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Modulation with correlated signal waveforms is considered. Such correlation arises naturally in a number of modern
communications systems and channels, for example, in code-division multiple-access (CDMA) and multiple-antenna systems.
Data entering the channel in parallel streams either naturally or via inverse multiplexing is transmitted redundantly by adding
additional signal waveforms populating the same original time-frequency space, thus not requiring additional bandwidth or
power. The transmitted data is spread over a frame of N signaling intervals by random permutations. The receiver combines
symbol likelihood values, calculates estimated signals and iteratively cancels mutual interference. For a random choice of the
signal waveforms, it is shown that the capacity of the expanded waveform set is nondecreasing and achieves the capacity of the
Gaussian multiple access channel as its upper limit when the number of waveforms becomes large. Furthermore, it is proven that
the iterative demodulator proposed here can achieve a fraction of 0.995 or better of the channel capacity irrespective of the number
of transmitted data streams. It is also shown that the complexity of this iterative demodulator grows only linearly with the number
of data streams.

1. Introduction

Modulation is the process of injectively mapping elements of
a discrete set, called the messages, onto functions of time,
called the signals, for the purpose of information trans-
mission. The signals form a (finite-dimensional) Hilbert
space, called the signal space. Geometric representations
of the signals are often called signal constellations. Basic
modulation methods prefer the use of orthogonal bases of
the signal space as the signals themselves, since demodulation
can be accomplished by projection onto these bases. For
example, equidistant m-ary pulse-amplitude modulation
(PAM) uses discrete amplitudes on each basis [1].

Signals experience distortion during transmission which
is modeled probabilistically, mainly due to the addition of
noise. The received signals are therefore no longer identical
with the transmitted signals. The demodulation problem is
that of mapping a received signal back to a message such that
the probability of the demodulated message not equalling

the original transmitted message is minimized. Under the
assumption of additive white Gaussian noise, picking the
message whose signal is closest to the received signal using
the natural Euclidean distance metric is optimal (if noise
is correlated, for example, a generalized metric needs to be
used) [1]. This is referred to as maximum-likelihood (ML)
decoding since it minimizes the message error probability.

However, ML decoding quickly becomes practically
infeasible by the “curse of combinatorics,” and other meth-
ods are needed to be considered. Shannon [2] showed
that every transmission channel has a maximum possible
transmission rate which it can support, called the Shannon
capacity, and that there exist coding and decoding methods
which can operate to within ε of this capacity at arbitrarily
low error rates. Shannon’s nonconstructive proofs did not
require ML decoding, opening the door to possibly low-
complexity capacity-achieving signaling methods. Unfor-
tunately, to achieve capacity requires continuous input
alphabets which is highly impractical. Discrete modulations,
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mapped onto orthogonal bases, such as PAM, cannot achieve
the Shannon capacity on the Gaussian channel. Certain high-
dimensional discrete constellations, such as lattices, have
been reported to achieve capacity, but in many ways their
regular (discrete) structure is lost in the process [3].

In this paper we pursue another approach, abandoning
the use of orthogonal bases as signals. In many practical
situations the signals utilized are correlated, either by design,
or by the effects that occur during transmission. An example
of the former is (random) code-division multiple-access
(CDMA) [4], and an example of the latter is multiple-
antenna transmission (MIMO) [5]. In both cases the signals
are densely correlated-which makes efficient demodulation
extremely difficult. If the correlation pattern is sparse, that
is, if any given signal waveform interferes with only a few
other (neighboring) signal waveforms, sequence detection
algorithms like the Viterbi algorithm can be used efficiently.
A number of modulation methods based on superposition
of individual data streams have been proposed (see [6–
8]). When a number of independent signals add up in
the channel, they can sometimes be decoded sequentially.
Onion-peeling decoding starts from the largest power signal,
decodes it treating the rest of the signals as noise and
subtracts the result from the composite received signal.
The decoding then continues analogously with the second
strongest signal to the weakest. A number of methods based
on successive decoding have been proposed and studied for
various types of signals (data streams), including binary
[9]. Channel capacity can be approached in the case when
powers and rates of the signals follow specific precise
arrangements, which is, however, challenging to accomplish
in practice.

