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This survey paper deals with the use of antireflective boundary conditions for deblurring problems where the issues that we
consider are the precision of the reconstruction when the noise is not present, the linear algebra related to these boundary
conditions, the iterative and noniterative regularization solvers when the noise is considered, both from the viewpoint of the
computational cost and from the viewpoint of the quality of the reconstruction. In the latter case, we consider a reblurring
approach that replaces the transposition operation with correlation. For many of the considered items, the anti-reflective algebra
coming from the given boundary conditions is the optimal choice. Numerical experiments corroborating the previous statement
and a conclusion section end the paper.

1. Introduction

Formation of a blurred signal/image is typically modeled as
a linear system:

Af = g, (1)

where f is the true object, g is the blurred object, and
A models the blurring process. Obtaining an accurate
deblurring model (i.e., the matrix A) requires essentially two
main pieces of information:

(1) identification of the blur operator, called a point
spread function (PSF),

(2) choosing an appropriate boundary condition (BC),
assuming that the observed image is always finite.

The identification of the blur operator is related to the
infinite dimensional problem and it decides the essential
structure of the matrix A. In the spatially invariant case,
due to the shift invariance of the blurring, for image
deblurring we deduce a two-level Toeplitz structure (i.e., a
two-level Toeplitz matrix or in a different language a block
Toeplitz matrix with Toeplitz blocks). The choice of the BCs
influences small sections of A by a low-rank plus low-norm
term. However, these correction matrices have a substantial
impact in two important directions:

(a) precision of the reconstruction especially close to the
boundaries (presence of ringing effects);

(b) cost of the computation for recovering the “true”
image from the blurred one with or without noise.

On the other hand, the involved correction matrices do not
modify significantly the spaces of ill-conditioning (where the
coefficient matrix A shows small eigenvalues). This happen
because the global matrix is of convolution type. Therefore,
the eigenvectors look globally like the Fourier vectors mk

(they are exactly the Fourier vectors when periodic BCs are
imposed). Conversely, the small rank matrices induced by
the chosen BCs are not generic since they are necessarily
localized in space. More specifically, in one dimension there
exists k � n, n being the size of the matrix, such that
the low-rank correction belongs to the span of canonical
matrices Ei, j = eieTj with i, j ≤ k and/or i, j ≥ n +
1 − k, ek being the kth vector of the canonical basis. In
that case, we observe ‖Ei, jmk‖2 � ‖mk‖2 with ‖ · ‖2

being the classical Euclidean norm and hence the term
Ei, j is unable to modify significantly the characterization
in frequencies of the eigenspaces. In actuality, due to the
relation ‖Ei, jmk‖2 � ‖mk‖2, the effect induced by any
Ei, j is more or less uniformly distributed in all the Fourier
directions.
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For image deblurring, a classical choice is to use zero
(Dirichlet) BCs (see Andrews and Hunt [1], pp. 211−220)
where we assume that the values of the image f outside
the domain of consideration are zero. The corresponding
blurring matrix is two-level Toeplitz, which is known to be
computationally expensive to invert when direct solvers are
used (see for instance the review [2]): the fastest available
direct Toeplitz solver is of O(n4) operations for an n2-by-
n2 two-level Toeplitz matrix [3]. In addition, we have no
good news when applying iterative methods due to the
negative results in [4–6], where it is proved that we should
not expect the classical matrix algebra preconditioners to
lead to optimal iterative solvers in the ill-conditioned case.
More specifically, we lose the strong cluster at unity of
the preconditioned matrix sequence [4, 5] and the spectral
boundedness of the preconditioned matrix sequence and
its inverse [6]. Therefore, by the convergence analysis of
Axelsson and coworkers (see e.g., the pioneering paper [7]),
we cannot expect optimal convergence (i.e., a convergence
rate independent of the matrix size) both for Krylov type
methods and for classical stationary solvers (with the partial
exception of multigrid type techniques, see [8, 9] for a recent
adaptation in the context of image deblurring). In image
restoration problems, we consider regularized problems so
that the previous statement is less relevant; however, for
linear systems associated to the Tikhonov regularization, the
optimality could guarantee a convergence speed independent
of the regularizing parameter (for a discussion on this
kind of robustness see [9, 10]). Moreover, an image has
boundaries, and if the true image is not close to zero at
the boundaries, it means that Dirichlet BCs may introduce
an artificial discontinuity, which in turn results in the well-
known Gibbs phenomenon (observed as a ringing effect
in the reconstructed image). Therefore, we face substantial
problems both with respect to (a) and (b). A possibility
for drastically reducing the computational cost is to impose
periodic BCs since this implies that A is a two-level circulant
matrix which can be efficiently inverted by means of few
fast Fourier transforms (FFTs). In this case, we have a good
solution to problem (b) (see Gonzalez and Woods, [11] p.
258) but often the image at the right (upper) boundary has
nothing to do with the image at the left (lower) boundary.
Again this implies that we are introducing an artificial
discontinuity which in turn leads to ringing effects. An
important proposal in the direction of reducing the ringing
effect and of designing fast algorithms is the one by Ng
et al. [12] (see also Strang, [13] page 145, and Chan et
al. [14]). In particular, they consider Neumann (reflective)
BCs, which means that the data outside the domain of
consideration is taken as a reflection of the data inside.
The approach is fast for circularly symmetric PSFs since
the corresponding blurring matrix belongs to a special two-
level algebra simultaneously diagonalized by the fast cosine
transform (DCT III). Because a two-level DCT III requires
only real multiplications and can be done at half of the
cost of a single FFT (see Rao and Yip, [15] pp. 59-60),
inversion of these matrices is substantially faster than those
obtained from zero BCs and is comparable to (or little
better than) the case of periodic BCs. Thus, for circularly

symmetric PSFs, requirement (b) is satisfied when using
reflective BCs. Moreover, the artificial boundary disconti-
nuities are eliminated, and therefore the ringing effects are
strongly reduced. However, although reflection guarantees
continuity, it generally fails to guarantee continuity of the
normal derivative except for the nongeneric case where
the normal derivative is zero at the boundary. Therefore if
the image is smooth, then the reflective BCs only save the
continuity but introduce an artificial discontinuity of the
normal derivative (though requirement (b) is substantially
improved with respect to periodic and Dirichlet BCs). In the
image processing literature, other methods have also been
proposed to assign boundary values as a local image mean,
or are obtained by extrapolation methods in order to insure
continuity (see Lagendijk and Biemond [16], p. 22, and the
references therein). However, these techniques that meet the
approximation requirement (a), generally do not satisfy the
computational requirement (b) so we still have to face a
difficult linear algebra problem.

Here we follow the approach in [17] in which new BCs
are proposed that can further reduce ringing effects and
that, under the assumption of symmetry of the PSF, leads
to a matrix A belonging to the sine algebra of type I for
which fast (real) algorithms are available. More precisely, we
consider the use of antireflective BCs (AR-BCs) where the
data outside the domain of consideration are taken as an
antireflection of the data inside. Consider the original signal
˜f = (. . . , f−m+1, . . . , f0, f1, . . . , fn, fn+1, . . . , fn+m, . . .)T and the

normalized blurring function given by

h = (. . . , 0, 0,h−m,h−m+1, . . . ,h0, . . . ,hm−1,hm, 0, 0, . . .)T ,

m
∑

j=−m
hj = 1.

(2)

The blurred signal g is the convolution of h and ˜f and
consequently gi =

∑∞
j=−∞ hj fi− j . The deblurring problem

is to recover the vector f = ( f1, . . . , fn)T given the blurring
function h and a blurred signal g = (g1, . . . , gn)T of finite
length, that is,

g = ˜A˜f ,

˜A =
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⎟

⎠
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(3)

Thus the blurred signal g is determined not by f only, but
also by ( f−m+1, . . . , f0)T and ( fn+1, . . . , fn+m)T and the linear
system (3) is underdetermined. To overcome this, we make
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certain assumptions (called BCs) on the unknown boundary
data f−m+1, . . . , f0 and fn+1, . . . , fn+m in such a way that the
number of unknowns equals the number of equations.

