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A new method for analysis of electroencephalogram (EEG) signals using empirical mode decomposition (EMD) and Fourier-
Bessel (FB) expansion has been presented in this paper. The EMD decomposes an EEG signal into a finite set of band-limited
signals termed intrinsic mode functions (IMFs). The mean frequency (MF) for each IMF has been computed using FB expansion.
The MF measure of the IMFs has been used as a feature in order to identify the difference between ictal and seizure-free intracranial
EEG signals. It has been shown that the MF feature of the IMFs has provided statistically significant difference between ictal and
seizure-free EEG signals. Simulation results are included to illustrate the effectiveness of the proposed method.
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1. INTRODUCTION

Epileptic seizures are the outcome of the transient and
unexpected electrical disturbance of the brain. The elec-
troencephalogram (EEG) signal has been the most utilized
signal to clinically assess brain activities. The detection of
epileptic seizures in the EEG signals is an important part in
the diagnosis of epilepsy [1].

Parameters extracted from EEG signals are highly useful
in diagnostics. Spectral analysis is a common technique used
for the analysis of EEG signals, as it reveals the frequencies
present in the signal. An underlying assumption of the
Fourier transform, however, is that the signal being analyzed
is stationary (i.e., the mean value, variance, and frequency
content of the signal do not change over time).

Recently, nonlinear methods have been proposed to
extract new parameters linked to the electrical activity of the
brain. Among these parameters, the Lyapunov exponent pro-
vides clinically useful information about the signal [2]; the
correlation dimension techniques can contain information
about the different neurological states of the brain [3]; the
fractal dimension (FD) and entropy measure the complexity
or the degree of disorder of the EEG signal [4, 5], while
correlation integral, the measure sensitive to wide variety
of nonlinearities, used in [6], could be used to characterize

the epileptogenic regions of the brain during the interictal
period. However, recent work shows that the EEG signals
exhibit nonstationary behavior [7, 8].

In this paper, a new technique of EEG signal analy-
sis is presented, which is based on the empirical mode
decomposition (EMD) developed specially for nonlinear
and nonstationary time-series analysis [9] and the Fourier-
Bessel (FB) expansion suitable for nonstationary signal
representation [10]. The EMD extracts the local oscillations
composing the signal, referred to as the intrinsic mode
functions (IMFs), as well as the residual representing the
local trends. The IMFs can be considered as a set of
narrow-band nonstationary signals. The coefficients of the
FB expansion have been used to compute the mean frequency
of the IMFs. The FB coefficients are unique for a given
signal in the same way that Fourier series coefficients are
unique for a given signal. However, unlike the sinusoidal
basis functions in the Fourier transform, the Bessel functions
are aperiodic, and decay over time. These features of the
Bessel functions make the FB series expansion suitable
for analysis of nonstationary signals when compared to
simple Fourier transform [11, 12]. The MF measure of the
IMFs has been used as a feature in order to discriminate
seizures from seizure-free intervals in intracranial EEG data
recordings.
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2. EMPIRICAL MODE DECOMPOSITION

Empirical mode decomposition (EMD) represents any tem-
poral signal into a finite set of amplitude and frequency mod-
ulated (AM-FM) oscillating components which are bases
of the decomposition. The decomposition is an intuitive
and adaptive signal-dependent decomposition. Moreover,
the decomposition does not require any conditions about the
stationarity and linearity of the signal. The principle of the
EMD technique is to decompose a signal x(¢t) automatically
into a set of the band-limited functions D,(t) named
intrinsic mode functions (IMFs) [9]. Each IMF satisfies two
basic conditions: (i) in the complete dataset, the number
of extrema and the number of zero-crossings must be the
same or differ at most by one, (ii) at any point, the mean
value of the envelope defined by the local maxima and
the envelope defined by the local minima is zero. The first
condition is similar to the narrow-band requirement for
a stationary Gaussian process and the second condition
is a local requirement induced from the global one, and
necessary to ensure that the instantaneous frequency will
not have redundant fluctuations as induced by asymmetric
waveforms. The EMD algorithm [13] for the signal x(#) can
be summarized as follows.

(1) Set g1 (t) = x(1).

(2) Detect the extrema (both maxima and minima) of
gi(t).

(3) Generate the upper and lower envelopes e, (t) and

ei(t), respectively, by connecting the maxima and
minima separately with cubic spline interpolation.

(4) Determine the local mean as m(t) = (e, (t) +e;(t))/2.

(5) IMF should have zero local mean; subtract m(¢) from
the original signal as g, (¢) = g1(¢) — m(¢).

(6) Decide whether g(t) is an IMF or not by checking
the two basic conditions as described above.

(7) Repeat steps (2) to (6) and end when an IMF g (¢) is
obtained.

Once the first IMF is derived, define D(t) = g (t), which
is the smallest temporal scale in x(#). To find the rest of the
IMF components, generate the residue r,(¢) of the data by
subtracting D;(t) from the signal as r1(t) = x(t) — D (¢).
The sifting process will be continued until the final residue
is a constant, a monotonic function, or a function with only
maxima and one minima from which no more IMFs can be
derived. The subsequent basis functions and the residues are
computed as

r(t) — Dy(t) = ra(t),...,rm—1(t) — Dy (£) = ryy(t), (1)

where (1) is the final residue. At the end of the decompo-
sition, the signal x(t) is represented as

M
x(t) = D Dp(t) + ru(t), (2)

p=1

where M is the number of IMFs and r(¢) is the final residue.

Matlab codes are available at http://perso.ens-lyon.fr/
patrick.flandrin/emd.html. An example of the application
of EMD on the 23.6seconds EEG time series is shown in
Figure 1.

