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1. INTRODUCTION

The concept of entropy is important for studies in many
areas of engineering such as thermodynamics, mechanics,
or digital communications. An early definition of a measure
of the entropy is the Shannon entropy [1, 2]. In Shannon’s
approach, discrete values and absolutely continuous distri-
butions are treated in a somewhat different way through
entropy and differential entropy, respectively. Consider-
ing the complementary cumulative distribution function
(CCDF) instead of the probability density function in the
definition of differential entropy leads to a new entropy
measure named cumulative residual entropy (CRE) [3, 4]. In
[3, 4], CRE is defined as

E(X) = −
∫
Rn+
P
(|X| > u) logP

(|X| > u)du, (1)

where n is the dimension of the random vector X . Clearly,
this formula is valid both for a discrete or an absolutely con-
tinuous random variable (RV), or with both a discrete and an
absolutely continuous part, because it resorts to the CCDF
of |X|. In addition, unlike Shannon differential entropy it is
always positive, while preserving many interesting properties
of Shannon entropy. The concept of CRE has found nice
interpretations and applications in the fields of reliability (see

[5] where the concept of dynamic CRE is introduced) and
images alignment [3].

Shannon entropy can be seen as a particular case
of exponential entropy, when entropy order tends to 1.
Thus, following the work in [4], a modified version of
the exponential entropy, where PDF is replaced by CCDF,
has been introduced in [6], leading to new entropy-type
measures, called survival entropies.

However, both Rao et al.’s CRE and its exponential
entropy generalization by Zografos and Nadarajah lead to
entropy-type definitions that assume either positive valued
RVs or apply to |X| otherwise. Although the positive case is
of great interest for many applications, CRE and exponential
entropies entail difficulties when working with RVs with
supports that are not restricted to positive values.

In this paper, we show that for an RV X , (1) remains
a valid expression when P(|X| > u) is replaced by P(X >
u) and integration is performed over Rn, without further
hypothesis than in [4]. In addition, some desirable properties
are enabled by this CRE definition extension. We also
complete the power moment constrained maximum CRE
distributions problem that was adressed in [7], for classes of
distributions that have lower-unbounded supports. Finally,
we illustrate the potential superiority of the proposed
generalized CRE (GCRE) against differential entropy in
mutual information-based estimation problems.
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The paper is organized as follows. Section 2 introduces
the GCRE definition. Some properties of GCRE are discussed
in Section 3. In Section 4, we introduce cumulative entropy
rate and mutual information rate. Section 5 deals with
maximum GCRE distributions. With a view to illustrate
the potentiality of GCRE, in Section 6, we show on a
simple example a possible benefit of GCRE for systems
identification.

2. GENERALIZED CUMULATIVE RESIDUAL
ENTROPY (GCRE)

We will denote by FcX(x) the complementary cumulative
distribution function (survival function) of a multivariate
RV X = [X1, . . . ,Xn]T of dimension n: FcX(X) = P(X > x) =
P(Xi > xi, i = 1, . . . ,n). We denote by HC(X) the GCRE of X
that we define by

HC(X) = −
∫
Rn
FcX(u) logFcX(u)du. (2)

Clearly, like the CRE, the GCRE is a positive and concave
function of FcX . In addition, existence of GCRE can be
established without further assumption upon distribution
than those assumed for the CRE in [4].

Theorem 1. HC(X) <∞ if for some p > n, E[|X|p] <∞.

Proof. First let us remark that from the proof of the existence
of CRE in [4], it is sufficient to prove the result when X is a
scalar RV, that is n = 1, and for p > 1. Then, letting p−1 <
α < 1, we use the following inequality:

−FcX(x) logFcX(x) ≤ e−1

1− α
[
FcX(x)

]α
1I]0,∞[(x)

+
(
1− FcX(x)

)
1I]−∞,0](x),

(3)

where 1IA(x) = 1 if x ∈ A and 1IA(x) = 0 otherwise.
The existence of

∫
R(e−1/(1− α))[FcX(x)]α1I[0,∞[(x)dx can be

proven just as in [4]. Now, letting u = −x, we have
(
1− FcX(x)

)
1I]−∞,0](x)

= FX(x)1I]−∞,0](x)

≤ 1I[−1,0[(t) + FX(x)1I]−∞,−1[(x)

≤ 1I]0,1](u) + FX(−u)1I]1,∞](u)

≤ 1I]0,1](u) + F−X(u)1I]1,∞](u)

≤ 1I]0,1](u) + Fc|−X|(u)1I]1,∞](u)

≤ 1I]0,1](u) + u−pE
[|X|p]1I]1,∞](u).

