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Vehicular ad hoc networks (VANETs) allow communications over sequences of vehicles with radio devices. There are many possible
applications over a VANET such as traffic jam warning, collision warning, parking lot reservations, camera picture feed , and so
forth. There have been quite a few results in the area seeking for a fast and reliable communication protocol due to their potential.
VANETSs, however, are pointed out as difficult for numerical optimizations due to frequent changes in their topologies. As a result,
heuristic methods such as GPSR have been mainly used for routing packets over multihop communications. In this paper, we
present an algorithm to precompute the probability that communication is possible between specified source and destination in a
VANET, under certain mathematical assumption. The proposed new protocol for multihop communication refers to a lookup table
containing the precomputed data to decide a good packet forwarder quickly. We create a simulation testbed that seems challenging
for all the existing multihop routing protocols for VANETS, in which we test ours. We see much improved performances over GPSR

after the algorithm is refined for some practical issues.

1. Introduction

Vehicular ad hoc networks (VANETSs) enable communication
between vehicles or between a vehicle and infrastructure.
The idea of having intervehicle communications connected
to a wired network has been investigated since the 1980s.
Over a VANET, we can achieve traditional safety applications
such as collision, icy road, and red light warnings, as
well as nonsafety applications such as traffic information
dissemination, reservation query, camera picture feed and
so forth. Recently, there has been an emerging trend of
utilizing mobile communication for environmental issues. It
is possible to obtain significant information from VANETs to
improve the uses of gas or other resources.

When there are not sufficient roadside units (RSUs)
or direct communications between distant vehicles are
preferred, it usually takes more than one step of vehicle-to-
vehicle (V2V) communications to send information from
a specified source to destination. The transmission range
of a radio device is normally 100-200 m for V2V, which is
much smaller than the dimension of the considered area.
Researchers have studied such multihop communications
extensively not only because VANET applications have a large

market potential, but also they are scientifically interesting
[1-5].

It has turned out very difficult to optimize parameters
of a VANET due to its highly mobile nature. Links can be
disconnected so frequently that it is occasionally impossible
to accurately predict the existence of an end-to-end connec-
tion. Reference [6] sheds light on the theoretical aspect of this
issue. As a result, carry-and-forward type heuristic methods
have been mainly used for routing packets over multihop
communications in VANETs.

The current most common scheme for source-
destination routing in VANETS is the so-called geographical
forwarding. It chooses car(s) closest to the destination d
and pass the packet. Geographical forwarding was first
introduced as GPSR in [7]. The result has been referred to
many other papers that seek a better performance by similar
methods. One of them, called PBRV [8], resolves the routing
loop problem of GPSR.

The main advantage of geographical forwarding is its
computational speed per hop. It is a simple task to calculate
the distance to d for every car in the proximity, and quick
computation is very important to forward a packet in short
latency. However, we can easily create counter examples for
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FIGURE 1: A counter example for geographical forwarding.

geographical forwarding such as the ones seen in [2] and
Figure 1. A similar situation may happen more frequently
when the market penetration rate, that is, the ratio of the cars
equipped with radio devices, is low.

Another protocol called MDDV is developed in [9].
It uses the following two in addition to the geographical
forwarding.

(i) Trajectory-based forwarding: first determine an ap-
proximate trajectory from the source to the destina-
tion on the map then only considers cars that roughly
follow it.

(ii) Opportunistic forwarding: chooses some cars that
meet certain conditions to give them the right to
broadcast the packet in the proximity.

MDDV is designed for an arterial road or highway where
considered cars are basically running in the same direction.
It is reported to produce short latency and high delivery ratio
in such a scenario but does not have a mechanism to treat a
downtown situation.

Recently, a protocol called VADD has been proposed
[4]. It considers the probability for a packet to reach the
destination in addition to the positions and directions of
the moving cars in the proximity. VADD handles a situation
as in Figure 1 better than the previous two. It, however,
calculates the probability at every intersection, seeming to
have large invehicle computational time. It is based on the
idea of dynamic path-selection approach. Nevertheless, one
can point out that a large amount of the input information
to VADD is static: the fixed probability for a packet to be sent
successfully from one intersection to another.

There have been some other forwarding schemes known
such as delaybounded routing [3], CAR [2], and GeOpps [1].

In this paper, we present an algorithm to precompute
the probability that the communication is possible between
specified source and destination in a VANET, under certain
mathematical assumption. We propose a new protocol for
multihop communication that refers to a lookup table
containing the pre-computed data to decide a good packet
forwarder quickly.
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FIGURE 2: An example of a communication path.

We create a simulation testbed that seems challenging
for all the existing multihop routing protocols for VANETS:,
in which we test ours. After the algorithm is refined for
some practical issues, it showed dramatically improved
performances over GPSR.

The rest of the paper is organized as follows: in Section 2,
we describe our general method to pre-compute such prob-
abilities. Section 3 shows the simulation results, followed by
conclusions stated in Section 4.