3. MEAN FREQUENCY COMPUTATION USING
FOURIER-BESSEL EXPANSION

The zero-order Fourier-Bessel series expansion of a sig-
nal x(t) considered over some arbitrary interval (0,a) is
expressed as in [10]

(1) = micho (A2e), ()

where A, m = 1,2,3,... are the ascending-order positive
roots of Jo(A) = 0, and Jy((A,./a)t) are the zero-order Bessel
functions. The sequence of Bessel functions {Jo((An/a)t)}
forms an orthogonal set on the interval 0 < t < a with
respect to the weight ¢, that is,

J:l‘lo(%f)fo(%f>dt =0, form#n. 4)

Using the orthogonality of the set {Jo((A,/a)t)}, the FB
coefficients C,, are computed by using the following equation

_ 2Jotx(o ((An/a) ) dt
@[]y (M) ]*

with 1 < m < Q, where Q is the order of the FB expansion
and, J1(A,,) are the first-order Bessel functions. The FB
expansion order Q must be known a priori. The interval
between successive zero-crossings of the Bessel function Jo(A)
increases slowly with time and approaches 7 in the limit.
If order Q is unknown, then in order to cover full signal
bandwidth, the half of the sampling frequency, Q, must be
equal to the length of the signal.

It should be noted that the FB series coefficients C,,
are unique for a given signal, similarly as the Fourier
series coefficients are unique for a given signal. However,
unlike the sinusoidal basis functions in the Fourier series,
the Bessel functions decay over time. This feature of the
Bessel functions makes the FB series expansion suitable for
nonstationary signals.

The mean frequency is calculated as in [14]

(5)

m

St finEm
fmean = ZQl{Em’ (6)
where
, a2 2
En = Cm?[h (Am)]” = (energy at order m),
(7)

fm = % = (frequency at order m).

The selection of the optimum window size a is required
for a good resolution. A larger window provides a finer
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FiGure 1: Empirical mode decomposition of the 23.6 seconds EEG signal.

resolution in frequency, which also means that a greater
number of FB coefficients will be needed to cover the same
signal bandwidth. The mean frequency of the IMFs was
computed using FB expansion. Mean frequency represents
the centroid of the spectrum, and thus characterizes the
frequency components of the intrinsic mode functions of the
EEG signal.

4. RESULTS AND DISCUSSION

The use of EMD before calculating mean frequency was
necessary owing to the nonstationary and nonlinear nature
of the EEG signals. Mean frequency (MF) estimation was
performed using the Fourier-Bessel expansion method.

In this section, the MF estimate of the IMFs has been
considered as a feature in discriminating EEG patterns in
intracranial EEG data recordings. For this purpose, EEG
recordings having seizure-free intervals and seizures are
considered. The EEG dataset which is available online in [15]
is used. In this section, a short description is given and please
refer to [15] for further detail. The dataset includes single
channel EEG data from healthy and epileptic subjects. The
data has five subsets denoted as A, B, C, D, and E, each con-
taining 100 single-channel recordings, each recording of 23.6
seconds in duration. The subsets A and B have been acquired
using surface EEG recordings of five healthy volunteers
with eyes open and closed, respectively. The signals in two
sets have been measured in seizure-free intervals from five
patients in epileptic zone (subset D) and from hyppocampal
formation of opposite hemisphere of the brain (subset C).

Finally, the subset E contains seizure activity selected from
all recording sites exhibiting ictal activity. The subsets A and
B have been recorded extracranially. The sampling frequency
of the data is 173.61 Hz. From the dataset, the subsets C, D,
and E have been selected because these have been acquired
intracranially. The subsets C and D are combined to form
one class and subset E forms the other class.

The MF values have been estimated for both the classes
using intrinsic mode functions. The value of MF is small
in seizure intervals when compared with that for seizure-
free intervals. The class discriminating ability of MF feature
is quantified using Kruskal-Wallis statistical test. The MF
values are significantly different among the two classes
of EEG signals (p < 0.01). The results are shown in
Figure 2 for the first four intrinsic mode functions. The result
suggests that MFs are effective for discriminating seizure
from seizure-free intervals for intracranial EEG recordings.

The use of empirical mode decomposition in the present
study was justified on the basis of the lack of stationarity
in EEG signals. In this way, the entire signal could be
analysed simultaneously, at least for a given frequency band.
However, although EMD does decompose a signal into
different frequency bands (IMFs), the interpretation of the
results derived from these IMFs is problematic. Unlike other
methods such as wavelets, the number of bands (IMF) is
dependent on the frequency content of the signal being
analysed, with the number of IMF varying for each signal.
Such a property is problematic, as the IMFs used for
comparison might relate to different frequency bands. For
instance, IMF4 for two subjects might be the fourth of
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FIGURE 2: Comparison of mean frequency estimation for seizure-free and seizure intervals for different intrinsic mode functions (IMFs):
IMF1 (p = 0), IMF2 (p = 0), IMF3 (p = 0), and IMF4 (p = 2.6921 x 107'%).

four IMFs for one subject, but the fourth of eight IMFs for
another. In such an example, the former would represent
the low-frequency components in the signal, while the latter
would represent frequency components from the middle of
the spectrum.

5. CONCLUSION

The use of EMD to decompose signals into IMFs is a
promising method. However, caution should be exercised
when interpreting results from individual IMFs. It would
be of interest to develop a method to standardise the
comparison of individual or summed IMFs, in order to better
compare seizure and seizure-free intervals in the EEG signals.

To establish the clinical use for the proposed technique,
it is necessary to test on out-of-sample datasets. It may
require the collection of a very large database of recordings
of sufficient duration (many hours).
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