sh+1Wh+1 is detected. Let

gF(h) = βclean +
∑n

i=h+1 βi(1 + αi) + ναhβh
βclean +

∑n
i=h+1 βi + νβh

(14)

be the mean of the initial set. The hth lobe (ShWh) is detected
if αh > TgF(h)− 1 and αh+1 < TgF(h)− 1. The (h + 1)st lobe
(Sh+1Wh+1) is detected if αh+1 > TgF(h)−1. It can be observed
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that the threshold for the hth lobe detection is higher than
the threshold for the (h + 1)st lobe detection, as expected. In
addition to, gF(h) > fF(k).

Assume that there is one very high main lobe and S → 0.
Let us also assume that the initial set includes x samples of the
main lobe. Consequently, from (14) we get that the main lobe
can be detected if S1 > T(xS1/Winit), where Winit is the width
of the initial set. It means that the main lobe can be detected
if the initial set includes x < Winit/T samples from the main
lobe.

Next, the analysis results for the FCME algorithm are
considered in the case when the detection is impossible.
Assume that the initial set is clean of outliers. When the signal
has only one lobe, it follows from (12) that the detection is
impossible when α1 < T − 1 and T > α1 + 1. That means
that the width of the signal lobe does not matter if the initial
set is clean. For example, when T = 2.3036, 4.6052, and
6.9078, the main lobe cannot be detected if α1 < 1.3026,
3.6052 and 5.9078, respectively. The values of α1 when the
signal detection is impossible via the FCME algorithm are
presented in Table 2 as a function of T and β1. Therein,
the SNR values are per total bandwidth. When SNR is
defined per the bandwidth of the NB signal, the detection is
impossible when α1 < 4 dB (T = 2.3036), 6 dB (T = 4.6052),
and 8 dB (T = 6.9078) with all values of βi. Note that unlike
in the case of the CME algorithm, the width of the signal
does not matter when detection is performed via the FCME
algorithm.

Next, the detection alternatives are considered more
closely in the case of two lobes. Based on (11) there are
two possible alternatives to make the detection: (a1) α2 >
T − 1, that is, the detection depends only for the threshold

multiplier, and (a3) only the main lobe is detected, that is,
if α1 > T((βclean + β2(1 + α2))/(βclean + β2)) − 1 > α2,
that is, only the main lobe is detected if the clean set Q
contains all other samples except the samples from the main
lobe. It should be noted that the equation in the case (a1)
is almost similar than the equation in the case where the
signal has only one lobe (α1 < T − 1, results shown in
Table 2).

The summary of the detection alternatives for both the
CME and FCME algorithms is presented as a function of
α and T at Table 3. As (a1)–(a3) give detailed information
about the detection, alternative “impossible detection” gives
the general limits when the signal is detectable and when it is
not. The results in Tables 1 and 2 are derived from that.

4. Numerical Results

The theoretical detection limits derived in Section 3 were
confirmed via computer simulations. The simulations were
performed in the frequency domain for random and OFDM
signals. In the first case, the channelized radiometer [25]
was used, whereas in the latter case detection was performed
using the Welch spectrum estimator which uses windowing
and overlapping [26]. In practice, it may be the case that all
the signal samples have different amplitudes. Thus, there are
two possibilities: either one signal sample corresponds to one
lobe, that is, the number of the signal samples equals the
number of the lobes, or one lobe corresponds to all the signal
samples, and the mean of the samples in that lobe presents
the height (i.e., the energy in the frequency domain) of the
lobe. Here, we have selected the latter approach.

4.1. Random Signal. The channelized radiometer uses several
parallel total power radiometer receivers, that is, it integrates
energy into several frequency bands simultaneously. It can
be used, for example, in spectrum sensing. In total V
radiometer channels were assumed. Each has integration
time TR and bandwidth WR. One channel in the radiometer
corresponds to one frequency domain sample. The noise was
Gaussian. When there is only noise present, the channelized
radiometer output follows the chi-square distribution with
Θ = 2TRWR degrees of freedom. When there is both the
signal and noise present, the output follows the noncentral
chi-square distribution with Θ degrees of freedom with
noncentrality parameter Γ = 2Ei/N0, where Ei is the energy
of the signal in the ith radiometer, i = 1, 2, . . . ,V and N0

is the noise power density. Thus, the SNR [dB] is γ =
10 log10(Γ/2). The average output value is S = 2TRWR for
the noise-only case and 2TRWR + Γ for the signal + noise
case. Thus, the height of the ith lobe Si is Γ and αi =
Si/S = Γ/2TRWR. Assume that there is one lobe with the
noncentrality parameter Γ and the width of the lobe equals
one radiometer channel (i.e., one sample). It follows from
(10) that the signal is detected if