In terms of the objects defined so far, we recall that zero
(Dirichlet) BCs means f j = fn+ j = 0 for all j in (3) so that
a Toeplitz structure is encountered. If we consider periodic
BCs we set f j = fn+ j , for all j in (3) and the matrix system in
(3) becomes n-by-n circulant so that it can be diagonalized
by the discrete Fourier matrix and the above system can be
solved by using three FFTs (one for finding the eigenvalues
of the blurring matrix and two for solving the system). For
the Neumann BCs, we assume that the data outside f are a
reflection of the data inside f (refer to [12]) so that f1− j = f j
for j = 1, . . . ,m and fn+ j = fn+1− j for all j = 1, . . . ,m in
(3). Thus (3) becomes C f = g, where C is neither Toeplitz
nor circulant but it is a special n-by-n Toeplitz plus Hankel
matrix which is diagonalized by the discrete cosine transform
provided that the blurring function h is symmetric, that
is, hj = h− j for all j in (2). It follows that the above
system can be solved by using three transforms DCT III in
O(n logn) operations (refer to [12]). The latter approach is
computationally interesting since a DCT III requires only real
operations and is about twice as fast as the FFT (see [15],
pp. 59-60), and this is true in two dimensions as well. With
the help of a different Toeplitz plus Hankel structure, we
establish similar results for the antireflective BCs both in one
dimension and two dimensions. It is worth finally to remark
that La Spina has analyzed [18] the BCs associated with all
the known trigonometric algebras: the interesting facts are
two, first some matrix algebras do not lead to any boundary
condition, second the highest precision is reached by the
classical DCT III algebra and by the classical sine transform
algebra of type I which ensures only the continuity of the
signal. Therefore, in this sense we can claim that among the
known algebras the antireflective one is that related to the
most precise reconstructions.

The paper is organized as follows. In the Section 2 we
examine the antireflective BCs, the related algebra, and the
related transforms also from a computational viewpoint.
At the end of Section 2 we briefly consider the multilevel
extension while in Section 3 we study some regularization
techniques specifically adapted to the features of the antire-
flective algebra. Finally, Section 4 contains numerical experi-
ments both with Tikhonov like solvers (with reblurring) and
with Krylov techniques with early termination as stopping
criterion. A final section of conclusions and future problems
end the paper.

2. The Algebra of AR Matrices

In this section we describe the AR-BCs and the algebra
ARn ≡ AR, n ≥ 3, of matrices arising from the imposition
of AR-BCs.

2.1. The Antireflective BCs. When defining the antireflective
boundary conditions, we assume that the data outside f are
an antireflection of the data inside f . More precisely, if x is
a point outside the domain and x∗ is the closest boundary
point, then we have x = x∗ − δx and the quantity f (x) is

approximated by f (x∗) − ( f (x∗ + δx) − f (x∗)) so that we
impose

f1− j = f1 −
(

f j+1 − f1
)

= 2 f1 − f j+1,

for all j = 1, . . . ,m,

fn+ j = fn −
(

fn− j − fn
)

= 2 fn − fn− j ,

for all j = 1, . . . ,m

(4)

in (3). If we define the vector z whose components are zj =
2
∑m

k= j hk for j ≤ m and zero otherwise and if we define the
vector w whose components are wn+1− j = 2

∑m
k= j h−k for j ≤

m and zero otherwise, then (3) becomes

˜A˜f =
[

zeT1 − (0 | Tl)˜J + T − (Tr | 0)̂J + weTn
]

˜f = g, (5)

where ek is the kth vector of the canonical basis, ˜J =
(

0 0
0 J

)

,

̂J =
(

J 0
0 0

)

with J denoting the n− 1 dimensional flip matrix
having entries [J]s,t = 1 if s + t = n + 1 and zero otherwise,
and where the matrices Tl,T , and Tr are given by
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(6)

Therefore, the matrices (0 | Tl)˜J and (Tr | 0)̂J involved in (5)
take the form
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We remark that the coefficient matrix A in (5) is neither
Toeplitz nor circulant, but it is a Toeplitz plus Hankel plus
2 rank correction matrix, where the correction is placed at
the first and the last column. We will show that the linear
system (5) can be reduced to an (n−2) by (n−2) new system
whose coefficient matrix can always be diagonalized by the
discrete sine transform DST I (associated with the τ class)
matrix provided that the blurring function h is symmetric,
that is, hj = h− j for all j in (2). It follows that (5) can
be solved by using three FSTs in O(n logn) operations. This
approach is computationally attractive as FST requires only
real operations and is about twice as fast as the FFT and
hence solving a problem with the AR BCs is twice as fast as
solving a problem with the periodic BCs, has the same cost
as solving a problem with the reflective BCs, and one gains
one order of precision due to the C1 continuity. Moreover,
all these remarks stand in two dimensions as well and indeed
an abstract treatment of the two-level and multilevel settings
is reported in Section 2.5.

Finally it is worth mentioning that the use of AR BCs
has been considered by several authors (see e.g., [18–26]).
In particular in [24] the mean BCs have been introduced as
a slight variation of the AR BCs. The order of approximation
is the same but the hidden constants are smaller so that
the mean BCs are generally more precise than the AR BCs.
However, the resulting matrices do not form an algebra
so that we cannot define a new transform and this is a
confirmation of the negative result found in [18].

2.2. The τ Algebra. Let Q be the type I sine transform matrix
of order n (see [27]) with entries

[Q]i, j =
√

2
n + 1

sin
(

jiπ

n + 1

)

, i, j = 1, . . . ,n. (8)

It is known that the real matrix Q is orthogonal and
symmetric (Q−1 = QT = Q). For any n-dimensional
real vector v, the matrix-vector multiplication Qv (DST-I
transform) can be computed in O(n log(n)) real operations
by using the algorithm FST-I. Let τ be the space of all the
matrices that can be diagonalized by Q:

τ = {QDQ : Dis a real diagonal matrix of size n
}

. (9)

Let X = QDQ ∈ τ, then QX = DQ. Consequently, if we
let e1 denote the first column of the identity matrix, then the
relationshipQXe1 = DQe1 implies that the eigenvalues [D]i,i
of X are given by [D]i,i = [Q(Xe1)]i/[Qe1]i, i = 1, . . . ,n.
Therefore, the eigenvalues of X can be obtained by applying
a DST-I transform to the first column of X and, in addition,
any matrix in τ is uniquely determined by its first column.

Now we report a characterization of the τ class, which is
important for analyzing the structure of AR-matrices. Let us
define the shift of any vector h = [h0, . . . ,hn−1]T as σ(h) =
[h1,h2, . . . ,hn−1, 0]T . According to a Matlab-like notation,
we define T(x) to be the n-by-n symmetric Toeplitz matrix
whose first column is x and H(x, y) to be the n-by-n Hankel
matrix whose first and last column are x and y, respectively.
Every matrix of the class (9) can be written as (see [27])

T(h)−H(σ2(h), Jσ2(h)
)

, (10)

where h = [h0, . . . ,hn−1]T ∈ Rn and J is the flip matrix. The
structure defined by (10) means that matrices in the τ class
are special instances of Toeplitz-plus-Hankel matrices.

Moreover, the eigenvalues of the τ matrix in (10) are
given by the cosine function h(y) evaluated at the grid points
vector Gn = [kπ/(n + 1)]nk=1, where

h
(

y
) =

∑

| j|≤n−1

hj exp
(

i j y
)

, (11)

i2 = −1, and hj = h| j| for | j| ≤ n− 1. The τ matrix in (10) is
usually denoted by τ(h) and is called the τ matrix generated
by the function or symbol h = h(·) (see the seminal paper
[27] where this notation was originally proposed).

2.3. The AR-Algebras AR. Let h = h(·) be a real-
valued cosine polynomial of degree l and let τk(h) ≡
Q diag(h(Gk))Q (note that τk(h) coincides with the matrix
in (10)-(11), when l ≤ k − 1). Hence the Fourier coefficients
of h are such that hi = h−i ∈ R with hi = 0 if |i| > l, and for
k = n− 2 we can define the one-level ARn(·) operator

ARn(h) =

⎡

⎢

⎢

⎢

⎣

h(0)

vn−2(h) τn−2(h) Jvn−2(h)

h(0)

⎤

⎥

⎥

⎥

⎦

, (12)

where vn−2(h) = τn−2((φ(h))(·))e1 and

(

φ(h)
)(

y
) = h

(

y
)− h(0)

2
(

cos
(

y
)− 1

) . (13)

It is interesting to observe that h(y)−h(0) has a zero of order
at least 2 at zero (since h is a cosine polynomial) and therefore
φ(h) = (φ(h))(·) is still a cosine polynomial of degree l − 1,
whose value at zero is −h′′(0)/2 (in other words the function
is well defined at zero).

As proved in [28], with the above definition of the
operator ARn(·), we have

(1) αARn(h1) + βARn(h2) = ARn(αh1 + βh2),
(2) ARn(h1)ARn(h2) = ARn(h1h2),

for real α and β and for cosine functions h1 = h1(·) and h2 =
h2(·).