2. A Method to Precompute the Probability of
Multihop Communication

The main idea of the probabilistic protocol we propose in
this paper is to compute in advance the probability that
it is possible to forward the packet from the source s to
destination d. We call it the communication probability from
stod.

Suppose for simplicity that two cars can communicate
whenever they are within a given transmission range R of the
radio. We will modify it later so the algorithm may better suit
real situations. With this simplification, the communication
from s to d is possible if and only if there is a sequence of cars
to forward the packet as shown in Figure 2. We call such a
sequence a communication path. Now, our communication
probability is the probability that such a path exists. In this
section, we present an efficient algorithm to compute the
probability under certain assumption as well as a general way
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to measure its inputs. We will also consider how to refine the
algorithm for practical use.

2.1. Basic Notation. We assume that every considered object
is on the map M that is a Euclidean graph whose nodes
are geographical locations or positions, and edges are roads.
Denote by x a position on M, for which we write x € M
instead of x € V(M). Let m be the number of positions on
M. Notice that x is a two-dimensional vector.

Let R be the transmission range of the radio. As stated
before, we assume at this moment that any two cars within
the distance can communicate with each other. A position
x" € M is called an R-neighbor of x € M if the Euclidean
distance from x to x” is at most R.

Consider that time t = 0,1,2,..., T where T is the time
limit. To express that a car is at position x € M when time is
t, it is convenient to couple t with x. A space time u = (x, 1) is
meant to be such pairing.

A carry is a pair b = (u;,uy) of space times. It means
that a car appears at u; = (x;,¢;) and moves to u; = (x,1; ).
We can understand carries as the solid arrows in Figure 2,
while the dotted ones represent hops. We say x; and x, are
the source and destination of the carry, and t; and ¢, are
start and arrival time, respectively.

Formally, a communication path is a k-tuple E =
(h1,ho,. .., hy) of carries h; such that the start time of hjy
equals the arrival time of h;, and the source of hjy; is an R-
neighbor of the destination of h; for every i < k. We require
the integer k to be at most a given maximum number H of
hops. We can also say that E is a communication path from u
to u’, where u is the first space time of /; and u" the second
one of hy. The arrival time and destination of E are defined
as those of v/, respectively.

Let a source s and destination d be given. A space time
u = (x,t) issaid to be reachable from (s,0) in k hops if there
exists a communication path from (s,0) with no more than
k carries whose destination is an R-neighbor of x and arrival
time is at most t. The communication probability p(s,d, T)
from s to d with time limit T is the probability that (d, T) is
reachable from (s,0) in H hops.

Figure 2 shows a communication path from (s,0) to
(d’,t) with 4 carries and 3 hops. The space time (d,t) is
reachable from (s,0) in 4 hops.

Our goal in this mathematical framework is to compute
p(s,d, T) efficiently. Once we have the communication
probabilities, the averages of other various random variables
could be computed quickly. For example, the expected delay
time 7(s, d) to send a packet from s to d is

T
7(s,d) = Z tp(s,d,t) — p(s,d,t — 1))
- (1)
T-1
=Tp(s,d,T) - Z p(s,d,t) .
t=0

2.2. Assumptions to Reduce the Hardness of Computation.
Denote by (A, u) the probabilistic event that car A appears
at space time u and by P(A,u) its probability. In the rest

of the paper, P(-) expresses the probability of the argument
event, where we omit obvious parentheses, that is , write
P(A, u) instead of P((A, u)) and so forth. Let Q be the set of
all (A, u). Logical sum, product, and implication are denoted
by V, A\, and an arrow, respectively. Consider the discrete
probability space (Q, F, P) as in Appendix A, where ¥ is the
set of events over ). We will have all formal discussions in
this framework.

The probabilities P(A, u) are not sufficient information
to compute the exact values of p(s,d,T), because the
events (A,u) possibly depend on each other even for a
single car A. For example, P((A,u;) A(A,u2)) may not be
P(A,u1)P(A,uy) due to the dependence; if paths from the
source s to u; overlap, P(A, u;) affect each other.

We formulate the problem of computing communication
probabilities as follows; given a map M, initial positions
of cars, time limit T, and transmission range R, assume
that subsequent movements of two cars are independent
of each other. That of every car A is restricted so that
P((A,uz)I(A,uy)) is a given fixed value, where u; = (x1,1)
and u, = (x,t + 1) are space times, and P(-|-) denotes
conditional probability as defined in Appendix A. It means
that the probability of A moving from x; to x; is given when
time transits from ¢ to ¢t + 1. Compute the communication
probability from s € M to d € M for all the pairs of s and
d from the above information. This problem seems hard to
compute in polynomial time. We, in fact, conjecture that it
is NP-complete even when the input instance is restricted
such that the number of possible routes taken by each A is
bounded by a polynomial in the problem size. (We define the
size as the number of cars added by m+ T+ H.) The difficulty
is attributed to the dependence between communication
paths that are events in .