In this paper we assume a random correlation among
the signals by postulating that these signals correspond to
random vectors in signal space. The CDMA and MIMO
channels are practical examples of such random channels
[5, 10, 11]. Transmission relies on repeating the symbols
of a message with random delays. Each time the symbol
is modulated onto a new signal. While this increases the
number of signals utilized, it allows for a very efficient
iterative demodulation method to be used. This iterative
demodulator forms the first stage of a two-stage receiver,
where the second stage is a conventional forward error
control (FEC) decoder for individual (binary) data streams,
That is, the iterative first stage efficiently separates the
correlated data streams. Specific adaptations of generalized
modulation have recently been proposed for both CDMA
[12] and MIMO channels [13].

Our contributions in this paper are two-fold. First we
show that using random signals incurs no capacity loss, and
furthermore, that regular-spaced PAM-type modulation on
these random signals can achieve the Shannon capacity. We
then discuss transmission using redundant signaling and an
iterative demodulation method for which we show that it can
operate close to the Shannon capacity over the entire range
of operational interest. In showing this, we will only assume
that we have capacity-achieving binary error control codes
available, a very reasonable assumption given the current
state-of-the art in error control coding [14].

2. Modulation

Generally, a discrete data stream d is mapped onto signals
from a finite set of such signals according to some mapping
rule. In the ubiquitous pulse-amplitude (PAM) modulation,
a discrete amplitude xr for each value of dr from d is
first selected then used to multiply the rth signal. Most
commonly, one of 2B amplitude levels is selected for each
B-bit data symbol. In the case of 8-PAM, for example,
with B = 3, the discrete equispaced amplitudes shown in
Figure 1 are used on each signal. This signal constellation can
be interpreted as the superposition of three simple binary
constellations, where Bit 1 has 4 times the power of Bit 0,
and Bit 2 has 16 times its power.

In general, any properly labeled 2B-PAM modulation
can be written as the superposition of B binary antipodal
amplitudes, that is,

v =
B−1∑

j=0

2 jb j , (1)

where bj ∈ {−1, 1}. If an entire sequence v of 2B-ary
PAM symbols is considered, it may be viewed as the super-
position of B binary modulated data streams with powers
P0, 4P0, 16P0, . . . , 4B−1P0 on binary data streams which make
up the PAM symbol sequence v.

This viewpoint is quite productive in that it suggests a
capacity-achieving demodulation method for large constel-
lations based on cancellation. Consider the case where the
highest-power uncanceled data stream considers all lower
power data streams as noise. Its maximum rate is then given
by the mutual information

Cj = I
(
bj ; y | bj + 1, . . . , bB−1

)
, (2)

where y is the output of the channel. As long as the rate
on the jth binary data stream Rj < Cj , it can be cor-
rectly decoded using a binary Shannon-capacity-achieving
code.(While no class of binary codes with nonexponential
decoding complexity exist which can provably achieve the
capacity on a binary-input channel, codes which can achieve
this capacity “practically” with “implementable” complexi-
ties have recently emerged from intense research. The most
popular representatives are turbo codes and low-density
parity-check codes. Both utilize iterative message passing
decoding algorithms [14].) By virtue of (1), knowledge of
bj+1, . . . , bB−1 implies that these data streams can be canceled
from the received signal, and Cj is the capacity of the
jth binary data stream. This thought model leads to a
successive decoding and canceling method which can achieve
the mutual information rate

Csymmetric = I
(
v; y

) =
B−1∑

j=0

Cj (3)

by the chain rule of mutual information. Csymmetric is of
course not equal to the capacity of the additive white
Gaussian noise channel y = v+n, since the input distribution
of v is uniform, rather than being Gaussian distributed as
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Figure 1: Pulse-amplitude modulation as superposition of binary antipodal modulation with geometric power distribution.

required to achieve the channel capacity. In fact, Csymmetric

loses the so-called shaping gain of 1.52 dB with respect to the
capacity of the Gaussian channel [14].

3. Main Result

In this paper, we propose a generalized PAM modulation
method which operates with random signals, rather than
the orthogonal bases implied by the discussion in the pre-
vious section. We present a two-stage demodulator/decoder
which remedies the difficulties of the onion-peeling method
discussed above. Specifically, the demodulator consists of an
iterative demodulator which operates in parallel and achieves
a signal-to-noise ratio (SNR) improvement on each of the
binary data streams. These are then decoded using external
binary error control codes. The latency issue is basically
confined to that of the parallel demodulator and that of the
follow-up error control decoder. The iterative demodulator
is based on cancelation. This means that its complexity, and
that of the entire decoder scales linearly with the number of
data streams.