T <
1 + Γ/2TRWR

1 + Γ/2TRWRN
. (15)
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Table 2: The values of α1 and SNR [dB] when signal detection via the FCME algorithm is impossible with different values of T and β1. The
signal has only one lobe. Note that SNR is defined per total bandwidth.

β1 = 0.05 β1 = 0.1 β1 = 0.2 β1 = 0.3 β1 = 0.4

T α1 (SNR [dB]) α1 (SNR [dB]) α1 (SNR [dB]) α1 (SNR [dB]) α1 (SNR [dB])

2.3026 <1.303 (−9 dB) <1.303 (−6 dB) <1.303 (−3 dB) <1.303 (−2 dB) <1.303 (0 dB)

4.6052 <3.605 (−6 dB) <3.605 (−3 dB) <3.605 (0 dB) <3.605 (2 dB) <3.605 (3 dB)

6.9078 <5.908 (−5 dB) <5.908 (−2 dB) <5.908 (1 dB) <5.908 (3 dB) <5.908 (4 dB)

Table 3: Detection alternatives for the CME and FCME algorithms as a function of the relative height of the ith lobe αi, i = 1, . . . ,n, and
threshold multiplier T . The used functions are f (k, j) (7), g(k, j) (9), and fF( f ) (11). Alternatives for the detection: all the lobes are detected
(a1) at the same time, (a2) one-by-one, and (a3) other possible alternations. Alternative “impossible detection” gives general limits when the
signal is detectable and when it is not.

CME algorithm FCME algorithm

(a1) αn > f (0,n) αn > T − 1

1 < T < g(0,n) T < αn + 1

(a2) αk+1 > f (k, 1) and αk+1 < f (k, 2) for all k —∗

g(k, 2) < T < g(k, 1) for all k —∗

(a3) αi > T fF(k)− 1 and αi+1 < T fF(k)− 1∗∗

g(0,n) < T < g(k, 2) (αi+1 + 1)/ fF(k) < T < (αi + 1)/ fF(k)∗∗

Impossible detection αi < f (0, 1) α1 < T fF(k)− 1

T > g(0, 1) T > (α1 + 1)/ fF(k)
∗

Cannot be detected one-by-one.
∗∗Lobes S1W1, . . . , SiWi are detected.

The probability of finding the random signal for different
values of T is presented in Figure 7. The theoretical detection
limits are based on (10) and (13) for the CME and FCME
algorithms, respectively. The total bandwidth is W = 64
samples, so the bandwidth of the signal is 1.6% of the
system’s bandwidth. Two cases are studied: the degrees of
freedom is Θ = 10 or 1000, and SNR is 7 dB or 34 dB,
respectively. When SNR is 7 dB and Θ = 10, only the results
for the CME algorithm are presented because the results
for the FCME algorithm are equivalent. When Θ = 10
and SNR is 7 dB, the simulation results do not correspond
to the theory as well as when Θ = 1000 and SNR is
34 dB, where the simulation results and theory match very
well, that is, the simple theoretical rules predict detectability
(100%) quite reliably. It can be noticed that the higher SNR
and Θ are, the better the theory and simulation results
will match. In the case of smaller SNR = 7 dB and higher
Θ = 1000, the theoretical limit for detection is T = 1.01,
and the simulated detection probability achieves 50% when
T = 1.04. Instead, with higher SNR = 34 dB and smaller
Θ = 10, the theoretical limit for detection is T = 56.8
(CME algorithm) and the simulated detection probability
drops to 50% when T = 57. It can also be seen that in all of
the studied cases, the theoretical detection limits in terms of
T correspond to around 50% probability of detection in the
simulations. When SNR is 7 dB and Θ = 10, the theoretical
limit of detection using the CME algorithm is about T = 1.97
(10). This limit corresponds to the false alarm probability
about 5% as can be seen from Figure 8, that shows the
value of T versus the probability of false alarm for both
the CME and FCME algorithms. The theoretical curve was
calculated in the noise-only case and the simulations were

performed when both the signal and noise were present, but
only noise-only radiometer channels were investigated. The
larger W is, the better the results coincide with the theory.
When the number of samples is small (e.g., W = 10), the
obtained false alarm rate will differ from the nominal one.
In that case, the FCME algorithm performs worse than the
CME algorithm. This is because the size of the initial set
of the FCME algorithm is too small (only one sample),
and, consequently, the FCME algorithm does not converge.
Obviously, the initial set size should be larger.

