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This paper is concerned with a class of stochastic processes or random fields with second-order increments, whose variograms have
a particular form, among which stochastic processes having orthogonal increments on the real line form an important subclass.
A natural issue, how big this subclass is, has not been explicitly addressed in the literature. As a solution, this paper characterizes
a stochastic process having orthogonal increments on the real line in terms of its variogram or its construction. Our findings
are a little bit surprising: this subclass is big in terms of the variogram, and on the other hand, it is relatively “small” according
to a simple construction. In particular, every such process with Gaussian increments can be simply constructed from Brownian
motion. Using the characterizations we obtain a series expansion of the stochastic process with orthogonal increments.
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1. INTRODUCTION

The variogram, or the structure function, was first employed
by Kolmogorov [1, 2] to describe statistical properties of
stochastic processes. It has been used as an important de-
pendence measure for stochastic processes or random fields
that have second-order increments, and as a useful structural
tool in practice for analyzing space and/or time data (see, e.g.,
[3–12], among others).

Consider a real-valued stochastic process or random field
{Z(x), x ∈D} over an index set D that could be a temporal,
spatial, or spatiotemporal domain. Its variogram or structure
function is defined by half the variance of the increment:

γ
(

x1, x2
) = 1

2
var
{
Z
(

x1
)− Z

(
x2
)}

, x1, x2 ∈D , (1)

when the increments of {Z(x), x ∈ D} have second-
order moments. In particular, for a second-order process
{Z(x), x ∈D} with mean EZ(x) and covariance function

C
(

x1, x2
) = E

[{
Z
(

x1
)− EZ

(
x1
)}{

Z
(

x2
)− EZ

(
x2
)}]

,

x1, x2 ∈D ,
(2)

its variogram is found to be

γ
(

x1, x2
) = 1

2

{
C
(

x1, x1
)

+ C
(

x2, x2
)}− C

(
x1, x2

)
,

x1, x2 ∈D .
(3)

For a constant α with 0 < α ≤ 2 and a real-valued func-
tion g(x), x ∈D , it is shown in Section 2 that

γ
(

x1, x2
) = ∣∣g(x1

)− g
(

x2
)∣∣α, x1, x2 ∈D , (4)

is a variogram associated with, for instance, a Gaussian or el-
liptical contoured stochastic process. A well-known such ex-
ample is the variogram of Brownian motion, with g(x) = x,
x ∈ R, and α = 1, which has many interesting properties and
particularly belongs to an important subclass of processes on
R that have orthogonal increments. This motivates us to in-
vestigate the general variogram structure of stochastic pro-
cesses having orthogonal increments in Section 3.

Let D be a temporal index set over the real line. A
stochastic process {Z(x), x ∈ D} with second-order in-
crements is said to have orthogonal (or uncorrelated) incre-
ments if

cov
{
Z
(
x2
)− Z

(
x1
)
, Z
(
x4
)− Z

(
x3
)} = 0 (5)

whenever x1 ≤ x2 ≤ x3 ≤ x4, xk ∈ D (k = 1, . . . , 4). White
noise is a simple example of processes with orthogonal in-
crements, since it is uncorrelated on its domain. A more in-
teresting and also simple example is Brownian motion. For a
stochastic process {Z(x), x ∈ R} having orthogonal incre-
ments, either its mean square derivative Z′(x) does not exist,
or it is a constant almost surely. Some important uses of this
type of stochastic processes are in a spectral representation
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of a stationary process and in the formulation of the inte-
gral

∫∞
−∞ h(x)dZ(x), where h(x) is a determinate function or

a stochastic process.
This paper addresses a simple but interesting question

that has not been explicitly addressed in the literature: how
big is the class of stochastic processes having orthogonal in-
crements on the real line? This leads us in Section 3 to char-
acterize a stochastic process having orthogonal increments
on an index set over the real line through its variogram (13)
or its construction (14). As an application of construction
(14), we obtain a series expansion of the stochastic process
having orthogonal increments in Theorem 3, which is more
transparent than the representation (2.8) of Cambanis [13]
that provides a way of constructing every stochastic process
with orthogonal Gaussian increments; see also [14] for series
representations of second-order stochastic processes. The re-
sults here could be used, for instance, for numerical synthesis
or simulation.

2. A CLASS OF VARIOGRAMS

The following theorem contains a type of variograms over a
temporal, spatial, or spatiotemporal domain D .

Theorem 1. If g(x), x ∈ D , is a real-valued function and α is
a positive constant between 0 and 2, then

γ
(

x1, x2
) = ∣∣g(x1

)− g
(

x2
)∣∣α, x1, x2 ∈D , (6)

is a variogram on D .