Our main result is that we will prove that such an iterative
demodulator/decoder can achieve a cumulative data rate Rd

per dimension such that

Rd ≥ 0.995CGMAC − 0.54
[

bits
dimension

]
, (4)

where CGMAC is the Shannon capacity of the Gaussian
multiple-access channel. That is, our system can achieve a
fraction of 0.995 of channels information theoretic capacity,
irrespective of system size.

In order for the iterative demodulator to function, we
require that the number of signals in the signal space is
increased, but not the power or spectral resources.

4. System Model

4.1. Signaling. We are considering communication of mul-
tiple data streams dk using random signals sk of dimension
N . If N is sufficiently large, the number of useful signals is
arbitrarily large. A set of K data symbols dk,l from the data
streams dk is transmitted at each time interval l. There are
basically two ways to do this. Conventionally each symbol
dk,l is directly modulated onto an individual signal sk,l.
In this paper, however, we propose an alternative where
we duplicate each symbol dk,l M-fold. These duplicates are
then modulated onto separate signals sk,πk,m(l) at M random
time intervals within a certain signal block, where πk,m(l)
is the random location within the block where the mth

copy of symbol dk,l is located. The function πk,m(l) is a
permutation function with inverse π−1

k,m(l). Even though we
have increased the number of signals by a factor M, scaling
the power with M, and requiring that the signal set {sk,πk,m(l)}
occupies the original N-dimensional signal space, this will
not affect total power or the total spectrum utilization.
(Another form of modulation based on randomly correlated
signals called “partitioned transmission” has been recently
proposed in [15]. Partition signalling creates redundancy and
sparseness in transmitted data by partitioning K existing N-
dimensional signal waveforms and permuting the resulting
partitions. Generalized modulation relies on populating
the signals space with additional N-dimensional signal
waveforms. The latter gives an opportunity to create the
requited level M of redundancy independently of signal
dimensionality N . Further, near capacity operation with
generalized modulation does not require N → ∞.) A
diagram of this modulator is given in Figure 2.

We make the convenient, but in no way necessary
assumption that the channel is block-synchronous, that is,
that the signal waveforms at time interval l interfere only
within that time interval, and that there is no correlation of
signal waveforms between time intervals. With this we can
write the channel in the linear matrix form

yl = SlW1/2xl + ηl, (5)

where the N × KM matrix Sl contains the signal vectors as
columns. The capacity per dimension of this channel is well
known [10] and is given by

CS = 1
2N

log det
(

I +
1
σ2

SWST
)

, (6)

where

W = diag
(
P1

M
,
P1

M
, . . . ,

P1

M
,
P2

M
, . . . ,

PK
M

)
(7)

is a KM × KM diagonal matrix with the powers used for
transmission of the different signal vectors. We now assume
that the signals sk,l are chosen randomly from the signal
space(the individual components sk,l,n, n = 1, . . . ,N , of
signals sk,l can, for example, be selected randomly out of
the set {−1/

√
N , 1/

√
N} picking each entry with probability

1/2. However, other random selections satisfying (8) are also
possible) such that the mutual pairwise expected correlation
between signals is

E
[

s∗j,ls j′,l
]2 = 1

N
; j /= j′. (8)
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Figure 2: Modulator with superimposed binary data streams.

This model captures among others the random code-division
multiple-access channel and the isotropic multiple-antenna
channel model.

The capacity CS of this random vector channel is given by
the expectation over S in (6). Using Jensen’s inequality

CS ≤ ES

[
1

2N
log det

(
I +

1
σ2

SST
)]

(9)

with equality if and only if W = I (see [16]). That is to
say that an equal distribution of powers over the signals
maximizes the capacity of the random vector channel (5).

We now investigate the information theoretic impact of
increasing the signal population as proposed by the M-fold
duplication. The following lemma addresses this issue.

Lemma 1. Keeping the transmit power tr(W) = P constant,
the capacity CS as a function of K and N approaches the
capacity of the Gaussian multiple-access channel in the limit,
that is,

CS −→ CGMAC = 1
2

log

(
1 +

∑K
k=1 Pk
Nσ2

)
. (10)

It approaches this limit from below as M,K → ∞, that is, CS <
CGMAC for all K/N <∞.

Proof. See Appendix A.