We introduce the following assumption to reduce the
hardness of computation. Denote by [u, k] the event in F
that the space time u is reachable from (s, 0) in k hops.

Steady traffic assumption: the following two are true in
(Q,F,P).

(i) All the carries are independent.
(ii) [u, k] for each k < H are independent.

If it is true, the probability P([u,k]) takes a value that only
depends on u for each fixed k, letting the reachability to u not
affect each other. Then, the algorithm shown in Section 2.3
will compute the communication probability exactly.

There are some input instances for which the assumption
holds strictly. One such case is significant: when we have the
exact schedule of every car, or (A, u) satisty the following.

Exact schedule assumption: P(A,u) is either 1 or 0 for
every car A and space time u.

It means that it is either true or false if A appears at u.
The following lemma says that it is only a special case of the
steady traffic assumption.

Lemma 1. The exact schedule assumption implies the steady
traffic assumption.

Proof. Suppose that P(A, u) is either 0 or 1 for every (A, u).
The probability of (A,u) given any condition is either 0



or 1. The probability that a communication path occurs is
0/1. Thus, P([u,k]) is also 0/1 for any k < H. The event
[u, k] is independent of the others as the last paragraph in
Appendix A says. Since carries (u, k) have probabilities 0 or
1, it implies the steady traffic assumption. O

Thus, if we have exact schedules of the cars, we can simply
use the algorithm in Section 2.3 setting P(A,u) = 1/0 to
compute the exact communication probability.

A natural question occurs; how true is steady traffic
assumption in real traffic scenes? We think that [u, k] and
carries are well independent in practice if considered u =
(x,t) are distinct enough. Events [u, k] with similar x and
t affect each other, since they share large common parts
of major communication paths. In Section 3, we compare
the performance of the probabilistic protocol with that
of GPSR in a challenging simulation testbed. We choose
100m and 5 seconds as the unit differences of x and
t, respectively, to avoid considering similar u too often.
With the coarse resolutions, the probabilistic protocol will
successfully capture the tendency of the vehicle mobility to
contribute to good communication performances.

2.3. The Basic Algorithm. We show below our basic algorithm
to compute communication probabilities. Its primary input
is the carry probability P(uy,u;) that there exists a car that
appears at the space time #; and moves to u, for every carry
(ul > uZ)-

Notice that

(Ll],l/lz) = \/

(A) Ll]) /\(Aa le), (2)
every car A

in the probability space (Q, F,P), since the carry (u;,uz)
is the event in ¥ that some A appears at u; and moves
to u. Recall the problem of computing communication
probabilities formulated in Section 2.2. Since the conditional
probability of (x,, t+1) given that (x;, t) is input for all x; and
t, it means that the probability of the event (A, u;) A(A, uy)
is determined uniquely. Movements of distinct cars are
independent. The probability of the carry (u, u>) is uniquely
determined by the input instance of the problem.

Now, assume the steady traffic assumption. SteadyTraffic
illustrated in Algorithm 1 computes the communication
probability for any given pair of source and destination.

Its correctness proof is found in Appendix B. We will
present a general method to obtain P(u;, u;) from field data
in Section 2.4 and a more practical version in Section 2.5.

The asymptotic running time of SteadyTraffic is found
O(Hm?T?R?) in a straightforward manner. In our simula-
tion test with a careful choice of the parameter set, it runs in
few minutes to finish computation for each s and d.

If the exact schedule assumption holds, P(u;,u,) is 1 if
and only if there exists a car A such that P(A, u;) P(A,u,) =
1. We can input them into SteadyTraffic to compute
p(s,d, T).

2.4. To Measure Carry Probabilities from Field Data. The
primary input to Algorithm SteadyTraffic is the probabilities
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of P(uy,u;) of the carries. Theoretically, all we need is
P((A,u1) \(A,uy)) for every car A and space times u; that is,
the probability that the given car A appears at u; and moves
to uy. Then, the carry probability is computed as

Plunuo=1- [] (1-P(Au) A& w))), (3

every car A

by (1) and (3).
There are ways to compute P((A, u;) \(A, uz)) from field
data. The following two steps provides a general one.

Measure the intersection probabilities. Some nodes v on the
map M represent intersections. The edges [ from v are the
roads from v. The intersection probability Q(I,17,v) is the
probability that a car moves from the road [ to I’ at the
intersection v. We first measure this quantity from real field
data, by simply finding the ratio of the cars to choose the road
I' out of all the cars running toward v on .

Calculate P((A,u1) \(A,uz2)). We repeat the process below
for a number of times to average the obtained values of
P((A,u1) N(A,uz)). At the beginning of each round, we
configure the initial positions of the cars randomly but based
on the real statistics. Then, do the following:

(1) fix each carry (u1,u;) and car A. Let u; = (x;,¢t;) for
i=1,2.