(4)

Thus,∫
R

(
1− FcX(x)

)
1I]−∞,0](x)dx

≤
∫
R

(
1I]0,1](u) + u−pE

[|X|p]1I]1,∞](u)
)
du

≤ 1 +
∫∞

1
u−pE

[|X|p]du
<∞.

(5)

Finally, putting all pieces together one finally proves conver-
gence of right-hand side of (2).

3. A FEW PROPERTIES OF GCRE

Let us now exhibit a few more interesting properties of the
GCRE. First, it is easy to check that like Shannon entropy the
GCRE remains constant with respect to variable translation:

∀a ∈ Rn, HC(X + a) = HC(X). (6)

In the same way, it is clear that

∀a ∈ R+, HC(aX) = aHC(X). (7)

When a < 0, we do not have such a nice property. However,
let us consider the important particular case where the
distribution of X has a symmetry of the form

∃μ, ∀x, FcX(μ− x) = 1− FcX(μ + x). (8)

In this case, we get the following result.

Theorem 2. For an RV X that satisfies symmetry property (8),
one has

∀a ∈ R, HC(aX) = |a|HC(X). (9)

Proof. Since it is clear that for all a ∈ R+,HC(aX) = aHC(X),
we just have to check that HC(−X) = HC(X), which can be
established as follows:

−HC(−X) =
∫
R
Fc−X(x) logFc−X(x)dx

=
∫
R
Fc−X(x − μ) logFc−X(x − μ)dx

=
∫
R
FX(−x + μ) logFX(−x + μ)dx

=
∫
R

(
1− FX(x + μ)

)
log
(
1− FX(x + μ)

)
dx

=
∫
R
FcX(x + μ) logFcX(x + μ)dx

=
∫
R
FcX(x) logFcX(x)dx

= −HC(X).
(10)

When the entries of vectorX are independent, it has been
shown in [4] that if the Xi are nonnegative, then

HC(X) =
∑
i

(
Π j /=iE

[
Xj
])
HC
(
Xi
)
. (11)

However, this formula does not extend to RVs with dis-
tributions carried by Rn because FC(X) can be integrated
over Rn

+ in general but never over Rn. However, if the Xis
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are independent and have lower bounded supports with
respective lower bounds m1, . . . ,mn,

HC(X) =
∫
Πi]mi,∞]

−FcX(x) logFcX(x)dx

=
∑
i

(
Π j /=i

(
E
[
Xj
]−mj

))
HC
(
Xi
)
,

(12)

because
∫∞
mi

FcXi(u)du = [uFcXi(u)
]∞
mi

+
∫∞
mi

uPXi(du)

= −mi + E
[
Xi
]
.

(13)

Conditional GCRE definition is a direct extension of the
definition of conditional CRE: the conditional GCRE of X
knowing that Y is equal to y is defined by

HC(X|Y = y)

=
∫
Rn
−P(X > x|Y = y) logP(X > x|Y = y)dx.

(14)

We recall an important result from [4] that states that
conditioning reduces the entropy.

Theorem 3. For any X and Y ,

HC(X|Y) ≤ HC(X) (15)

equality holds if and only if X is independent of Y .

As a consequence, if X → Y → Z is a Markov chain, we
have the data processing inequality for GCRE:

HC(Z|X ,Y) ≤ HC(Z|X). (16)

4. ENTROPY AND MUTUAL INFORMATION RATES

4.1. Entropy rate

The GCRE of a stochastic process {Xi} is defined by

HC(X) = lim
n→∞HC

(
Xn
∣∣Xn−1,Xn−2, . . . ,X1

)
(17)

when the limit exists.

Theorem 4. For stationary processes, the limit exists.

Proof. Consider

HC
(
Xn+1

∣∣Xn, . . . ,X1
) ≤ HC

(
Xn+1

∣∣Xn, . . . ,X2
)

≤ HC
(
Xn
∣∣Xn−1, . . . ,X1

)
.