These properties allow us to define AR as the algebra
(closed under linear combinations, product, and inversion)
of matrices ARn(h), with h being a cosine polynomial. By
standard interpolation arguments it is easy to see that AR
can be defined as the set of matrices ARn(h), where h is
a cosine polynomial of degree at most n − 3. Therefore,
it is clear that dim(AR) = n − 2. Moreover, the algebra
AR is commutative thanks to item 2, since h1(y)h2(y) =
h2(y)h1(y) at every y. Consequently, if matrices of the form
ARn(h) are diagonalizable, then they must have the same
set of eigenvectors [29]. This means there must exist an
“antireflective transform” that diagonalizes the matrices in
AR. Unfortunately this transform fails to be unitary, since
the matrices in AR are generically not normal. However the
AR-transform and its inverse are close in rank to orthogonal
linear mappings and only moderately ill conditioned.
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Following the analysis given in [17], if the blurring func-
tion (the PSF) h is symmetric (i.e., hi = h−i, for all i ∈ Z),
if hi = 0 for |i| ≥ n − 2 (degree condition), and if h is
normalized so that

∑m
i=−m hi = 1, then the structure of the

n× n antireflective blurring matrix A is

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

z0 0T 0
z1 zm
... ̂A

...
zm z1

0 0T z0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (14)

where A1,1 = An,n = 1, zi = hi+2
∑m

k=i+1 hk, ̂A has order n−2
and

̂A = T(h)−H(σ2(h), Jσ2(h)
)

. (15)

According to the brief discussion of Section 2.2, relation (15)
implies that ̂A = τn−2(h) with h(y) = h0 + 2

∑m
k=1 hk cos(ky)

(see (10) and (11)). Moreover in [28] it is proved that A =
ARn(h).

2.4. Eigenvalues and Eigenvectors of AR-BC Matrices. We first
describe the spectrum of AR-BC matrices, under the usual
mild degree condition (i.e., the PSF h has finite support),
with symmetric, normalized PSFs. Then we describe the
eigenvector structure and we introduce the AR-transform.

The spectral structure of any AR-BC matrix, with
symmetric PSF h, is concisely described in the following
result.

Theorem 1 (see [28]). Let the blurring function (PSF) h be
symmetric (i.e., hs = h−s), normalized, and satisfying the
usual degree condition. As a consequence the eigenvalues of the
n × n AR-BCs blurring matrix A in (14), n ≥ 3, are given by
h(0) = 1 with multiplicity two and h(Gn−2).

The proof can be easily derived by (12) which shows that
the eigenvalues of ARn(h) are h(0) with multiplicity 2 and
those of τn−2(h), that is, h(Gn−2), with multiplicity 1 each.

Here we will determine the eigenvectors of every matrix
ARn(h). In particular, we show that every AR-BCs matrix
is diagonalizable, and we demonstrate independence of the
eigenvectors from the symbol h. With reference to the

notation in (8)−(11), calling q(n−2)
j the j th column of Qn−2,

and y(n−2)
j the jth point of Gn−2, j = 1, . . . ,n− 2, we have

ARn(h)

⎡

⎢

⎣

0

q(n−2)
j

0

⎤

⎥

⎦ =

⎡

⎢

⎣

h(0)
vn−2(h) τn−2(h) Jvn−2(h)

h(0)

⎤

⎥

⎦

⎡

⎢

⎣

0

q(n−2)
j

0

⎤

⎥

⎦

=

⎡

⎢

⎣

0

τn−2(h)q(n−2)
j

0

⎤

⎥

⎦ = h
(

y(n−2)
j

)

⎡

⎢

⎣

0

q(n−2)
j

0

⎤

⎥

⎦,

(16)

since q(n−2)
j is an eigenvector of τn−2(h) and h(y(n−2)

j )
is the related eigenvalue. Due to the centrosymmetry of

the involved matrix, if [1, pT , 0]
T

is an eigenvector of
ARn(h) related to the eigenvalue h(0), then the other is its

flip, that is, [ 0, (Jp)T , 1]
T

. Let us look for this eigenvector
by imposing the equality

ARn(h)

⎡

⎢

⎣

1
p
0

⎤

⎥

⎦ = h(0)

⎡

⎢

⎣

1
p
0

⎤

⎥

⎦, (17)

which is equivalent to seeking a vector p that satisfies

vn−2(h) + τn−2(h)p = h(0)p. (18)

Since vn−2(h) = τn−2(φ(h))e1 by definition of the operator
vn−2(·) (see (12) and the lines below), and because of the
algebra structure of τn−2 and thanks to the above relation,
we deduce that the vector p satisfies the relation

τn−2(h− h(0))
[−L−1

n−2e1 + p
] = 0, (19)

where Ln−2 is the discrete one-level Laplacian, that is, Ln−2 =
τn−2(2 − 2 cos(·)). Therefore, by (19), the solution is given
by p = L−1

n−2e1. If τn−2(h − h(0)) is invertible (as it happens
for every nontrivial PSF, since the unique maximum of the
function is reached at y = 0, which is not a grid point of
Gn−2), then the solution is unique. Hence, independently of
h, we have

ARn(h)

⎡

⎢

⎣

1
p Qn−2 Jp

1

⎤

⎥

⎦

=

⎡

⎢

⎣

1
p Qn−2 Jp

1

⎤

⎥

⎦

⎡

⎢

⎣

h(0)
diag(h(Gn−2))

h(0)

⎤

⎥

⎦.

(20)

Now we observe that the jth eigenvector is unitary, j =
2, . . . ,n − 1, because Qn−2 is unitary: we wish to impose
the same condition on the first and the last eigenvector. The
interesting fact is that p has an explicit expression. By using
standard finite difference techniques, it follows that pj = 1−
j/(n − 1) so that the first eigenvector is exactly the sampling
of the function 1−x on the grid j/(n−1) for j = 0, . . . ,n−1.

Its Euclidean norm is αn =
√

∑n−1
j=0 j2/(n− 1) ∼ √n/3, where,

for nonnegative sequences βn, γn, the relation γn ∼ βn means
γn = βn(1+o(1)). In this way, the (normalized) AR-transform
can be defined as

Tn =

⎡

⎢

⎣

α−1
n

α−1
n P Qn−2 α−1

n JP
α−1
n

⎤

⎥

⎦. (21)

Remark 2. With the normalization condition in (21), all
the columns of Tn are unitary. However orthogonality is
only partially fulfilled since it holds for the central columns,
while the first and last columns are not orthogonal to each
other, and neither one is orthogonal to the central columns.
We can solve the first problem: the sum of the first and
of the last column (suitably normalized) and the difference
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of the first and the last column (suitably normalized)
become orthonormal, and are still eigenvectors related to

the eigenvalue h(0). However, since q(n−2)
1 has only positive

components and the vector space generated by the first and
the last column of Tn contains positive vectors, it follows that
Tn cannot be made orthonormal just by operating on the first
and the last column. Indeed, we do not want to change the
central block of Tn since it is related to a fast O(n log(n)) real
transform and hence, necessarily, we cannot get rid of this
quite mild lack of orthogonality.

Remark 3. There is a suggestive functional interpretation
of the transform Tn. When considering periodic BCs, the
transform of the related matrices is the Fourier transform:
its jth column vector, up to a normalizing scalar factor, can
be viewed as a sampling, over a suitable uniform gridding of
[0, 2π], of the frequency function exp(−i j y). Analogously,
when imposing reflective BCs with a symmetric PSF, the
transform of the related matrices is the cosine transform:
its j th column vector, up to a normalizing scalar factor,
can be viewed as a sampling, over a suitable uniform
gridding of [0,π], of the frequency function cos( j y). Here
the imposition of the antireflective BCs can be functionally
interpreted as a linear combination of sine functions and
of linear polynomials (whose use is exactly required for
imposing C1 continuity at the borders).

The previous observation becomes evident in the expres-
sion of Tn in (21). Indeed, by defining the one-dimensional

grid ˜Gn = [0,GT
n−2,π]

T = [ jπ/(n− 1)]n−1
j=0 , which is a subset

of [0,π], we infer that the first column of Tn is given by
α−1
n (1− y/π)|

˜Gn
, the jth column of Tn, j = 2, . . . ,n − 1, is

given by
√

2/(n− 1)(sin( j y))|
˜Gn

, and finally the last column
of Tn is given by α−1

n (y/π)|
˜Gn

, that is,

Tn =
[

1− y

π
, sin

(

y
)

, . . . , sin
(

(n− 2)y
)

,
y

π

]∣

∣

∣

∣

˜Gn

· Δn,

Δn = diag

⎛

⎝α−1
n ,

√

2
n− 1

In−2, α−1
n

⎞

⎠.