(2) At time t = 0,1,2,...,t;, simulate the probabilistic
movements of the car using the intersection proba-
bilities so that we know the probability of A being at
(x,t) forall x € M and t < t;. In the end, we know
the probability of A at u; = (x;, ;). Store it into p;.

(3) Fix the position of A at t = #; as x;. Simulate the
probabilistic movements of A at time t = #; + 1,£; +
2,..., . Find the probability of A at (x3, f,), and store
it into ps.

(4) Now, P((A,u1) A(A,uz)) = p1 - p» is the probability
that A appears at u; and moves to u;.

2.5. Practical Refinements. Although the method described
so far is mathematically correct for the presented mobility
model, we faced essential difficulties when we implemented
SteadyTraffic on a testbed described in the next section.
Abstracting the problems, we devised a variant of Steady-
Traffic that is meant to be used for practice. It is illustrated in
Algorithm 2 as SteadyTraffic 2.

We summarize below general deployment problems
and our solutions in the modified algorithm. First, values
computed by SteadyTraffic may include propagated errors.
As stated as the steady traffic assumption in Section 2.2, we
want the reachability events [u,k] and carries to be well
independent of others. If we consider [u,k] with similar
space times u = (x,t) too often, it is likely to increase the
calculated communication probability much more than the
real value. In other words, space times whose car density
is large may not be much different from those with small
density for the algorithm SteadyTraffic.
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Algorithm SteadyTraffic
Inputs:
T: time limit,
H: maximum number of hops,
M: map with m positions,
R: transmission range,
P(uy, u,): carry probability for every (uy, u,), that is, probability
that a car appears at space time u; and moves to u,,
s,d € M: source and destination on the map M.
Output:
Communication probability p(s, d, T') from s to d with time limit T.
begin
(1)./* The final value of Answer (x, t,k) will be the probability that there
exists a communication path from (s, 0) to (x, t) with at most k carries. */

(3). Answer (s,0,0) = 1;
(4). fork =1toH do

4-1-3. end for
4-2. end for
(5). end for

end

(2). For every space time u = (x,t) do Answer (x,t,0) = 0;

4-1. for every space time u = (x,t) do

4-1-1. Answer (x,t,k) = P((s,0),u);

4-1-2. for every other space time u; = (x;, ;) such thatt; <t do
4-1-2-1./* Let D(x) for x € M be the set of R-neighbors of x */
4-1-2-2. p1 = 1 = [ ,ep(ay) (1 — Answer (xa, 11,k — 1));
4-1-2-3. P2 = P(ul, M) 4
4-1-2-4. Answer (x,t,k) = Answer (x,t,k)(1 — p2) + pa;

(6). return 1 — [xepw) (1 — Answer (x,t,H));
t<T

ALGORITHM 1

We multiply, to handle the problem, carry probabilities
P(uy,up) by (e(x1)e(xz)) B where u;j = (x1,t) are space
times, e(x) are the expected car densities at x € M, and
B € (0,1) is a numeric parameter to adjust. Step 3-1-2-1
of SteadyTraffic2 performs this data modification. It has an
effect of emphasizing the differences between large and small
car densities. We will choose § = 1/2 in Section 3.

We could also use coarse space and time resolutions to
prevent the error propagation, that is, to use large values of
unit differences of x and ¢ to avoid introducing similar u =
(x,t). It also speeds up the algorithm significantly.

Loop 3-1-2 of SteadyTraffic2 has a slightly different
structure from 4-1-2 of SteadyTraffic; the former finds any
new carry (u;, u) in the proximity of u, such that i)-v) and
updates Answer(x, t, k ) at u simply assuming that the newly
detected communication path is independent of the others.
Condition iii) discards carries of low probabilities.

The above schemes of simplification and data mod-
ification effectively compute good approximate values of
communication probability with reasonable computational
time. This practically solves our first problem of error
propagation.

Secondly, we have a node differentiation problem. Even
if the communication probabilities are accurate, it is occa-
sionally hard in run time to choose a good packet forwarder
among the nearby vehicles. We illustrate the problem in

Algorithem 1. To resolve it, we restrict considered commu-
nication paths so that they are not extended in a specified
direction. Conditions iv) and v) of Loop 3-1-2 filter every
path with x- or y-component running in the opposite
direction to given dir. We call it north, south, west,
and east mode when dir = (0,-1),(0,1),(1,0), and(—1,0),
respectively. (The map origin is supposed to locate at
the upper-left corner.) For example in the north mode,
SteadyTraffic2 does not extend a communication path to
location more southern than the current position. It is
suggested to combine values of more than 1 modes to refer
to in run time to find a good packet forwarder.