Lemma 1 reveals useful information in several ways.
Firstly, it guarantees that the signaling strategy presented
above, that is, the addition of extra random signal wave-
forms, incurs no capacity loss, and secondly, in the limit,
arbitrary power assignments become capacity achieving, not
only the equal power assignment.

4.2. Demodulation. The first stage of the demodulation pro-
cess starts with matched filtering of the received signal with
respect to each transmitted signal waveform in each time

interval. Given the received signal embedded in Gaussian
noise as

yr =
K∑

k=1

M−1∑

m=0

√
Pk
M

dk,π−1
k,m(r)sk,π−1

k,m(r) + nr , (11)

these matched filter outputs are given by

zk,l = s∗k,l · yr =
K∑

k′=1

M−1∑

m′=0

√
Pk
M

dk′,l′ s∗k,l · sk′,l′ + nr ,

l = π−1
k,m(r), l′ = π−1

k′,m′(r),

(12)

where nr is the sampled noise of variance σ2, and s∗k,l · sk′,l′ =
ρk,k′
m,m′,l,l′ is the correlation value between the target signal and

a given interfering signal. The matched filter outputs in (12)
consist of dk,l and an interference and noise term, which is
given by

Ik,m,r =
K∑

k′=1
k′ /= k

M−1∑

m′=0

√
Pk′

M
ρk,k′
m,m′,l,l′dk′,l′ + nr. (13)

At this point the graphical illustration shown in Figure 3
may prove helpful, which shows how the different symbols
and signals combine to generate the sequence of received
signal vectors yr . Note that in the interference equation (13)
above, self-interference is not included. Apart from unnec-
essarily complicating the notation, this self-interference is
negligible as shown below. Furthermore, in many cases it
is not difficult to ensure that the signal vectors used for the
different signals from a user k impinging on channel symbol
yr are orthogonal, that is,

s∗k,π−1
k,m(r) · sk,π−1

k,m′ (r) = 0, ∀k, (14)

and cause no self-interference. In [12], for example, different
time intervals are used for the duplicate signals to accomplish
this. The graphical representation reveals the similarity with
graph-based error control codes, in particular with fountain
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Figure 3: Signaling arrangement for the kth data stream. Symbols
aggregating on the same channel node may use orthogonal
signal waveforms. The actual received signal vectors yr are the
superposition of K such data streams, causing the channel nodes
to have large message degrees.

codes [17]. Consequently, we will explore a demodulation
method based on message passing.

Iterative demodulation follows the following message-
passing principle. At the channel nodes, updated matched
filter output signals are computed at each iteration by
subtracting interference to generate

z(i)
k,l,m = s∗k,l ·

⎛
⎜⎜⎜⎝yr −

K∑

k′=1
(k′ /= k)

M−1∑

m′=0

√
Pk′

M
d̃(i−1)
k′,l′,m′ · sk′,l′

⎞
⎟⎟⎟⎠, (15)

where d̃k′,l′,m′ is a soft symbol estimate of the m′th copy
of dk,l. Note that, following the extrinsic principle, the m
different estimates for the same symbol are not necessarily
identical (see below). These soft symbol estimates, in turn,
are computed at the symbol nodes from the M matched filter
signals for each copy of dk,l. While dk,l can, in general, be any
complex integer, we will concentrate on the basic binary case
were dk,l ∈ {−1, 1}. We will show later how to build larger
modulation alphabets from this basic binary case using the
binary decomposition of PAM signals.

In the binary case, the soft symbols are calculated as

d̃(i)
k,l,m = tanh

⎛
⎜⎜⎜⎝

M−1∑

m′=0
(m′ /=m)

√
Pk
M

z(i)
k,l,m′

σ2
k,i

⎞
⎟⎟⎟⎠ (16)

which is the optimal local minimum-variance estimate of dk,l

given that interference and noise combined form a Gaussian
random variable with power σ2

k,i. The variance of the symbol
estimates (16) will be required in the analysis in Section 5.