(22)

Finally, it is worth mentioning that the inverse transform
is also described in terms of the same block structure since

Tn
−1 =

⎡

⎢

⎣

αn
−Qn−2P Qn−2 −Qn−2JP

αn

⎤

⎥

⎦ (23)

Theorem 4 (ARn(·) Jordan Canonical Form). With the
notation and assumptions of Theorem 1, the n × n AR-BCs
blurring matrix A in (14), n ≥ 3, coincides with

ARn(h) = Tn diag
(

h
(

̂Gn

))

T−1
n , (24)

where Tn and T−1
n are defined in (22) and (23), while ̂Gn =

[0, GT
n−2, 0]T .

2.5. Multilevel Extension. Here we provide some comments
on the extension of our findings to d-dimensional objects
with d > 1. When d = 1, h is a vector, when d = 2, h is a
2D array, when d = 3, h is a 3D tensor and so forth.

With reference to Section 2.3 we propose a (canonical)
multidimensional extension of the algebras AR and of
the operators ARn(·), n = (n1, . . . ,nd): the idea is to
use tensor products. If h = h(·) is d-variate real-valued
cosine polynomial, then its Fourier coefficients form a real
d-dimensional tensor which is strongly symmetric, that is
symmetric with respect to every direction, that is, hj = h| j|
for all j ∈ Zd. In addition, h(y), y = (y1, . . . , yd), can be
written as a linear combination of independent terms of the
form m(y) = ∏d

j=1 cos(αj y j) where any αj is a nonnegative
integer. Therefore, we define

ARn
(

m
(

y
)) = ARn1

(

cos
(

α1y1
))⊗ · · · ⊗ ARnd

(

cos
(

αd yd
))

,
(25)

where ⊗ denotes Kronecker product, and we force

ARn
(

αh1 + βh2
) = αARn(h1) + βARn(h2) (26)

for every real α and β and for every d-variate real-valued
cosine polynomials h1 = h1(·) and h2 = h2(·). It is clear
that the request that ARn(·) is a linear operator (for d > 1,
we impose this property in (26) by definition) is sufficient
for defining completely the operator in the d-dimensional
setting.

With the above definition of the operator ARn(·), we
have

(1) αARn(h1) + βARn(h2) = ARn(αh1 + βh2),

(2) ARn(h1)ARn(h2) = ARn(h1h2),

for real α and β and for cosine functions h1 = h1(·) and h2 =
h2(·).

The latter properties of algebra homomorphism allows
to define a commutative algebra AR of the matrices ARn(h),
with h(·) being a d-variate cosine polynomial. By standard
interpolation arguments it is easy to see that AR can be
defined as the set of matrices ARn(h), where h is a d-variate
cosine polynomial of degree at most nj − 3 in the jth
variable for every j ranging in {1, . . . ,d}: we denote the latter

polynomial set by P (d,even)
n−2e , with e being the vector of all ones.

Here we have to be a bit careful in specifying the meaning
of algebra when talking of polynomials. More precisely, for

h1,h2 ∈ P (d,even)
n−2e the product h1·h2 is the unique polynomial

h ∈ P (d,even)
n−2e satisfying the following interpolation condition:

h
(

y
) = zy , zy ≡ h1

(

y
)

h2
(

y
)

, ∀y ∈ G(d)
n−2. (27)

If the degree of h1 plus the degree of h2 in the j th variable
does not exceed nj − 2, j = 1, . . . ,d, then the uniqueness
of the interpolant implies that h coincides with the product
between polynomials in the usual sense. The uniqueness
holds also for d ≥ 2 thanks to the tensor form of the grid

G(d)
n−2 (see [28] for more details). The very same idea applies

when considering inversion. In conclusion, with this careful
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definition of the product/inversion and with the standard

definition of addition, P (d,even)
n−2e has become an algebra,

showing the vector-space dimension equal to (n1− 2) · (n2−
2) · · · (nd − 2) which coincides with that of ARn.

Without loss of generality and for the sake of notational
clarity, in the following we assume nj = n for j = 1, . . . ,d.
Thanks to the tensor structure emphasized in (25)−(26), and
by using Theorem 4 for every term ARn(cos(αj y j)), j =
1, . . . ,d, of ARn(m) the d-level extension of such a theorem
easily follows. More precisely, if h is a d-variate real-valued
cosine symbol related to a d-dimensional strongly symmetric
and normalized mask h, then

ARn(h) = T(d)
n Dn

(

T(d)
n

)−1
, T(d)

n = Tn ⊗ · · · ⊗ Tn,

(28)

(d times) where Dn is the diagonal matrix containing the
eigenvalues of ARn(h). The description ofDn in d dimensions
is quite involved when compared with the case d = 1,
implicitly reported in Theorem 1.

For a complete analysis of the spectrum of ARn(h) we
refer the reader to [28]. Here we give details on a specific
aspect. More precisely we attribute a correspondence in a
precise and simple way among eigenvalues and eigenvectors,
by making recourse only to the main d-variate symbol h(·).

Let xn = x(1)
n ⊗ x(2)

n ⊗ · · · ⊗ x(d)
n be a column of T(d)

n ,

with x
( j)
n ∈ {α−1

n [1, pT , 0]
T

, α−1
n [0, (Jp)T , 1]

T} or x
( j)
n =

[0, qTsj , 0 ]
T

, 1 ≤ s j ≤ n − 2 and qs j is the (s j) th column of
Qn−2, for j = 1, . . . , d. Let

Fxn

=
{

j | x
( j)
n =α−1

n

[

1, pT , 0
]T

or x
( j)
n =α−1

n

[

0,
(

Jp
)T , 1

]T
}

⊂ {1, . . . ,d},
(29)

with xn being the generic eigenvector, that is, the generic

column of T(d)
n . The eigenvalue related to xn is

λ = h
(

y(n)
1 , . . . , y(n)

d

)

, (30)

where y(n)
j = 0 for j ∈ Fxn and y(n)

j = πvj/n− 1 for j /∈Fxn .
Defining the d-dimensional grid

̂G
(d)
n = ̂Gn ⊗ · · · ⊗ ̂Gn, d times, (31)

we can evaluate the d-variate function h on ̂G(d)
n by

h(reshape( ̂G(d)
n ,n)), where

reshape(X ,n) (32)

arranges the entries of X in a d-dimensional array of length
n along each direction according to Matlab notation. Using
this notation the following compact and elegant result can be
stated (its proof is omitted since it is simply the combination
of the eigenvalue analysis in [28], of Theorem 4, and of the
previous tensor arguments).

Theorem 5 (ARn(·) Jordan Canonical Form). The nd × nd

AR-BCs blurring matrix A, obtained when using a strongly
symmetric d-dimensional mask h such that hi = 0 if |i j| ≥
n − 2 for some j ∈ {1, . . . ,d} (the d-dimensional degree
condition), n ≥ 3, coincides with

ARn(h)

= T(d)
n diag

(

reshape
(

h
(

reshape
(

̂G(d)
n ,n

))

,nd
))(

T(d)
n

)−1
,

(33)

where T(d)
n and ̂G(d)

n are defined in (28) and (31).

It is worth observing that the matrix ARn(h) spectrally
analyzed in the previous theorem is exactly the same matrix
arising from the imposition of AR-BCs applied separately in
every direction, when h is the multivariate cosine symbol
coming from the d-D tensor mask h defining the shift-
invariant d-dimensional blurring operator.

3. Regularization by Reblurring

When the observed signal (or image) is noise-free, then there
is a substantial gain of the reflective boundary conditions (R-
BCs) with respect to both the periodic and zero Dirichlet BCs
and, at the same time, there is a significant improvement of
the AR-BCs with regard to the R-BCs (see [17, 30]). Since
the deconvolution problem is ill posed (components of the
solution related to high frequency data errors are greatly
amplified) regardless of the chosen BCs, it is evident that we
have to regularize the problem. Two classical methods, that
is, Tikhonov regularization, with direct or iterative solution
of the Tikhonov linear system, and regularization iterative
solvers, with early termination, for normal equations (CG
[31] or Landweber method [32]) can be used. We observe
that in both the cases, the coefficient matrix involves a shift
of ATA and that the righthand-side is given by ATg. Quite
surprisingly, the AR-BCs may be spoiled by this approach
at least for d = 1 and if we compute explicitly the matrix
ATA and the vector ATg, see [33]: more in detail, even in
presence of a moderate noise and a strongly symmetric PSF,
the accuracy of AR-BCs restorations becomes worse in some
examples than the accuracy of R-BCs restorations (see [33]).
The reason of this fact relies upon the properties of the
matrix AT , and we give some insights in the following.