Third, the probability of successful packet transmission is
usually not uniform in a real traffic scene. We approximate it
by its time average, that is, we assume that I1-hop packet error
ratio &(x1,x,) varies over positions x; € M and is constant
over time. Steps 3-1-2-2 and 5 of SteadyTraffic2 include
related multiplications. We could use values of { measured in
field data possibly in conjunction with an analytical formula
such as the one in [10].

3. Simulation Results

3.1. Testbed Design. We did a performance evaluation of
the probabilistic protocol in a simulation testbed shown in
Figure 4. Its dimension is 1000 m in height and 2000 m in
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Algorithm SteadyTraffic2
Inputs:
T, H, M, R, P(uy,u,), s,d € M: same as SteadyTraffic,
&(x1,x2) : 1 hop packet error ratio from x; € M to x, € M,
e(x): expected car density at x € M,
B, € € (0, 1): numeric parameters,
dir € {(0,-1),(0,1),(1,0),(—1,0)} : vector representing the moving
direction.
Output:
Approximate communication probability p(s,d, T)
from s to d with time limit T.
begin
(1). For every space time u = (x,t) do Answer (x,t,0) = 0;
(2). Answer (s,0,0) = 1;
(3). fork =1toH do
3-1. for every space time u = (x,t) do
3-1-1. Answer (x,t,k) = P((s,0),u);
3-1-2. for every other space time u, = (x,1,) and u; = (x1,1,)
such that
1) Hh <t 11) X € D(Xz) N 111) P(ul, u) > €,
iv) (x1 —x2) - dir > 0and iv) (x —x1) -dir =0
/*D(x) is the set of R-neighbors of x € M*/
/* - represents the inner product of two vectors */
do
3-1-2-1. py = P(uy, u) (e(x)e(x));
3-1-2-2. py = Answer (x2, 5,k — 1)(1 — &(x1,%)) p1;
3-1-2-3. Answer (x,t,k) = Answer (x,t,k) (1 — p2) + p2;
3-1-3. end for
3-2. end for
(4). end for
(5). return1 — erD}d)(l — Answer (x,t, H)(1 — &(x,d)));
=Dl

end

ALGORITHM 2: A practical variant of SteadyTraffic.

As a result, if B’s
value is large, so is
A’s value

When computing
communication
probability from A,
it considers
communication
paths passing B

Difficult to
differentiate B from A

Finding packet
forwarder

FIGURE 3: The node differentiation problem.
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width. A similar road configuration can be found in a big city
in the United States such as the one in Chicago downtown.
There are 121 intersections in total, the top-left and bottom-
right ones of which are assumed to locate at the positions
(0,0) and (1000, 2000), respectively.

An RSU is placed at (0,1000). Roads 1, 11, 12, and 22 are
called arterial and are busy, while the other paths are not.
A car with a packet called packet holder enters the testbed
at position (1000,x) and time 0, where x is either 0, 200,
400, 600, 800, or 1000. The cars keep moving in the next
70 seconds trying to forward the packet to the RSU.

Because the inner roads have sparser vehicles, and there
is only one RSU in a fairly large area, it is not easy for
the geographical forwarding scheme to have a packet reach
the destination. The usual best way is to make a detour
on arterial roads. It is essential to quickly inform the cars
of a good forwarding path computed from the likelihood of
packet reachability. However, the number of intersections is
large so that there are many choices for a forwarding path.
These make the testbed challenging for the existing routing
protocols.

A car moves at the speeds of 35 and 25 mph on arterial
roads and paths, respectively, except around intersections.
Within a 50 m radius of every intersection, the car speed
drops down to 15 mph. The following is the list of parameters
input to the traffic simulator.

(1) r1: the probability for a car to turn from an arterial
road to another, or from a path to another.

(2) r,: the probability for a car to turn from an arterial
road to a path.

(3) 73: the probability for a car to turn from a path to an
arterial road.

(4) r4: the probability that a car enters the testbed in each
half second, at the start/end position of an arterial
road.

(5) r5: the probability that a car enters the testbed in each
half second, at the start/end position of a path.

We tested two scenarios with different parameter sets shown
in Table 1. Although the car movement rules are made
relatively simple, both scenarios create traffic situations suffi-
ciently realistic to a preliminary multihop packet forwarding
test. Figure 4 is a snapshot of Scenario 1. Scenario 2 has
sparser paths.

In this setting, we assume transmission range R = 150 m
with one hop packet error ratio &(x;,x,) = 0.15 for every
distinct pair of x; € M.

All the cars are equipped with radio devices sending their
positions to the nearby cars per second as heart beat (beacon)
messages. The relative velocity of two cars does not exceed
70 mph or 31.11 m/sec. With heartbeat messages broadcasted
every second, where R = 150m, we can assume that each
car A knows by its background job the existence of every
other car A" in the proximity. Once A receives a packet, it
quickly computes the necessary values for A’ to decide the
next packet holder.