Defining this variance at iteration i as σ2
d,k,i = E|dk − d̃(i)

k,m|
2
,

and assuming that correlation between interference experi-
enced by different replicas of the same symbol is negligible
due to sufficiently large interleaving, it can be calculated
adapting the development in [18] for CDMA as

σ2
d,k,i = E

(
1− tanh

(
μ +

√
μξ
))2 = g

(
μ
)
, ∀i, (17)

where ξ ∼ N (0, 1) and μ = (M−1)Pk/(Mσ2
i ) from (16), and

σ2
k,i = σ2

i , for all k. The function g(μ) has no closed form, but
the following bounds are quite tight [19]:

g
(
μ
) ≤ 1

(
1 + μ

)
; μ < 1, (18)

g
(
μ
) ≤ πQ

(√
μ
)

; μ ≥ 1, (19)

where Q(·) is the complementary error function. The final

output signal after I iterations is z(I)
k,l =

∑M−1
m=0 z

(I)
k,l,m, which

is passed to binary error control decoders for data stream k.

The final signal-to-noise/interference ratio (SINR) of z(I)
k,l is

what primarily matters for the error performance of these
error control decoders.

After I detection iterations of the first stage the data is
passed to the second stage of demodulation. The second
stage of the reception is the error control decoding which is
executed for each of the K data streams individually. SINR
for data stream k equals Pk/σ2

I and it can be argued that the
residual noise and interference is Gaussian [15]. Ultimately
the information rate (i.e., the rate of the error control code)
of stream k should satisfy

Rk ≤ CBIAWGN

(
Pk
σ2
I

)
(20)

for error-free decoding at the second stage. Here by
CBIAWGN(x) we denote the capacity of the binary-input real-
valued output AWGN channel with SNR x.

5. Generalized Modulation

The discussion above treated the case of binary modulation
on the different signal waveforms, however, as illustrated
in Section 2, we can create the regular-spaced PAM modu-
lations with geometrically scaled binary modulations using
powers

P04b, 0 ≤ b ≤ B − 1. (21)

We assume that there are Kb data streams with powers P04b.
Thus, the total number of streams equals K =∑B−1

b=0 Kb.
Assuming large enough interleavers, the evolution of the

interference in this iterative demodulator can be captured
with a standard density evolution analysis. Since the average

correlation between signal waveforms E[(ρk,k′
m,m′,l,l′)

2
] = 1/N

(see (8)), the interference and noise on stream k is given by

σ2
k,i =

1
N

K∑

k′=1
(k′ /= k)

Pk′σ
2
d,k′,i−1 + σ2 ≤ 1

N

K∑

k=1

Pkσ
2
d,k,i−1 + σ2 = σ2

i

(22)

which is common to all streams. The upper bound in
(22) contains the self-interference term for k′ = k, which,
however, becomes negligible as K and M grow. Using (17) in
(22) and the PAM power distribution we obtain

σ2
i

P0
=

B−1∑

b=0

Kb
4b−1

N
g

(
M − 1
M

4b−1

σ2
i−1/P0

)
+
σ2

P0
. (23)
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Figure 4: Achievable spectral efficiencies using iterative demodulation of various PAM constellations.

The next theorem proves that generalized PAM modulation
used with the two-stage demodulation described above can
closely approach the channel capacity.

Theorem 1. Consider generalized PAM modulation (21) with
B levels and Kb = 0.995N data streams per level for b =
0, 1, . . . ,B − 1 giving a total number of streams K = 0.995BN .
One assumes that each data stream is encoded with a binary
error control code which is capacity achieving on the binary-
input AWGN channel, that is,

Rk = CBIAWGN

(
Pk
σ2∞

)
, (24)

and let M → ∞. Then the resulting spectral efficiency per
dimension

Rd = 1
N

K∑

k=1

Rk ≥ 0.995CGMAC − 0.54. (25)

Proof. See Appendix B.

We note that for B1 < B2 the corresponding capac-
ity approaching power profiles P0,P04, . . . ,P04B1−1 and
P0,P04, . . . ,P04B2−1 coincide for b ≤ B1 − 1. The importance
of these results is that new data streams can always be added
without affecting decodability of the existing streams.