3.1. The Reblurring Operator. A key point is that, for zero
Dirichlet, periodic and reflective BCs, when the kernel h is
symmetric, the matrix AT is still a blurring operator since
AT = A, while, in the case of the AR-BCs matrix, AT

cannot be interpreted as a blurring operator. A (normalized)
blurring operator is characterized by nonnegative coefficients
such that every row sum is equal to 1 (and it is still acceptable
if it is not higher than 1): in the case of AT with AR-BCs the
row sum of the first and of the last row can be substantially
larger than 1. This means that modified signal ATg may
have artifacts at the borders and this seems to be a potential
motivation for which a reduction of the reconstruction
quality occurs.
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Furthermore, the structure of the matrix ATA is also
spoiled and, in the case of images (d = 2) we lose the
O(n2 log(n)) computational cost for solving a generic system
ATAx = b. The cost of solving such a type of linear systems
is proportional to n3 by using for example, Shermann-
Morrison formulae (which by the way can be numerically
unstable [34]). Dealing with higher dimensions, the scenario
is even worse [35], because in the d-dimensional setting the
solution of the normal equation linear system is asymptotic
to n3(d−1), where nd is the size of the matrix A. In order to
overcome these problems (which arise only with the most
precise AR-BCs for strongly symmetric PSFs), we replace
AT by A′, where A′ is the matrix obtained by imposing the
current BCs to the center-flipped PSF (i.e., in the 2D case, to
the PSF rotated by 180 degrees).

For the sake of simplicity we first consider a strongly
symmetric PSF so that the associated normal equations can
be read as A2f = Ag, whenever zero Dirichlet, periodic
or reflective BCs are considered. Therefore, the observed
image g is reblurred. The reblurring is the key of the success
of classical regularization techniques (Tikhonov or CG,
Landweber for the normal equations) since also the noise
is blurred and this makes the contribution of the noise less
evident. We notice that the two systemsA2f = Ag andAf = g
are algebraically equivalent if A is invertible: in any case, if A
is also positive definite, the first represents the minimization
of the functional ‖Af − g‖2

2 while the second represents the

minimization of the functional ‖A1/2f − A−1/2g‖2
2 so that the

first can be considered the blurred version of the second and
in fact the first approach is uniformly better than the second.
On these grounds, in the case of AR-BCs, since AT /=A, we
can replaceAT byAwhich is again a low-pass filter (see [33]).
In this way, we overcome also the computational problems.

In order to provide a general reblurring approach also in
the case of nonsymmetric PSFs, we consider the correlation
operation instead of the transposition (see [36]). In the
discrete 2D case, the correlation performs the same operation
of the convolution, but rotating the mask (the PSF in
our case) of 180 degrees. Moreover, we note that in the
continuous case over an infinite domain, the correlation and
the adjoint are exactly the same operation, provided that the
convolution kernel is real. Indeed, let K be the convolution
operator with shift-invariant kernel k(s), then [K f ](x) =
∫

k(x − y) f (y)dy. Since the PSF (and then k) is real (and
then real valued), the adjoint operator K∗ is [K∗ f ](x) =
∫

k(y− x) f (y)dy which is a correlation operator. We remark
that here the convolution and the correlation use the same
kernel except for the sign of the variable (i.e., k(s) vs k(−s)),
and, in the 2D case, the change of sign in the variable s of
the kernel can be viewed as a 180 degrees rotation of the PSF
mask.

By virtue of these arguments, in order to overcome the
problems arising with the normal equations approach for
AR-BCs 2D restorations, we propose to replace AT by A′

(the reblurring matrix), where A′ is the matrix obtained by
imposing the BCs to the PSF rotated by 180 degrees. Using
Matlab notation, if H is a q × q PSF, its 180 degrees rotated
version is H′ = fliplr(flipud(H)) = JqHJq, where Jq is the
flip matrix defined as [Jq]i, j = 1 if i + j = q + 1 for

i, j = 1, . . . , q, and zero otherwise. For a d-dimensional
problem, A′ is obtained by imposing the BCs to the PSF
flipped with respect to the origin, or, in other words, to the
new PSF where all the coefficients are flipped with respect to
every variable.

In this way A′ has the same computational properties
of A (it belongs to AR in the case of AR BCs) and it is
certainly a low-pass filter. In the reblurring approach the
normal equations are replaced by

A′Af = A′g. (34)

Furthermore, using the Tikhonov regularization in the
reblurred version, we propose to use

[

A′A + μL′L
]

f = A′g, (35)

with L being any discrete. differential operator with AR-
BCs. In general A′A is nonsymmetric, but the asymptotic
eigenvalue analysis in [28, Section 3.3] has shown that the
spectrum is clustered around the positive real interval given
by the range of |h|2 if h is the symbol associated to the PSF.
Such a cluster is strong if the decay of the PSF coefficients
is fast enough, as it occurs in real world PSFs. The latter
statements give a reasonable support to the applicability
of the CGLS when AT is replaced by A′ and, indeed, in
our numerical tests such a regularizing method has always
worked perfectly. From the viewpoint of the modeler, the
previous considerations can be summarized in the following
motivation. The image restoration problem is the restriction
in the FOV of an infinite dimensional problem. We can
follow two ways to design the linear system to solve:

(1) to impose BCs and then to look at a least-squares
solution,

(2) to formulate a least-squares solution on the infinite
dimensional problem, and then to impose the BCs
to the two infinite dimensional operators K and K∗,
separately.

A third possibility is to formulate a least-squares solution on
the infinite dimensional problem, and then to impose the
BCs to this minimum problem: a difficulty in this case is that,
even without noise, the resulting system is not equivalent
in an algebraic sense to the original equations Af = g.
In the first case we resort to the normal equations in the
finite dimensional space. On the contrary, in the second case
we apply the BCs to K and K∗ in the infinite dimensional
normal equations (where the adjoint operator K∗ performs
a correlation operation) and then we obtain (34). More
precisely, the discretization of K and K∗ in the continuous
equation K∗K f = K∗g with any fixed BCs gives (34).

3.2. Linear Algebra and Computational Issues. We note that
in the 1D case A′n = JnAnJn. In the d-dimensional case,
let n = (n1,n2, . . . ,nd) be the partial dimensions of the
problem, whose total size is

∏d
i=1ni. By flipping each variable,

we obtain

A′n = JnAnJn, Jn =
d
(

i=1

Jni . (36)
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For the analysis of properties of the reblurring scheme (34)
with respect to all the different BCs, we now study the
discretization of the continuous operator K . Let us consider
the Toeplitz d-level matrix Tn(φ) of partial dimensions n =
(n1, . . . ,nd) ∈ Nd

+ and generating function φ [2], which is
defined as

Tn
(

φ
)

=
∑

| j|≤n−e
ajZ

[ j]
n =

∑

| j1|<n1

· · ·
∑

| jd|<nd
a( j1,..., jd)Z

[ j1]
n1 ⊗ · · · ⊗ Z[ jd]

nd

(37)

(e = (1, . . . , 1) ∈ Nd
+) by means of the Fourier coefficients

of φ

ak = 1

(2π)d

∫

[−π,π]d
φ(x)exp−i〈k|x〉dx, i2 = −1, k ∈ Zd.

(38)

Here 〈k | x〉 = ∑d
i=1 kixi and for j ∈ Z, m ∈ N+,

Z
[ j ]
m ∈ Rm×m is the matrix whose (s, r) th entry is 1

if s − r = j, and 0 elsewhere. As it is well known for
multilevel Toeplitz matrices TH

n (φ) = Tn(φ), where φ is the
conjugate of the function φ, and the Fourier coefficients of
φ are the same of φ, but conjugated and flipped. Moreover,
since Tn(φ) = JnTn(φ)Jn, if An = Tn(φ) is real then ATn =
JnAnJn = A′n. This means that for Dirichlet BCs (D-BCs)
and periodic BCs (P-BCs) the reblurring approach is exactly
equal to the classical normal equations approach, since in
these two cases the corresponding blurring matrix An is
multilevel Toeplitz: indeed, concerning P-BCs, we notice
that the resulting multilevel circulant structure is a special
instance of the multilevel Toeplitz case. Unfortunately, in the
case of Hankel matrices (or multilevel mixed Toeplitz-Hankel
matrices with at least one Hankel level) this is no longer true
in general. However, a sufficient and necessary condition to
have A′n = ATn is JnAn = (JnAn)T (or equivalently AnJn =
(AnJn)T), which is a multilevel antidiagonal symmetry called
persymmetry. Therefore in the case of R-BCs, where the
matrix An involves nested Hankel parts, in general A′n /=ATn ,
while A′n = ATn only when the PSF is strongly symmetric
since in this case JnAn = (JnAn)T . Dealing with the AR-BCs,
the situation is even more involved, since A′n /=ATn also for
strongly symmetric PSFs, owing to the low-rank correction
term. Hence, we can state that the reblurring is a new
proposal not only for the AR-BCs, but also for all those BCs
for which JnAn /= (JnAn)T . As a nontrivial and unexpected
example, it is important to stress that the imposition of R-
BCs with nonstrong symmetric PSFs implies JnAn /= (JnAn)T ,
that is, A′n /=ATn .