Itis a common agreement that the initialization time over
IEEE 802.11 p standard is about 300 msec. The total time
necessary to forward a packet is no more than 500 msec if it
is not too large. Assume also that all the cars have a common
clock so that packet transmission processes are performed
in global half second time slots. The time resolution of the
traffic simulator is set as 0.5 second.

Setting the maximum number H of hops as 20, we
run  SteadyTraffic2 to pre-compute the communication
probabilities. We averaged the values in the north and west
modes in the left half of the testbed and the ones in the north
and east modes in the right half. It took about 3 hours on
average to finish computation for each scenario. We stored
the obtained values in a lookup table to refer to in run time.

3.2. Decision for the Next Packet Holder. Now, we have a good
set of communication probabilities p(x,x’, T) from x € M
to x” € M such that if x or x” is on a path, they are usually
distinguishably smaller than values with both x and x” on
arterial roads. However, it is still not obvious how to make a
good decision for the next packet holder with p(x,x’, T).
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TaBLE 1: Parameter values to the traffic simulator.
1 [§] 3 4 75
Scenario 1 0.4 0.1 0.94 0.3 0.01
Scenario 2 0.4 0.06 0.97 0.3 0.01
We also pre-computed the effective average numbers 60
> o<t<T k(Answer (x,t,k) — Answer (x,t,k — 1)) 50
E(x) _ 0<k=H > 10
S o<t Answer (x,t, H) ’ =
(4) g 30 +—- /M\Q
B e
of hops with Answer(x, t, k) obtained when we run STEADY g 20 =
TRAFFIC. They turned out to be excellent index values for 10 ¢
deciding a good packet forwarder.
. . 0
Let Ay (x) be th.e hor%zontal distance from x € M to d, 5 200 200 500 500 1000
and Ay (x) the vertical distance from x to d. Furthermore, ) . )
define Distance x (m): start position of the packet is (1000, x)
. —+— Probabilistic scenario 1 GPSR scemaro 1
Alx) = Ap(x) ifAn(s) = Av(s), (5) —=— Probabilistic scemaro 2 GPSR scemaro 2
Ay (x) otherwise. (a)
. N . 1 =
It measures the distance to the destination from x that is 0.9 'l\\¢ — o
designed suitable for the probabilistic protocol. 08 L AN
In run time, decide the next packet holder as follows: if c 0.7 N T
A(x) is much smaller than A(s), say at most 1/4, then we % 06 ~
regard that the packet is approaching to the destination, so £ 05
we choose, within the transmission range, a car closest to d 2 04
among the ones with relatively high values of p(x,d, T) and : g';
low k(x). If A(x) > 1/4A(s), we choose a car farthest from 0'1
s with relatively high p(x,d, T) and low k(x), regarding that 0
the packet is not close enough to the destination. We call 0 200 400 600 800 1000

the former and latter cases approach and detour modes,
respectively.
More precisely, find if

S = (p(x, d,T) = maxp(xp) /\(E(x) < min;oc;), (6)

Jfor every car at position x in the proximity. Here, o, and ay
are input constants, max, is the maximum value of p(x, d, T)
and ming the minimum value of k(x) in the proximity,
respectively. Setting , = 0.4 and a = 1.05 in the approach
mode, pass the packet to the car closest to d such that S is
true. In the detour mode with &, = 0.8 and ag = 1.05, pass
to the car farthest from s such that S.

The above decision process is quick since it does not
require heavy in-vehicle computation. The running time is
comparable to that of GPSR.

3.3. Measured Data. We show the measured delivery ratio
and delay time in Figure 5, plotting them over the horizontal
position x of the packet holder at time t = 0. We executed
20 trials for both Scenarios 1 and 2, each of which run for
70 seconds. The performances of the probabilistic protocol
are compared with those of GPSR. We summarize the related
parameter values in Tables 2 and 3.

As mentioned before, we run SteadyTraffic2 in north and
east modes for each source in the west half of the testbed.

Distance x (m): start position of the packet is (1000, x)

GPSR scemaro 1
GPSR scemaro 2

—&— Probabilistic scenario 1
—=— Probabilistic scemaro 2

(b)

FIGURE 5: Measured delivery ratio and delay time.

The east half is handled symmetrically. We took the average
of the two modes to refer to in the run time.

When the probabilistic protocol run in both scenarios,
we observed expected packet trajectories in most cases. They
initially run on the south arterial road (no.22) either to east
or west, then go north to reach the RSU on the north arterial
road. Our scheme of switching from the detour to approach
mode functioned well.

This did not happen for GPSR; occasionally, the packet
could not find a forwarder in the north effectively so that it
migrated in the middle of the testbed for a long time.

As a result, the probabilistic protocol dramatically
improves the delivery ratio over GPSR. Its average delay time
over all start position x is smaller than that of GPSR. The
improvement, however, is not as drastic as that of the delivery
ratio. It is due to the lengths of trajectories why it tends to
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TaBLE 2: Run-time parameter values for data measurement.