Proof. Obviously, γ(x1, x2) = γ(x2, x1) ≥ 0, x1, x2 ∈ D , and
γ(x, x) = 0, x ∈ D . Let us start by proving that (6) is (con-
ditionally) negative definite in a special case where α = 2. In
this case, for each integer n ≥ 2, any x1, . . . , xn ∈D , and any
real numbers a1, . . . , an with

∑ n
k=1 an = 0, we have

n∑

i=1

n∑

j=1

aiaj

∣∣g
(

xi
)− g

(
x j
)|2

=
n∑

i=1

n∑

j=1

aiaj
{
g2(xi

)
+ g2(x j

)− 2g
(

xi
)
g
(

x j
)}

= −2
{ n∑

i=1

aig
(

xi
)}

2

≤ 0;

(7)

that is, |g(x1)− g(x2)|2 is negative definite on D .
Suppose now that 0 < α < 2, which we rewrite as α = 2β.

Notice that 0 < β < 1 and

yβ = β

Γ(1− β)

∫∞

0

(
1− e−yu

) du

uβ+1 , y ≥ 0. (8)

Since |g(x1) − g(x2)|2 is negative definite on D , 1 −
exp {−|g(x1) − g(x2)|2u} is also negative definite on D for

any nonnegative constant u. So is

∣∣g
(

x1
)− g

(
x2
)∣∣α

= {∣∣g(x1
)− g

(
x2
)∣∣2}β

= β

Γ(1− β)

∫∞

0

[
1− exp

{−∣∣g(x1
)− g

(
x2
)∣∣2

u
}] du

uβ+1 ,

x1, x2 ∈D .
(9)

A well-known example of (6) is the variogram of frac-
tional Brownian motions, with g(x) = x, x ∈ R, and 0 <
α ≤ 2.

As another example, in (6), taking α = 1 and g(x) = ‖x‖,
x ∈ Rd, we obtain a variogram |‖x1‖ − ‖x2‖|, which may
be associated with a random field with covariance ‖x1‖ +
‖x2‖ − |‖x1‖ − ‖x2‖|, x1, x2 ∈ Rd, where ‖x‖ denotes the
usual Euclidean norm. Interestingly, this covariance func-
tion is always positive except for the case where x1 = 0
or x2 = 0, and it is thus different from that of Brownian
motion in Rd, ‖x1‖ + ‖x2‖ − ‖x1 − x2‖, of which a one-
dimensional projection, |x1| + |x2| − |x1 − x2|, x1, x2 ∈ R,
vanishes when x1 and x2 locate at the opposite sides of the
origin.

The third example of (6) is |θ′(x1 − x2)|α, which is ob-
tained from (6) by letting g(x) = θ′x, x ∈ D , where θ is a
constant vector in D .

It is interesting to see that g(x) could be an arbitrary
function on D in order to formulate the variogram (6).
When it is nonnegative, we obtain the following type of co-
variances for nonstationary Gaussian processes or random
fields.

Corollary 1. For a real-valued function g(x), x ∈D , the func-
tion

C
(

x1, x2
) = min

{
g
(

x1
)
, g
(

x2
)}

, x1, x2 ∈D , (10)

is a covariance function if and only if g(x) is nonnegative on
D .

Proof. Clearly, the function g(x) in (10) is nothing but the
variance of the corresponding process, and thus it is neces-
sarily nonnegative.

On the other hand, let g(x) ≥ 0, x ∈ D . Moreover, sup-
pose that there is an x0 ∈ D such that g(x0) = 0; otherwise,
we choose an x0 ∈ D and modify the function g(x) as fol-
lows:

0, x = x0,

g(x), x /= x0, x ∈D ,
(11)

which is nonnegative on D as well. By Theorem 1,
γ(x1, x2) = (1/2)|g(x1)−g(x2)|, x1, x2 ∈D , is the variogram
associated with a process, say, {Z(x), x ∈D}. Then, the co-
variance of the increment process {Z(x)−Z(x0), x ∈D} is
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a Schoenberg-Lévy kernel [7]:

cov
(
Z
(

x1
)− Z

(
x0
)
, Z
(

x2
)− Z

(
x0
))

= γ
(

x1, x0
)

+ γ
(

x2, x0
)− γ

(
x1, x2

)

= g
(

x1
)

+ g
(

x2
)

2
−
∣∣g
(
x1
)− g

(
x2
)∣∣

2

= min
{
g
(

x1
)
, g
(

x2
)}

, x1, x2 ∈D .

(12)

3. STOCHASTIC PROCESS WITH
ORTHOGONAL INCREMENTS

In this section, D denotes an index set over the real line. The
following theorem characterizes every stochastic process hav-
ing orthogonal increments on D ⊆ R.