We provide now a computational motivation for the
choice of using A′ as an alternative to AT : A′ is the
usual operation which has to be implemented to perform
the adjoint operation in the Fourier domain. Indeed, the
convolution with prescribed BCs can be implemented by first
enlarging the image according to the considered BCs and
then by computing the matrix vector product by a simple
circular convolution operation, see [37]. More precisely, let

X and H be two matrices such that X represents an n × n
image and H is the discrete q× q 2D PSF, q = 2m + 1, which
leads to the matrix blurring A. By using the Matlab notation
x = X(:) (i.e., the vector x is the column-stacked version of
X), the product Ax in the 2D case can be implemented

(1) by using an enlarged image ˜X , which is the (n + q −
1)× (n + q − 1) image X extended at the boundaries
according to the imposed BCs,

(2) computing H ∗ ˜X , where the symbol “∗” denotes
the circular convolution operator (H should be zero
padded to have the same size of ˜X),

(3) and then taking the inner part of the result having the
same size of X .

The circular convolution can be computed using the 2D
discrete Fourier transform (DFT2) and its inverse (IDFT2),
since we have

H ∗ ˜X = IDFT2
(

DFT2(H)�DFT2
(

˜X
))

, (39)

where “�” is the componentwise product. If Ck( f ) denotes
the block circulant matrix with circulant blocks, of block size
k with blocks of size k and generating function f , then (39)
represents the same operation as Cn+q−1(φ)x̃, where x̃ = ˜X(:)
(according to a 2D ordering). Conversely, it is well known
that the operation corresponding to the product with the
adjoint operator, in the Fourier domain gives rise to

Y = H′ ∗ ˜X = IDFT2
(

DFT2(H)�DFT2
(

˜X
))

,

H′
i, j = H−i,− j , i, j ∈ Z,

(40)

where the overline symbol denotes the complex conju-
gation. As a result, since the transform H �→ H′ is
equivalent to the transform φ �→ φ (because φ(x, y) =
∑

i, j∈ZHi, jexpi〈(i, j)|(x,y)〉), and since Cn+q−1(φ) = CT
n+q−1(φ),

if y = Y(:), then it follows that y = CT
n+q−1(φ)x̃. Therefore,

for any of the considered BCs, the inner part of y is exactly
A′x. Here it is worthwhile to specify exactly what we mean
for inner part: if the vector y is partitioned in n+q−1 blocks
of size n + q − 1, q = 2m + 1, then for inner part we mean
that we are excluding the first and the last m blocks and, in
any of the remaining blocks, we are deleting the first and the
last m entries. More generally, if the PSF is arbitrary (e.g.
nonsymmetric) that is, the nonzero coefficients of the PSF
have first index belonging to [−m−

1 ,m+
1 ] and second index in

the range [−m−
2 ,m+

2 ], then we have to delete the first m−
1 and

the last m+
1 blocks and, in any of the other blocks, we have to

exclude the first m−
2 and the last m+

2 entries.
Since the DFT and its inverse can be computed

in O(n2 log(n)) arithmetic operations using FFTs, the
previous approach is implemented in the Matlab tool-
box RestoreTools [37]. We have added the AR-BCs in
such a toolbox for the matrix vector product, suit-
able for iterative regularizing methods. This code has
been used for the numerical tests of Section 3 and
it is downloadable from the homepage “http://scienze-
como.uninsubria.it/mdonatelli/software.html”.
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3.3. Filtering Methods for AR-BCs Matrices. As mentioned in
Section 1, regardless of the imposed BCs, matrices A that
arise in signal and image restoration are typically severely
ill conditioned, and regularization is needed in order to
compute a stable approximation of the solution of (1). A
class of regularization methods is obtained through spectral
filtering [38, 39]. Specifically, if the spectral decomposition
of A is

A = Tn diag(d) T−1
n , Tn =

[

t1 t2 · · · tn
]

, T−1
n =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˜tT1

˜tT2
...

˜tTn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(41)

with d = h( ̂Gn), then a spectral filter solution is given by

freg =
n
∑

i=1

φi
˜tTi g
di

ti, (42)

where φi are filter factors that satisfy

φi ≈
⎧

⎨

⎩

1, if di is large,

0, if di is small.
(43)

The small eigenvalues correspond to eigenvectors with high
frequency components, and are typically associated with the
noise space, while the large eigenvalues correspond to eigen-
vectors with low-frequency components, and are associated
with the signal space. Thus filtering methods attempt to
reconstruct signal space components of the solution, while
avoiding reconstruction of noise space components.

For example, the filter factors for two well-known
filtering methods, truncated spectral value decomposition
(TSVD) and Tikhonov regularization, are

φtsvd
i =

⎧

⎨

⎩

1, if di ≥ δ,

0, if di < δ,
φtik
i = d2

i

d2
i + λ

, λ > 0, (44)

where the problem dependent regularization parameters
δ and λ must be chosen [39]. Several techniques can be
used to estimate appropriate choices for the regularization
parameters when the SVD is used for filtering (i.e., di are
the singular values), including generalized cross validation
(GCV), L-curve, and the discrepancy principle [38, 40, 41].

In our case, the notation in (44) defines a slight abuse
of notation, because the eigenvalues di are not the singular
values: in fact the Jordan canonical form (CF) in (24) is
different from the singular value decomposition (SVD), since
the transform Tn is not orthogonal (indeed it is a rank-2
correction of a symmetric orthogonal matrix). Therefore,
note that the use of φtsvd

i in (42) defines the filtering of the
eigenvalues in the Jordan CF instead of the more classical
filtering of the singular values in the SVD. However, we note
that in general computing the SVD can be computationally
very expensive, especially in the multidimensional case

and also in the strongly symmetric case. Moreover, quite
surprisingly, a recent and quite exhaustive set of numerical
tests, both in the case of signals and images (see [42]),
has shown that the truncated Jordan CF is more or less
equivalent to the truncated SVD in terms of quality of the
restored object: indeed this is a delicate issue that deserves
more attention in the future.

Our final aim is to compute (42) in a fast and stable way.
This is the classic approach implemented for instance with
periodic BCs by using three FFTs. In our case we employ the
AR-transform (21), its inverse (23), and a fast algorithm for
computing the eigenvalues described in [28].

Algorithm 6. (1) g̃ = T−1
n g.

(2) d = [h(0), ̂dT , h(0)]
T

, where ̂d = [d2, . . . , dn−1]T

are the eigenvalues of τn−2(h) that can be computed by a fast
sine transform (FST).

(3) ˜f = (φ ./ d)
⊙

g̃, where the dot operations are
component-wise.

(4) freg = Tn˜f .

The product Tn˜f can be clearly computed in a fast and stable
way by one FST. Indeed for all x ∈ Rn

Tnx = α−1
n x1

⎡

⎢

⎣

1
p
0

⎤

⎥

⎦ +

⎡

⎢

⎣

0
Qn−2x(2 : n− 1)

0

⎤

⎥

⎦ + α−1
n xn

⎡

⎢

⎣

0
Jp
1

⎤

⎥

⎦,

(45)

where x(2 : n − 1) in Matlab notation is the vector x with
components indexed from 2 to n − 1. A similar strategy can
be followed for computing the matrix-vector product T−1

n g.
Instead of α−1

n p there is u = −Qn−2p and instead of α−1
n Jp

there is w = −Qn−2Jp. Recalling that p = L−1
n−2e1 the two

vectors u and w can be explicitly computed obtaining ui =
(2n− 2)−1/2cot(iπ/(2n − 2)), for i = 1, . . . ,n − 2 and w =
diagi=1,...,n−2(−1)i+1u.