Next, a more realistic case when the width of the main
lobe is more than one sample is studied. Herein, the mean
of the lobe samples presents the amplitude of the lobe α1.
The probability of finding the signal for different values of
T using the CME and FCME algorithms is presented in
Figure 9. Here, Θ = 1000, γ = 34 dB, W = 64, and the
width of the main lobe is 4, 10, or 20 samples, that is, 6.25%,
15.5%, or 31.25% of the system’s bandwidth, respectively.
The theoretical detection limits were calculated based on (10)
and (13). It can be seen that the theory and simulations
match very well.

4.2. OFDM Signal. OFDM systems are used, for example, in
high data rate applications, as in wireless local area networks
(WLAN), and their detection is of interest in cognitive
systems. SNR is defined to be per OFDM symbol in the
whole bandwidth. The OFDM signal is, on average, well
concentrated having only one lobe with relative height of
α1 = S1/S = γW/W1 and relative width of β1 = W1/W .
Hence, the detection is possible if (9) T < (1 + α1)/(1 +
α1β1) = (1 + γ(W/W1)/(1 + γ). When SNR γ is large, this
reduces to T < W/W1.
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Figure 7: Threshold multiplier T versus the probability of finding
the signal using the CME and FCME algorithms. Random signal
and channelized radiometer. γ = 7 or 34 dB, Θ = 10 or 1000, and
W = 64. Signal bandwidth is 1.6% of the system’s bandwidth.

In the simulations the system bandwidth is W = 512
samples, there is one OFDM signal with 68 active subcarriers
and the prefix length P is 12.5% of the length of the total
OFDM symbol length as, for example, in DVB-T (Terrestrial)
systems, that is, oversampled OFDM signals. For these
parameters, the theoretical limit of detection in the case of
the CME algorithm is T = 5.29 (10). The Welch spectrum
estimator with 50% overlapping was used. The length of the
FFT was 512 samples. The signal has only the main lobe and
W1 is more than one sample. Average amplitude presents the
amplitude of the lobe α1.

The probability of finding all the samples of the main
lobe as a function of the threshold multiplier T is presented
in Figure 10. The theoretical detection limits that will express
the upper bound of T (vertical lines) are based on (10). Here,
the CME algorithm is used with two SNR values, γ = 2 and
10 dB. Signal bandwidth is 13% of the systems’s bandwidth.
Furthermore, L = 1000, that is, long averaging is used. It
can be seen that the simulated detection limits are somewhat
higher than the theoretical ones. This is mainly because the
used signal is real-life, that is, random, or nonblock lobe like.
However, the difference is not large and the theoretical limit
explains rather well 100% detection point. The higher L is,
the better the simulation results and theory will match each
other. That is because the analysis is for flat signals, and the
more averaging is used, the more flat-like the spectrum is.

The probability of finding all the samples of the main
lobe as a function of the bandwidth of the signal using the
CME and FCME algorithms is presented in Figure 11. In the
case of the CME algorithm, the theoretical limit of detection
that will express the upper bound of the signals bandwidth is
calculated based on (8). In the case of the FCME algorithm,
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Figure 8: Threshold multiplier T versus the probability of false
alarm using the CME and FCME algorithms. Random signal and
channelized radiometer. Θ = 10, Γ = 10, W = 10 or 64.

the size of the clean initial set defines the theoretical limit of
detection. Here, T = 2.3026, L = 100 and the initial set of
the FCME algorithm includes 64 samples, that is, 12.5% of
the total number of the samples. Three different SNRs are
used: γ = −6, 2, and 10 dB. It can be seen that the larger the
SNR is, the better the simulation results match the theory
(CME algorithm). In the case of the FCME algorithm, the
cleanliness of the initial set is the limiting factor, that is,
the theoretical limit is 87.5%. The theory and simulation
matches almost perfectly.