(18)

The first line follows from the fact that conditioning reduces
entropy and the second follows from the stationarity (see [2]
for the equivalent proof in the case of Shannon entropy).

4.2. Mutual information

Let X and Y be two RVs. We define the cumulative mutual
information between X and Y as follows:

IC(X ;Y) = HC(X)−HC(X|Y). (19)

Theorem 5. IC is nonnegative and it vanishes if and only if X
and Y are independent.

Proof. It is clear that IC is nonnegative because of Theorem 3.

For a random vector X = (X1,X2, . . . ,Xn) of size n,
mutual information is defined by

IC(X) =
n∑
i=1

HC
(
Xi
)−HC

(
Xn
∣∣Xn−1, . . . ,X1

)
. (20)

In the case of stochastic processes {Xi}, we have HC(X) =
limn→∞HC(Xn|Xn−1, . . . ,X1) and the limit exists for station-
ary processes. Then the mutual information rate for {Xi} is
defined as

IC(X) = lim
T→∞

1
T

T∑
t=1

HC
(
Xt
)−HC(X), (21)

where HC(Xt) is the marginal GCRE of the process X .

5. MAXIMUM GCRE DISTRIBUTIONS

In this section, we only consider the case of one-dimensional
RVs (n = 1). Maximum entropy principle is useful in many
scientific areas and most important distributions can be
derived from it [8]. The maximum CRE distribution has
been studied in [7]. For an RV X with a symmetric CCDF
in the sense of (8), we are looking for the maximum GCRE
distribution, that is, the CCDF that solves the following
moment problem:

max
Fc

HC
(
Fc
)

∫
R
ri(x)p(x)dx = ci, i = 1, . . . ,m,

(22)

where p(x) = −(d/dx)Fc(x), (ri)i=1,m, and (ci)i=1,m are fixed
C1 real valued functions and real coefficients, respectively.
The solution of this problem is supplied by the following
result.

Theorem 6. When the symmetry property (8) holds, the
solution of problem (22), when it can be reached, is of the form

Fc(x) = 1
1 + exp

[∑m
1 λir

′
i (x − μ)

] (x ≥ μ). (23)
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Proof.

−HC(X) =
∫ μ
−∞

Fc(x) log
(
Fc(x)

)
dx

+
∫∞
μ
Fc(x) log

(
Fc(x)

)
dx

=
∫
R−
Fc(x + μ) log

(
Fc(x + μ)

)
dx

+
∫
R+

Fc(x + μ) log
(
Fc(x + μ)

)
dx

=
∫
R−

(
1− Fc(μ− x)

)
log
(
1− Fc(μ− x)

)
dx

+
∫
R+

Fc(x + μ) log
(
Fc(x + μ)

)
dx

=
∫
R+

[(
1− Fc(μ + x)

)
log
(
1− Fc(μ + x)

)

+ Fc(μ + x) log
(
Fc(μ + x)

)]
dx.

(24)

Let us define f̃ by

f̃
(
Fc(x),−p)

= −(1− Fc(μ + x)
)

log
(
1− Fc(μ + x)

)

−Fc(μ + x) log
(
Fc(μ + x)

)
+

m∑
1

λi
(− p(x)

)
ri(x).

(25)

Then, since (Fc(x))′ = −p(x), the Euler-Lagrange equation
[9] states that the solution Fc of problem (22) is a solution of
equation

d

dx
f̃−p(x) = f̃Fc(x), (26)

where f̃u is the partial derivative of f̃ with respect to
component u. From (25), we get

d

dx
f̃−p(x) =

m∑
1

λir
′
i (x),

f̃Fc(x) = log
(
1− Fc(μ + x)

)− logFc(μ + x).

(27)

Then,

log
1− Fc(μ + x)
Fc(μ + x)

=
m∑
1

λir
′
i (x),

Fc(x) = 1
1 + exp

(∑m
1 λir

′
i (x − μ)

) ,
(28)

for x ∈ [μ,∞[.