Iteration count 20
Clock cycle 0.5 sec
Trial time 70 sec
Transmission range 150 m
Numeric parameter a, in the approch mode 0.4
Numeric parameter &, in the detour mode 0.8
Numeric parameter o 1.05
TABLE 3: Parameter values for steadytraffic2.
Time resolution 5 sec
Space resolution 100 m
Time limit T 60 sec
Maximum number H of hops 20

Packet error ratio &(x;,x,) 0.15 uniform

Numeric parameter f3 1/2

produce not too small latency, that is, packets move on a
much longer way than those controlled by GPSR.

4. Conclusions

We have presented the notion of a communication path
and probability in a general framework that handles the
nature of multihop routing in a VANET. Under certain
mathematical assumption, the communication probability is
proven computed accurately by the algorithm SteadyTraffic.
Use this quantity to decide a good packet forwarder in a real
VANET. The simulated results show that the probabilistic
protocol improves the performances much in a very chal-
lenging testbed, after the algorithm is refined for the practical
issues.

For further research, it is significant to find a method to
use SteadyTraffic or SteadyTraffic2 in real-time computation.
It is possible that a car is provided road density information
by an extra method such as cellular network. It would be
nice if one can find, quickly without precomputation, good
paths over V2V multihop communications for a packet or a
group of packets. The running time of the algorithms must
be improved much.

In addition, it is theoretically interesting to seek for a way
to efficiently compute the probability of logical sum V ((ecs) ¢)
for an event set S C F that is not necessarily independent.
The hardness of computing communication probabilities
derives from the mutual dependence of communication
paths. There may be a scheme for fast computation under
an assumption of restricted dependence.

Appendices

A. Review for Independent Events in
a Discrete Probability Space

A probability space is a triple (Q,F,P), where Q is the
sample space, ¥ is the event set, and P : ¥ — [0,1]

the probability measure. For the formulated problem of
computing communication probabilities, we have

Q: the set of (A, u), that is, the events that car A appears
at space time u,

F: the set of all events over (), that is, the set of Boolean
expressions in terms of(A,u), and

P: probability that each event ¥ occurs.

This probability space (Q,F,P) is discrete because Q is
finite.
A nonempty event set S € ¥ is said to be independent if

P(/\e) = []P(e),

(A.1)

ecs ec§

for every subset §” of S. Here, we regard that both hand sides
are 1 if §' is empty. We also say that the elements in S are
independent events. The conditional probability of e € F
given S is

P(e/\ A e’)
eSS/ ifP(

3 , /\e’)#OandS#@,
P(es) = P( A e’)
e'eS

ees

P(e), otherwise 0.
(A.2)
If S is independent,
P(\/e) =1-]]a-Ple) (A.3)
ecS ecS

holds. We can derive it formally from the well-known
inclusion-exclusion principle. Intuitively, it is true since the
probability that any e occurs is 1 minus probability p that
none of them occurs. But p is the product of 1 — P(e) because
the events e € S are independent. The equation implies

P(\/e) :P( \/ e) +P(ey)
eeS eeS—{eg}

P( \/ e) 'P(@o),
ecS—{e}
for each ey € S.

The event set S is independent if and only if P(e|S") =
P(e) for every e € S and subset S’ < S that does not contain
e. Suppose that P(e|S") = P(e) is true for each e and §'. By
the definition of conditional probability P(e A Ay cge’) =
Ple|S)-P(A\oese’) = Ple) - P(\yese'). Thus, P(\eege) =
P(e) - P(\ycs_ie€") . Argue recursively for S — {e} to have
P(Neese) = [.es Pe). Since it is true for any subset " < S,
S is independent only if part is shown similarly.

We say e is independent of Sif P(e | §') = P(e) for each
S’ ¢ S. By the above claim, a nonempty event set S & F
is independent if and only if each e € S is independent of
S — {e}.

(A.4)
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An event e € F such that P(e) is 1 or 0 is independent
of F — {e}. It is intuitively clear that if the probability of e
is 1/0, e either occurs or does not occur under any condition
Sc F —{e},soPle | S) = 1/0. We can formally prove it
by considering the disjunctive normal form of e A \/,cg(e” v
—e’), that is, the logical sum of e A fi A o A - - - A fi, where
fi are either e; or —e; forall e; € S.

B. Correctness of Algorithm SteadyTraffic

Theorem 1. Algorithm SteadyTraffic correctly computes the
communication probability from s to d with time limit T, for
every input instance satisfying the steady traffic assumption.

Proof. We show that the final value of Answer (x,t,k) is
the probability that there exists a communication path from
Uy = (5,0) to u = (x, t) with at most k carries.

Prove it by induction on k. For its basis k = 0, we regard
true that there exists a communication path from u to ug
with zero carries by probability 1. Step 3 sets Answer (s, 0,0)
correctly.