It is interesting to observe that the SNR per OFDM
symbol used in the simulations were lower than it is required
in the real-life applications. In practical systems, SNR per
subcarrier should be at least 0 dB for reliable communication
with coding. This means that the corresponding required
SNR per OFDM symbol in the whole bandwidth is about
18 dB with given parameters, whereas in simulations it was
≤10 dB. Therefore, it is expected that analysis is well valid in
practice. Furthermore, it is noted that according to extensive
simulations, the number of the active subcarriers, the length
of the prefix as well as the length of the FFT in the detector
have only a small impact (max about 10%) to the results.
Therefore, the results are also valid for other OFDM-based
systems.

5. Conclusions and Remarks

This paper addressed the analysis of the backward and
forward CME algorithms. Computationally attractive CME
algorithms are iteratively operating concentrated signal
detection methods that, for example, are robust for
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frequency-shifting. The operation of the algorithms under
different conditions was of interest. Simple limits for fast
checking if a signal is detectable or not were presented and
SNR values that limit the signal detection were derived.
The validity of the analysis was confirmed with extensive
computer simulations using both random and OFDM
signals. It was noticed that the wider the bandwidth of the
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Figure 11: Probability of finding all the samples of the main lobe
as a function of the width of the signal using the CME and FCME
algorithms. OFDM signal, P = 64, L = 100 and T = 2.3026.
system and the larger the SNR, the better the simulations
coincide with the theory. The SNR values used in the
simulations are comparable with practical OFDM systems.
It can be concluded that the presented detection limits can
be used, for example, in real-life cognitive radio systems. In
practical detection applications, false detections as well as
signal separation may cause problems. However, these can be
avoided using the extension of the CME algorithms, namely,
the localization algorithm based on double-thresholding
(LAD), which makes clustering after the CME/FCME detec-
tion. Thus, the analysis presented here is valid also for the
detection part of the LAD method.

Appendix

The CME Algorithm (Derivation of (7)). In the case of the
CME algorithm, the mean of the initial set is calculated based
on all the samples, so in (3), Q = N . Geometrically, the mean
of the initial set can be defined to be

ζ = SW +
∑n

i=1 SiWi

W
. (A.1)

Let Sp ∈ {S1, . . . , Sn} denote one arbitrary lobe. When
keeping in mind that Sp = αpS and Wp = βpW , we get from
(2) that

ζp > T

⎛
⎝S + S

n∑

i=1

αiβi

⎞
⎠. (A.2)

Noticing that ζp = |rp|2 = S + Sp = S + αpS, (A.2) reduces to
the form

S + αpS > T

⎛
⎝S + S

n∑

i=1

αiβi

⎞
⎠ (A.3)
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which reduces into

1 + αp > T

⎛
⎝1 +

n∑

i=1

αiβi

⎞
⎠ (A.4)

or

αp > T − 1 + T
n∑

i=1

αiβi. (A.5)

Furthermore,

αp − Tαpβp > T − 1 + T
n∑

i=1,i /= p

αiβi,

αp >
T − 1 + T

∑n
i=1,i /= p αiβi

1− Tβp
.

(A.6)

When taking into account that j = 1, . . . ,n is the step size
and k = 0, . . . ,n is the number of lobes that have already
been rejected in the previous iterations, i = 1 → i = k + 1,
p → k + j, and the widths of the already rejected k lobes
have to be taken into account. That is, W in (A.1) is replaced
by W −∑k

i=1 Wi in the numerator and in the denominator.
So, the conditions for the heights of the detected lobes can be
expressed using function

f
(
k, j

) =
T − 1 + T

∑n
i=k+1,i /= k+ j

(
αiβi/

(
1−∑k

i=1 βi
))

1− T
(
βk+ j /

(
1−∑k

i=1 βi
)) .

(A.7)

Note that when k = 0, 1−∑k
i=1 βi = 1.