5.1. Example

We set the constraints E[X] = μ and E[X2] = σ2. Then the
maximum GCRE symmetric solution for the CCDF of X is
given by

FcX(x) = 1
1 + exp

(
λ1 + 2λ2x

) , (29)

for x > 0, which is the CCDF of a logistic distribution. The
moment constraints lead to λ1 + 2λ2x = (σ

√
3/π)(x−μ). The

corresponding PDF is defined on R by

pX(x) = σ
√

3
π

exp
(− (σ

√
3/π)(x − μ)

)
(
1 + exp

(− (σ
√

3/π)(x − μ)
))2 . (30)

5.2. Positive random variables

It has been shown in [7] that the maximum CRE (i.e., the
maximum GCRE under additional nonnegative constraint)
distribution has CCDF in the form

FC(x) = exp

(
−

m∑
i=1

λir
′
i (x)

)
, (31)

for x ∈ [0,∞[. In [7], this result is derived from the log-
sum inequality, but of course it can also be derived from the
Euler-Lagrange equation along the same lines as in the proof
of Theorem 6.

With a positive support constraint and under first and
second moment constraints, it comes that the optimum
CCDF is of the form Fc(x) = exp(−λ1 − 2λ2x), for x > 0.
Thus the solution, if it exists, is an exponential distribution.
In fact, the first and second power moment constraints must
be such that E[X2] = 2(E[X])2, otherwise the problem has
no exact solution.

6. SIMULATION RESULTS

With a view to emphasize the potential practical interest of
GCRE, we consider a simple system identification problem.
Here, we consider an MA(1) process, denoted by Y =
(Yn)n∈Z, generated by a white noise X = (Xn)n∈Z and
corrupted by a white noise N :

Yn = Xn − aXn−1 +Nn. (32)

The model input X and output Y are observed and the
system model (MA(1)) is assumed to be known. We want
to estimate the coefficient a without prior knowledge upon
the distributions of X and Y . Thus, we resort to mutual
information (MI) to estimate a as the coefficient α such
that RVs Ŷ α

n = Xn − αXn−1 and Yn show the highest
dependence. Shannon MI between Ŷ α

n and Yn is given by
fS(α) = IS(Ŷ α

n ,Yn) = HS(Ŷ α
n ) − HS(Ŷn|Yn), where HS is

Shannon differential entropy. Similarly, for GCRE, MI will
be defined as fC(α) = IC(Ŷ α

n ,Y) = HC(Ŷ α
n )−HC(Ŷ α

n |Yn). We
compare estimation performance for a by maximizing both
fS(α) and fC(α). Since true values of fS(α) and fC(α) are not
available, they are estimated from empirical distributions of
(Yn, Ŷ α

n ).
For simulations, we have chosen X Gaussian and N

with a Laplace distribution: pN (x) = (λ/2) exp(−λ|x|). We
consider an experiment with a = 0.5 and noise variance
equal to 0.2. Estimation is carried out from observation
of (Xn,Yn)n=1,400. Here, optimization of MIs is realized
on a fixed regular grid of 200 points over interval [0,1].
Estimation performance is calculated from 200 successive
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Figure 1: Ten estimates of (a) fS(α) and (b) fC(α). Dotted line:
mean estimate averaged from 200 realizations.

experiments. Estimation of a from Shannon MI leads to
bias and standard deviation that are equal to 0.032 and
0.18, respectively, while they are equal to 0.004 and 0.06,
respectively, for GCRE MI.

More important, we see on Figure 1(a) that Shannon
MI estimates are much more irregular than GCRE MI
(Figure 1(b)) estimates because of smoothing brought by
density integration in the calculation of CCDF. This dif-
ference is important since the use of an iterative local
optimization technique would have failed in general to find
Shannon’s estimated MI global optimum, because of its
many local maxima.

Of course, this drawback can be partly solved by kernel
smoothing of the empirical distribution of (Yn, Ŷ α

n ), for
instance by using the method proposed in [10]. However,
we have checked that, for the above example, very strong
smoothing is necessary and then bias and variance perfor-
mance remain worse than with GCRE MI estimator.

7. CONCLUSION

We have shown that the concept of cumulative residual
entropy (CRE) introduced in [3, 4] can be extended to dis-
tributions with general supports. Generalized CRE (GCRE)
shares many nice features of CRE. We also pointed out
specific properties of GCRE such as its maximum, moment
constrained, and distribution and we have illustrated practi-
cal interest of GCRE by showing how it can be used in system
identification procedures.
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