Remark 7. As discussed in Remark 3, there is a natural
interpretation in terms of frequencies when considering one-
dimensional periodic and reflective BCs. The eigenvalue
obtained as a sampling of the symbol h at a grid-point
close to zero, that is, close to the maximum point of
h, has an associated eigenvector that corresponds to low-
frequency (signal space) information, while the eigenvalue
obtained as a sampling of the symbol h at a grid-point
far away from zero (and, in particular, close to π), has an
associated eigenvector that corresponds to high-frequency
(noise space) information. Concerning antireflective BCs,
the same situation occurs when dealing with the frequency
eigenvectors

√

2/(n− 1)(sin( j y))|
˜Gn

, j = 2, . . . ,n − 1. The
other two exceptional eigenvectors generate the space of
linear polynomials and therefore they correspond to low-
frequency information: this intuition is well supported by the
fact that the related eigenvalue is h(0), that is, the maximum
and the infinity norm of h, and by the fact that AR-BCs are
more precise than other classical BCs.
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Remark 8. For d = 1 and with reference to the previous
sections, we have proved that, thanks to the definition
of a (fast) AR-transform, it is possible to define a trun-
cated spectral decomposition which is computationally very
effective and, surprisingly enough, quite competitive when
compared with the celebrated but costly truncated SVD
in terms of restoration quality. However, we are well
aware that the real challenge is represented by a general
extension to the multidimensional setting. Indeed, except
for more involved multi-index notations, all the techniques
are plainly generalized in the multilevel setting, maintaining
a cost proportional to three d-level FSTs of size (n− 2)d,
and the key tool is the simplified eigenvalue-eigenvector
correspondence concisely indicated in Theorem 5. In reality,
regarding the previous Algorithm 6 the only difficult task
is the computation in step (2), where we have to compute
the eigenvalues in the right order. For this task we refer
to [28], where an algorithm is proposed and studied: more
specifically the related procedure in [28] is based on a single
d-level FST of size (n− 2)d plus lower order computations.

3.4. Convergence of the Reblurring Approach. We remark
that the antireflective transform can be defined also by the
eigenvector matrix

Vn =

⎡

⎢

⎣1

∣

∣

∣

∣

∣

∣

∣

0
Q
0

∣

∣

∣

∣

∣

∣

∣

l

⎤

⎥

⎦, (46)

where

1 = 1√
n

⎡

⎢

⎢

⎢

⎢

⎣

1
1
...
1

⎤

⎥

⎥

⎥

⎥

⎦

, l =
√

3
√

n(n2 − 1)

⎡

⎢

⎢

⎢

⎢

⎣

1− n
3− n
...

n− 1

⎤

⎥

⎥

⎥

⎥

⎦

. (47)

Note that 1 and l differ from the corresponding eigenvectors

[1, pT , 0]
T

and [0, JpT , 1]
T

used in Section 2.4, but they are
a linear combination of them. They have been chosen here
to form an orthonormal basis of the grid samples of all linear
polynomials and this property will be useful in the following.

According to Theorem 4 the spectral decomposition of
ARn(h) can now be written as

ARn(h) = VnΛV
−1
n , (48)

where the diagonal entries λj j of Λ are given by

λj j =

⎧

⎪

⎨

⎪

⎩

h
(

j − 1
n− 1

π
)

, 1 ≤ j < n,

h(0), j = n.
(49)

Here we prove that the reblurring approach for Tikhonov
regularization in (35) where L = I is a regularization method.
For a complete analysis we need to compute the SVD of Vn.

We use the notation y
.= z if the two vectors y and z

depend on n and for each entry yi of y and the corresponding
entry zi of z there holds yi/zi → 1 as n → ∞.

Theorem 9 (see [43]). The two dominant singular values of
Vn are given by

σ1
.= σ2

.=
√

2, (50)

where
√

2 is, in fact, a strict upper bound, and the two minimal
singular values are given by

σn−1
.=
√

3√
n

and σn
.= 1√

n
, (51)

respectively. Fix 1′ = 1(2 : n− 1), l′ = l(2 : n− 1), a = Q1′,
and b = Ql′. The corresponding right singular vectors are

v1
.= 1√

2

⎡

⎢

⎢

⎢

⎣

1

a

0

⎤

⎥

⎥

⎥

⎦

, v2
.= 1√

2

⎡

⎢

⎢

⎢

⎣

0

b

1

⎤

⎥

⎥

⎥

⎦

,

vn−1
.= 1√

2

⎡

⎢

⎢

⎢

⎣

0

b

−1

⎤

⎥

⎥

⎥

⎦

, vn
.= 1√

2

⎡

⎢

⎢

⎢

⎣

−1

a

0

⎤

⎥

⎥

⎥

⎦

,

(52)

and the left singular vectors are

u1
.=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
(2
√
n)

1′

1
(2
√
n)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, u2
.=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

l1
2

l′

ln
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

un−1
.= 1√

2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
√

3
n

l′

−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, un
.= 1√

2

⎡

⎢

⎢

⎢

⎢

⎣

−1

1′√
n

−1

⎤

⎥

⎥

⎥

⎥

⎦

,

(53)

respectively. The remaining singular values are equal to one,
and the corresponding left and right singular vectors have
homogeneous boundary values.

Now we are in the position to determine the condition
number of the antireflective transform to first order.

Corollary 10. The condition number of the antireflective
transform satisfies

μ(Vn)
.=
√

2n, n −→ ∞. (54)

Remark 11. It is important to note that the ill-conditioned
subspace of V−1

n has dimension two, independent of n, since
Vn has two singular values that decay like 1/

√
n while all

others are between one and two. Also, V−1
n only amplifies

vectors that fail to be orthogonal to U = span{un−1, un}.
According to Theorem 9 the vectors from U are essentially
zero, except for their two boundary values.

Convergent bounds for the Tikhonov reblurring
approach, can be obtained with the usual remedy from the
theory of ill-posed problems, which consists in so-called
smoothness assumptions, the most simple one being as
follows.
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Assumption 12. Let f be itself a blurred version of a
continuous signal w, that is,

f (x) =
∫

R
k
(

x − y
)

w
(

y
)

dy, x ∈ R, (55)

where w satisfies the same BCs as f (i.e., periodic, reflective,
or antireflective ones).

On the grounds of Assumption 12 we may therefore
assume that

f = Aw, for some w ∈ Rn (56)

with a moderate bound

|‖w‖|≤ ‖w‖∞ ≤ ρ, (57)

where |‖x‖| := ‖x‖2/
√
n, x ∈ Rn. Since the observed object is

usually affected by noise, instead of the blurred object g we
have to work with the blurred and noisy object g̃ = g + e,
where ‖e‖∞ < ε. In this way, for L = I (35) becomes (A′A +
μI)f = A′g.

Theorem 13. Let the exact solution f of (1) satisfy (56) with
(57). Furthermore the total error of the reblurring strategy with
AR BCs satisfies

∣

∣

∥

∥fεα − f
∥

∥

∣

∣ = O
(

√

ερ
)

, (58)

for α = α(ε) = ε/ρ, where the constant in the O(·)-notation is
independent of the dimension n.

Note that the upper bound from Theorem 13 is the same
as for Tikhonov regularization with reflective or periodic
BCs; only the constant hidden in the O(·)-notation may be
somewhat larger for the reblurring strategy.

4. Numerical Results

The section is devoted to numerical experiments, with
reference to the Tikhonov regularization in the reblurred
version and to the classical conjugate gradient (CG) reg-
ularization with early termination. In both cases the use
of antireflective BCs improves the quality of the restored
image, without penalizing the computational cost. Another
promising approach not discussed here both from the
viewpoint of the quality and of the complexity is that based
on a regularized version of multigrid-type techniques (see
[44, 45]): also this idea can be successfully implemented in
combination with the choice of AR BCs.

In our numerical experiments we use Matlab 6.5 and
the toolbox RestoreTools [37] suitably extended for dealing

with AR-BCs. The relative restoration error (RRE) is ‖̂f −
f‖2/‖f‖2, where ̂f is the computed approximation of the
true image f . The signal-to-noise ratio (SNR) is computed
as 20log10‖gb‖2/‖ν‖2, where gb is the blurred image without
noise and ν is the noise vector [32].

Table 1: RRE for the test problem in Figure 1.

Noise Reflective AR

10% 0.1284 0.1261

1% 0.1188 0.1034

0.1% 0.1186 0.0989

4.1. Reblurring and Tikhonov Regularization. Let us begin
with an example illustrating the approach discussed in
Section 3.3 for a 2-dimensional imaging problem. We do
not take an extensive comparison of the AR-BCs with other
classic BCs, like periodic or reflective, since the topic and
related issues have been already widely discussed in several
works (see e.g., [19, 33, 46]), where the advantage on some
classes of images, in terms of the restored image quality, of
the application of AR-BCs has been emphasized. Here we
present only a 2D image deblurring example with Gaussian
blur and various levels of white Gaussian noise.

The true and the observed images are in Figure 1, where
the observed image is affected by a Gaussian blur and 1%
noise. We compare the AR-BCs only with the reflective
BCs since for this test other BCs like periodic or Dirichlet
do not produce satisfactory restorations. In Figure 2 we
observe a better restoration and reduced ringing effects at
the edges for AR-BCs with respect to reflective BCs. Restored
images in Figure 2 are obtained with the minimum relative
restoration error varying several values of the regularization
parameter λ.