The FCME Algorithm (Derivation of (11)). The FCME algo-
rithm operates forward, so at the first iteration, the clean
(initial) set contains only part of the samples. As a forward-
type method, the size of the clean set increases in every
iteration. That is, when lobe Sp is added to the clean set, it
means that also the smaller lobes Sp+1, . . . , Sn are added to the
clean set. Let us assume that the initial set is clean of outliers.
As a point of geometrical view, the mean of the clean set
Q when it contains k lobes includes the outlier-free samples
SWclean which, for one, consists of initial set samples and the
rest of the outlier-free samples; samples from k lobes, that
is,
∑k

i=1 Sn−i+1Wn−i+1; and noise samples below these k lobes,

that is,
∑k

i=1 SWn−i+1. Thus, the width of the current clean
set includes the samples without any lobes, that is, outlier-
free samples, and the k weakest lobes (n,n− 1, . . . ,n− k + 1)
already (falsely) added to the clean set. Given that, ζ can be
defined using function

ζ = SWclean +
∑k

i=1 Sn−i+1Wn−i+1 +
∑k

i=1 SWn−i+1

Wclean +
∑k

i=1 Wn−i+1

. (A.8)

We get from (2) that lobe Sn−k− j is detected, that is, lobes
Sn−k− j+1, . . . , Sn−k are added to the clean set, if

Sn−k− j + S > T

×
(
SWclean +

∑k
i=1 Sn−i+1Wn−i+1 +

∑k
i=1 SWn−i+1

Wclean +
∑k

i=1 Wn−i+1

)
.

(A.9)

When keeping in mind that Sp = αpS and Wp = βpW , we
get that

Sαn−k− j + S > T

×
(
SWβclean + SW

∑k
i=1 αn−i+1βn−i+1 + SW

∑k
i=1 βn−i+1

Wβclean + W
∑k

i=1 βn−i+1

)

(A.10)

or equivalently

αn−k− j + 1 > T

(
βclean +

∑k
i=1 αn−i+1βn−i+1 +

∑k
i=1 βn−i+1

βclean +
∑k

i=1 βn−i+1

)

(A.11)

or

αn−k− j > T

(
βclean +

∑k
i=1 αn−i+1βn−i+1 +

∑k
i=1 βn−i+1

βclean +
∑k

i=1 βn−i+1

)
− 1

(A.12)

which equals

αn−k− j > T fF(k)− 1. (A.13)

Note that the FCME algorithm is able to detect all the lobes
or only part of the lobes. Detecting lobes one-by-one is not
possible.

List of Symbols

αi = Si/S: Relative height of the ith lobe,
βclean =Wclean/W : Relative width of the clean set,
βi =Wi/W : Relative width of the ith lobe,
Γ = 2Ei/N0: Noncentrality parameter,
γ: Signal-to-noise ratio (SNR),
ζi = |ri|2: Squared sample,
ζ = (1/Q)

∑Q
i=1 ζi: The mean,
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ηi: Noise process,
Θ = 2TRWR: Degrees of freedom,
ξi = ζi/ζ : Normalized sample,
C: Shape parameter (usually the

covariance matrix of r) (MSD),
ci: Concentrated signal sample,
Ei: Energy of the signal in the ith

radiometer,
fF(k): Function for FCME,
f (k, j): Function for CME,
gF(k): Another function for FCME,
g(k, j): Another function for CME,
h: Initial set includes part of the

samples from the hth lobe,
j = 1, . . . ,n: Step size, k + j � n,
k = 0, . . . ,n: Number of rejected (CME) or

added (FCME) from/to the set Q
in the previous iterations,

L: Overlapping blocks in the Welch
spectrum estimate,

n: Number of the lobes,
N : Total number of samples,
Nc: Number of samples in the initial

set,
N0: Noise power density,
P: Length of the prefix,
Q: Clean set (in the first iteration

called as an initial set),
r: Sample vector (MSD),
r: Location parameter (usually the

mean of r) (MSD),
ri: ith scalar sample,
si: Noise-like signal sample,
S: Height of the base lobe,
Si: Height of the ith lobe,
T : Threshold multiplier,
Th: Threshold,
TR: Integration time of the

channelized radiometer,
V : Number of channels in the

channelized radiometer,
W : Width of the base signal (= total

number of samples = BW),
Wclean =W −∑n

i=1 Wi: Number of clean samples,
Wi: Width of the is lobe,
Winit = κW , 0 < κ < 1: Size of the initial set,
WOFDM: Bandwidth of the OFDM signal,
WR: Bandwidth of the one channel in

the channelized radiometer,
x: Initial set includes x samples of the

main lobe.
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