To prove induction step, fix each space time u = (x,1)
selected by Step 4-1. Denote by (u, k) the event that there
exists a communication path from ug to u with at most k
carries. The claim to be proven is rephrased as

Answer (x,t,k) = P(u, k) at step 4-2. (B.1)

It is straightforward to prove it for k = 1. Assume that k > 2.

Recall that [u, k] expresses the event that u = (x,f) is
reachable from u in k hops, and D(x) the set of R-neighbors
of x. Let u; = (x1,;) be chosen by Step 4-1-2. Denote by
13(14) the set of space times (x', t) such that x" € D(x). The
symbols satisfy the following relations:

(u, k) = (up,u) v \/[ul,k —1] /\(ul,u), (B.2)
space times u;
(un,k—11= \/ (uw,k-1). (B.3)
uzeﬁ(ul)

There is only one communication path from uy to u
with 1 carry, thatis, the carry (uo,u) itself. Every other
communication path passes a space time u, = (xp,1) that
is reachable from uy in k — 1 hops. The above relations are
hence true. First, we prove the following general statement.

Lemma 2. For each k < H, the events (u, k) are independent.

Proof. By induction on k with basis true by the steady
traffic assumption (i). Assume true for k — 1 and prove true
for k. O

Claim 1. each (uy,u) in (B.2) is independent of [u;,k — 1]
and the other (uy, u).

Proof. [u1,k — 1] is a product of carries that are not
equal to (u;,u). The steady traffic assumption (i) implies
the claim. O
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Claim 2. the sets
S(ur) = {(uz,k = 1)s15 € Duy, P(un,k = 1) >0}, (B.4)
for all the space times u; are pairwise disjoint.

Proof. Suppose that there are two uy, say u} and u?, such that
T = S(ui) N S(u?) is nonempty. The probability P([u}, k —
1]) is the product of P(uy,k — 1) for each i = 1,2 and all
u; € D(u}), by (B.3) with induction hypothesis. Since T is
not empty, it means

P([ug, k] A [ui, k]) # P([u1,k]) - P([ut,k]).  (B.5)
The events [u, k] are not independent, which contradicts the
steady traffic assumption (ii). Thus, S(u;) must be pairwise
disjoint. O

By the above two claims, the events (ug, u), (u1,u), and
[t1,k — 1] in (B.2) are independent. By (A.3),
P(u, k) =1—-(1-P(u0,u) )P, (B.6)

Po Tl

space times u;

(1= P([ur,k = 1DPu, ). (g7

Claim 3. let S'(u) be the union of S(u;) such that
P(uy,u) # 0. Then, they are pairswise disjoint for all the space
times u.

Proof. Similarly to Claim 2. If there are two u, say u! and u?,
such that §'(u;) and S'(u,), are not disjoint, the probability
P([u', k] Alw?,k]) is not P([u', k1) P([u?, k]). O

We now see with (A.1) that each (u, k) is independent
of the others. Consider two distinct u, say u' and u?. The
carries (up,u') and (uy,u') are distinct from (ug, u?) and
(u1, u?), respectively. The events [u1,k — 1] are independent
by Claim 3 and induction hypothesis. They imply that (u, k)
is independent of the others.

The lemma follows the above, completing the proof.

We verify below that Loop 4-1 correctly computes P(u, k)
in Answer(x, t, k). By the lemma, (B.6) holds throughout the
process. Let Uy be the set of u; chosen so far by Step 4-1-2. We
prove by induction on its size that Answer (x, t, k) currently
holds the value of (B.6) for

P’ = [ (1= P([ur,k— 1])P(uy,u)).

u el

(B.8)

For its basis, the set U; is regarded as empty before Step
4-1-2 so that P’ in is 1 and P(u,k) = P(ug,u). Step 4-1-1
correctly sets Answer(x, t, k) for it.

To prove its induction step, assume Answer (x, t,k) has
the value of (A.1) for P' = [[, cu—qu1(1 — P([t/1,k —
1]1)P(u'1,u)), where u is currently chosen by 4-1-2. Due to
(6), where (u3,k — 1) are independent, Steps 4-1-2-2 and 4-
1-2-3 compute P([u1,k — 1]) and P([u1,k — 1])P(uy,u) as
p1 and p», respectively.
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Regard [ui,k — 1] A(u1,u) as e in (4), and [u'y,

k — 1]\ 1,u) and (ug,u) as the other events in S.
Step 4-1-2-4 correctly computes P(u, k) in (B.6) for U as
Answer (x, t, k). This proves the induction step.

We have shown that Answer (x,t,k) = P(u, k) at Step

4-2. Finally, Step 6 computes the probability that the space
time (d, T) is reachable from uy = (s,0) in H hops, returning
p(s,d, T) correctly. This completes the proof of the theorem.
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