From Table 1, we note that for the 10% noise case, all of
the approaches give comparable restorations. On the other
hand, decreasing the noise, that is, passing to 1% and then
to 0.1% noise, the AR-BCs improve the restoration while the
reflective BCs are not able to do that, due to the barrier of the
ringing effects.

4.2. Reblurring and CG Regularization. In the following tests,
the reblurring strategy will be applied with R-BCs and AR-
BCs when the PSF is not necessarily strongly symmetric.
Indeed, in the case of D-BCs and P-BCs, the reblurring
approach is equal to the classical normal equations, while,
in the case of R-BCs and AR-BCs, this is no longer true in
general.

We provide two problems using iterative regularization
by CG.

Test I: Cameraman. The first test is reported in Figure 3.
The true image is a cameraman and the 61 × 61 PSF is
associated with a Gaussian distribution in the square domain
[−30, 30]× [−30, 30], with variance equal to four. We add a
Gaussian noise.

Test II: Astronomy. We are dealing with a nonsymmetric
experimental 256 × 256 PSF developed by US Air Force
Phillips Laboratory, Lasers and Imaging Directorate, Kirt-
land Air Force Base, New Mexico, widely used in literature
(see e.g. [12, 47]). The true object is the image of Saturn in
Figure 4; a Poissonian noise is added, as it is customary when
dealing with astronomical images.
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True image

(a)

Observed image

(b)

Figure 1: Test problem with Gaussian blur and 1% white Gaussian noise.
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Figure 2: Restored images for the test problem in Figure 1.
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Figure 3: Test I: true image, Gaussian PSF, and the blurred image without noise.
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Table 2: Test I: best RREs and L2 norm of the residuals for CG with reblurring varying the SNR (SNR = ∞means 0% of noise).

SNR
Relative restoration errors L2 norm of the residuals (‖g− Âf‖2

)

Periodic Reflective Antireflective Periodic Reflective Antireflective

∞ 0.2275 0.1993 0.1831 1.2363 0.0113 0.0004

50 0.2276 0.1996 0.1850 1.2728 0.0480 0.0374

40 0.2278 0.2007 0.1921 1.6078 0.3766 0.3654

30 0.2300 0.2088 0.2051 4.9395 3.7346 3.7133

20 0.2487 0.2382 0.2378 38.2357 37.2100 37.2149

10 0.3836 0.3814 0.3823 379.2445 376.0303 376.0419
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Figure 4: Test II: true image, PSF, and the blurred image without noise.

Table 3: Test II: best RREs for CG with reblurring varying the SNR
(SNR = ∞means 0% of noise) within 200 iterations.

SNR Periodic Reflective Antireflective

∞ 0.2415 0.1529 0.0604

50 0.2416 0.1530 0.0616

40 0.2418 0.1532 0.0737

30 0.2430 0.1575 0.1052

20 0.2574 0.1838 0.1605

10 0.3689 0.3329 0.3289

We show the results corresponding only to P-BCs, R-BCs,
and AR-BCs. For shortness, we do not report the reconstruc-
tions coming from D-BCs, since the related restorations are
usually not better than those with P-BCs.

Tables 2 and 3 show the best RREs for various levels
of noise. In Table 2 we also report the L2 norm of the
residuals, that is, ‖g− Âf‖2, where g is the observed image,
̂f is the computed approximation, and A is the coefficient
matrix constructed according to the considered BCs: the
latter measure is the sum of square errors and it represents,
up to the scaling of the variance, the χ2 statistical measure
of the error. As already pointed out, the choice of the BCs
is important mainly for low levels of noise, that is, for high
values of SNR. Indeed, in the last row of these tables (SNR =
10), the errors due to noise start to dominate the restoration
process and therefore the choice of particular BCs is not
relevant for the restoration accuracy. In the other rows, where

the noise is lower, the choice of the BCs becomes crucial.
In particular, the AR-BCs improve substantially the quality
of the restorations with respect to the other BCs. This is
especially evident in Test II (see Table 3). The reason of the
observed high improvement is due to the shape of the PSF,
since, basically, the more the support of the PSF is large,
the more the ringing effects (and hence the BCs) become
dominating.

To emphasize the quality of the restored images, we
consider the reconstruction in the case of Test I for a fixed
SNR equal to 40. In Figure 5, we report the restored images
and in Figure 6 the residuals of the computed solutions for
each pixel divided by the variance of the noise. The last one
should have a normal distribution in the case of a good
restoration since we add a Gaussian noise. In Figure 5 is
evident the reduction of the ringing effects passing from P-
BCs to R-BCs (ringings such as the horizontal white line
on the top and the horizontal black line on the bottom
disappear) and from R-BCs to AR-BCs (ringings such as the
two vertical white lines in the bottom left disappear). Indeed,
in the same figure we note a higher level of detail in the case
of AR-BCs, especially concerning the face of the cameramen.
The image restored with R-BCs is smoother when compared
with the one restored with AR-BCs, where we can see the
“freckles” effect, typical of the L2 norm restoration. Indeed
the CGLS method computes the least-squares solution that
is well known to be affected by such a phenomenon [39].
When passing to the R-BCs, the considered effect is less
evident: indeed it seems that the slightly greater ringing
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Figure 5: Restored images with SNR = 40.
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Figure 6: Residuals divided by the variance of the noise for the restored images with SNR = 40.
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Figure 7: Test I: RREs at each CG iteration with different BCs: dotted line: Periodic, dashed line: Reflective, solid line: Antireflective.
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Figure 8: Discrepancy principle: images restored at the optimum value iteration and at which computed with the discrepancy principle.

effects smooth the image reducing the “freckles”, but also
reducing some details like, for example, the eye of the
cameraman. The previous comments suggest that using AR-
BCs in connection with regularization methods related to
other norms, like the Total Variation [48], could lead to a
reconstruction with sharper edges. In Figure 6, we observe
a normal distribution of the scaled residuals only with the
AR-BCs, while, also with the R-BCs, some further errors
corresponding to the ringing effects emerge at the boundary
and at the edges of the image: this means that the imposition
of the R-BCs is not good enough as model at least for this
example. On the other hand, with the AR-BCs, this kind of
error seems to disappear and the scaled residual seems to

follow a normal distribution. This confirms the goodness of
the restoration obtained with the AR-BCs.

Two convergence histories, that is, the RREs at any
iteration, are plotted in Figure 7 for two different values of
the SNR. It should be stressed that the AR-BCs give the
best results and the lowest level of RRE. Such behavior is
again more evident considering Test II. Indeed, in such case
the RREs with AR-BCs continue to decrease even after the
first 200 iterations. On the other hand, the restorations with
R-BCs start to deteriorate after the very first iterations. In
addition, we notice that AR-BCs curves are in general quite
flat. This is a very useful feature since the estimation of
the optimal stopping value, which is well known to be a
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crucial and difficult task, can be done with low precision.
Indeed, in order to stress the applicability of the AR-BCs
to real problems, we consider for the Test I the discrepancy
principle widely used with iterative methods [31]. Since we
know the L2 norm of the error, we stop the CG when the
L2 norm of the residual becomes lower than the L2 norm of
the error. Such a criterion seems to work quite well for the
AR-BCs as we can see in Figure 8. The restored images are
good enough with respect to the optimal solution and also
the stopping iteration, at least in this example, is close to the
optimal one. On the other hand, such criterion is not always
effective for the other BCs in this example. For instance, the
stopping iteration for R-BCs is greater than 1000 in the case
of SNR = 50 and it is 13 for SNR = 30. However, an analysis
of the stopping criterion, in connection with AR-BCs, should
be further investigated in the future.

Finally, we remark that also for Test II the CG applied
to the linear system, (34) works without breakdown, both
with R-BCs and AR-BCs. Therefore, it is possible that the
applicability of the CG to (34) is a general property, which
does not depend on the particular choice of the BCs.

5. Conclusions

In this contribution we have dealt with the use of antire-
flective BCs for deblurring problems where the considered
issues have been: the precision of the reconstruction when
the noise is not present, the linear algebra related to these
BCs, the computational costs, and the reconstruction quality
associated with iterative and noniterative regularizing solvers
when the noise is considered. For many of the considered
items, the antireflective algebra coming from the given
BCs is the optimal choice: for instance in the work of
La Spina it is proven that no one of the trigonometric
algebras can be associated with BCs of the same precision
as the antireflective. Numerical experiments corroborating
the previous statements have been reported and discussed:
in this direction it remains an open problem to understand
why the CG works without any numerical problem even if
the antireflective structure is non symmetric (an event not
normal as emphasized by the Jordan decomposition).
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