The gap between achieved spectral efficiency and the
channel capacity can also be introduced in terms of average
Eb/N0, instead of data stream power profile. Average Eb/N0

for the power profile used in Theorem 1 can be upper
bounded as

Eb

N0
= 1

2Rd
η
B−1∑

b=0

γ04b ≤ 2η
(
4B − 1

)

3η(B − 1 + 0.6706)
(26)

from (B.14), and therefore the corresponding capacity of
AWGN channel C(Eb/N0), using

Eb

N0
= 22C(Eb/N0) − 1

2C(Eb/N0)
(27)

can be upper bounded as

C(Eb/N0) ≤ B + 0.76. (28)

As a result we obtain

ηC
(
Eb

N0

)
− Rd

(
Eb

N0

)
≤ 1.09. (29)

In Figure 4 we plot the achievable spectral efficiencies
for the proposed generalized PAM modulation (21) for B =
1, 2, 3, 4 levels and assume ideal posterror control decoding
with rates satisfying (24). Such performance can be closely
approached with appropriate standard error control codes,
which are very well developed for the binary case [20, 21].
We assume that Kb = αN/B, for b = 0, 1, 2, . . . ,B − 1, where
parameter α ∈ (0,∞). Each curve corresponds to fixed B
and plotted as a function of average Eb/N0 which is in turn
the function of α. We can observe that spectral efficiency
of generalized PAM modulation exceeds the capacity of the
same PAM modulation using orthogonal waveforms. This is
because the number of allowable correlated signal waveforms
K exceeds the number of available orthogonal dimensions
N . This advantage is most noticeable for 2-PAM, where the
maximum achievable capacity of 2.08 is more than twice
the number of orthogonal dimensions. For higher PAM
constellations, the capacity per level αb = Kb/N = α/B →
1 rapidly from above. Note that for α = η = 0.995 the
gap between the performance curves and the capacity curve
satisfies (29). Specifically, point α = η for B = 1 gives
Eb/N0 = 4.72 dB, for B = 2 gives Eb/N0 = 7.74 dB, for
B = 3 gives Eb/N0 = 11.94 dB, and for B = 4 gives Eb/N0 =
16.63 dB.
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6. Conclusions

We have presented and analyzed a two-stage iterative demod-
ulation methodology for generalized PAM constellations
using correlated random signals rather than the usual
orthogonal bases. The method operates by introducing
redundant duplicate copies of the data symbols modulated
onto extra signals. An exponential power distribution,
inherently present in PAM modulations, allows this two-
stage iterative demodulator to achieve 99.5% of the Shannon
capacity using binary capacity-achieving error control codes
for each data stream. This generalized PAM modulation
format was shown to approach the channel capacity over a
wide range of operating SNRs, and can exceed the capacity
of traditional PAM constellations on orthogonal signals.

Appendices

A. Proof of Lemma 1

Decompose the argument of (6) as

det
(

I +
1
σ2

SWST
)
= det

((
1 +

∑K
k=1 Pk
Nσ2

)
I + B

)

=
(

1 +

∑K
k=1 Pk
Nσ2

)N

det(I + F),

(A.1)

where F is the matrix of the off-diagonal elements with

Fi j = κ
M∑

m=1

K∑

k=1

Pk
M

bm,k, (A.2)

where κ = (σ2 +
∑K

k=1 Pk)
−1

and bm,k ∈ {±1} with uniform
probabilities. The entries Bij have zero mean and variance

var
(
Fi j
)
= 1

M2

∑K
k=1 P

2
k(∑K

k=1 Pk
)2 , (A.3)

which vanishes as (i) M → ∞ or (ii) K → ∞. Condition (ii),
however, requires the Lindeberg condition to hold on the set
{Pk}.

Using (i), or (ii), the elements in F are sufficiently small
to apply Jacobi’s formula, that is,

det(I + F) = (1− tr(F)) + O
(
F2
i j

)
. (A.4)

Since tr(F) = 0, and the second moment of Fi j vanishes, the
limit value of the Lemma is proven.

Using Hadamard’s inequality it is straightforward to
show that

CS < CGMAC, (A.5)

and the limit is approached from below. While det(I+F) → 1
in probability, CS → CGMAC almost surely.

B. Proof of Theorem 1

Let us define γ = P0/σ
2
i , γ′ = P0/σ2, and γ∞ = P0/σ2∞.

Consider B = ∞ here for simplicity and define η = 0.995.
Convergence defined by (23) (for σ2

i , i = 0, 1, . . .) follows
from

1 >
∞∑

b=0

ηγ4bg
(
γ4b

)
+

γ

γ′
, for γ ∈ (0, γ∞

]
, (B.1)

and Kb = ηN . Success of the demodulation stage happens if
γ∞ is close to γ′. This means that the interstream interference
is canceled almost entirely. Let us choose a somewhat
arbitrary lowest power P0 such that γ′ = 4 and prove that
γ∞ > 1.79.

Let us define the functions

t(x) = xg(x), (B.2)

f
(
γ
) =

∞∑

b=0

ηt
(
γ4b

)
+

γ

γ′
=

∞∑

b=0

ηt
(
γ4b

)
+
γ

4
. (B.3)

The function t(x) monotonically increases for 0 < x < x0 and
monotonically decreases for x > x0, where x0 ≈ 1.508. To
find an upper bound on f (·), we consider the terms t(γ4b)
for very small and very large arguments separately, that is,

f
(
γ
) = η

∞∑

b=0

t
(
γ4b

)
+
γ

4

= η
∑

b s.t.γ4b<A1

t
(
γ4b

)
+ η

∑

b s.t.γ4b>A2

t
(
γ4b

)

+ η
∑

b s.t.A1≤γ4b≤A2

t
(
γ4b

)
+
γ

4
.

(B.4)

Using the fact that g(x) ≤ 1 for any x we obtain for any b1 ≥ 0

b1∑

b=0

t
(
γ4b

)
≤ γ

b1∑

b=0

4b =
γ
(

4b1+1 − 1
)

3
<
γ4b1+1

3
. (B.5)

From (19) we obtain

∞∑

b=b2

t
(
γ4b

)
≤ γπ

∞∑

b=b2

4bQ
(

2b
√
γ
)

≤
√
γπ

2

∞∑

b=b2

2be−γ4b/2 ≤
√
γπ

2
2b2e−γ4b2 /2

(
1− e−3γ4b2 /2

)

(B.6)

for b2 such that γ4b2 > 1. The last inequality in (B.6) is
computed by upper bounding the sum by the geometrical
progression using the inequality

t
(
γ4b+1

)

t
(
γ4b

) = 2e−3γ4b/2 ≤ e−3γ4b2 /2. (B.7)

Using (B.5) we get for any A1

∑

b s.t.γ4b<A1

t
(
γ4b

)
<

4A1

3
. (B.8)
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Analogously, (B.6) gives

∑

b s.t.γ4b>A2

t
(
γ4b

)
≤
√

πA2

2
e−A2/2

(1− 2e−3A2/2)
. (B.9)

By choosing A1 = 0.00003 and A4 = 24, we compute
numeric values of the bounds (B.8) and (B.9) for the tails
as

∑

b s.t.γ4b<A1

t
(
γ4b

)
< 4 · 10−5, (B.10)

∑

b s.t.γ4b>A2

t
(
γ4b

)
< 4 · 10−5

. (B.11)

Let us define

f 10

(
γ
) = 8 · 10−5 + η

9∑

b=0

t
(
γ4b

)
+
γ

4
. (B.12)

It follows from (B.4), (B.10), and (B.11) that for any γ

f
(
γ
)
< f 10

(
γ
)
. (B.13)

We also notice that it is enough to consider γ ∈ [A1, γ′].
Numerical calculation shows that the only root γ of f 10(γ)−1
on the interval γ ∈ [A1, 4] equals 1.79374. Thus, γ∞ ≥ γ =
1.79374 due to (B.13).

We calculate the spectral efficiency (or sum-rate per
dimension) as follows:

Rd =
B−1∑

b=0

ηCBIAWGN

(
γ∞4b

)

= η(0.6859 + 0.9835 + B − 2− ε) ≥ η(B − 1 + 0.6706),
(B.14)

where we use a bound from [15]

1− CBIAWGN(x) ≤ 2π3/2

ln 2(π2 − 8)
e−1/2x < 10e−1/2x (B.15)

to upper bound ε as

ε =
B−1∑

b=2

η
(

1− CBIAWGN

(
γ∞4b

))

≤
B−1∑

b=2

10e−(γ∞ 4b)/2 ≤ 10−5, for any B.

(B.16)

The capacity of the additive Gaussian channel corre-
sponding to power profile (21) with Kb = ηN streams per
level can be calculated as follows

CGMAC = 1
2

log2

⎛
⎝1 + η

B−1∑

b=0

γ04b

⎞
⎠ = 1

2
log2

⎛
⎝1 + 4η

B−1∑

b=0

4b

⎞
⎠,

(B.17)

= 1
2

log2

(
1 + 4η

(
4B − 1

)

3

)
≤ B − 1 + 1.21. (B.18)

Combining (B.18) and (B.14), we obtain (25).
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