Theorem 2. Assume that a stochastic process {Z(x), x ∈
D} has second-order increments and the variogram γ(x1, x2).
Then, the following statements are equivalent:

(i) {Z(x), x ∈D} has orthogonal increments;
(ii) there exists a monotone function g(x), x ∈ D , such
that

γ
(
x1, x2

) = ∣∣g(x1
)− g

(
x2
)∣∣, x1, x2 ∈D ; (13)

(iii) there exists a monotone function g(x), x ∈ D , such
that

Z(x) = Z0(g(x)), x ∈D , (14)

where {Z0(x), x ∈ Rg} is a stochastic process with second-
order increments and variogram

γ
(
x1, x2

) = ∣∣x1 − x2
∣
∣, x1, x2 ∈ Rg , (15)

and Rg is the range of the function g(x), x ∈D .

As a naive interpretation of (13), the class of stochastic
processes having orthogonal increments is as big as the class
of real-valued monotone functions on D . On the other hand,
every such stochastic process can be simply obtained from
the process {Z0(x), x ∈ Rg} via the construction (14), so that
the class looks like being relatively “small”.

Clearly, the function g(x) in (13) or (14) is not unique;
for instance, −g(x) or g(x) + c is another candidate, where
c is a constant. This is comparable to what we know, that
if {Z(x), x ∈ D} has orthogonal increments, then so do
{−Z(x), x ∈ D}, {Z(x) + c, x ∈ D}, and {Z(x) + Y , x ∈
D}, where Y is a random variable. Also, different stochastic
processes with orthogonal increments could have the same
variogram. As an important benefit of Theorem 2, the same
techniques employed in the study of the process {Z0(x), x ∈
R} can be used in studying all processes with orthogonal in-
crements.

Before proving Theorem 2, notice that the following
identity holds for any real numbers a1, . . . , a4:

(
a1 − a2

)(
a3 − a4

) = 1
2

(
a1 − a4

)2
+

1
2

(
a2 − a3

)2

− 1
2

(
a1 − a3

)2 − 1
2

(
a2 − a4

)2
.

(16)

In particular, in (16), choosing

ai − aj = Z
(
xi
)− Z

(
xj
)− E

{
Z
(
xi
)− Z

(
xj
)}

,

i, j ∈ {1, . . . , 4},
(17)

and then taking the expectation of both sides of (16), we ob-
tain

cov
{
Z
(
x1
)− Z

(
x2
)
, Z
(
x3
)− Z(x4

)}

= γ
(
x1, x4

)
+ γ
(
x2, x3

)− γ
(
x1, x3

)− γ
(
x2, x4

)
,

(18)

for a process {Z(x), x ∈ D} having second-order incre-
ments on D , where xk ∈D (k = 1, . . . , 4).

Proof of Theorem 2. (ii)⇒(i): suppose that (13) holds with
g(x) being a nondecreasing function on D . Then for any
x1 ≤ x2 ≤ x3 ≤ x4, using formula (18) we obtain

cov
{
Z
(
x2
)− Z

(
x1
)
,Z
(
x4
)− Z

(
x3
)}

= γ
(
x1, x4

)
+ γ
(
x2, x3

)− γ
(
x1, x3

)− γ
(
x2, x4

)

= ∣∣g(x1
)− g

(
x4
)∣∣ +

∣∣g
(
x2
)− g

(
x3
)∣∣

− ∣∣g(x1
)− g

(
x3
)∣∣− ∣∣g(x2

)− g
(
x4
)∣∣

= {g(x4
)− g

(
x1
)}

+
{
g
(
x3
)− g

(
x2
)}

− {g(x3
)− g

(
x1
)}− {g(x4

)− g
(
x2
)} = 0,

(19)

which means that {Z(x), x ∈ D} has orthogonal incre-
ments.

In case g(x) is a nonincreasing function on D , the or-
thogonal property of increments of {Z(x), x ∈ D} is ob-
tained in a similar way.

(i)⇒(ii): let {Z(x), x ∈D} have orthogonal increments,
and choose a point x0 ∈D . Define

g(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

var
{
Z(x)− Z

(
x0
)}

, x ≥ x0,

−1
2

var
{
Z(x)− Z

(
x0
)}

, x < x0.
(20)

To show that g(x) is nondecreasing on D and γ(x1, x2) is of
the form (13), we consider three possibilities as follows.

Case 1 (x1 ≤ x0 ≤ x2). In this case, it is obvious that g(x1) ≤
g(x2) and

γ(x1, x2) = 1
2

var
{(
Z
(
x2
)− Z

(
x0
))

+
(
Z
(
x0
)− Z

(
x1
))}

= 1
2

var
(
Z
(
x2
)− Z

(
x0
))

+
1
2

var
(
Z
(
x0
)− Z

(
x1
))

+ 2 cov
{
Z
(
x2
)− Z

(
x0
)
, Z
(
x0
)− Z

(
x1
)}

= g
(
x2
)− g

(
x1
)
,

(21)

where the last equality follows from the orthogonal property
of the increments and the definition of g(x).
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Case 2 (x0 ≤ x1 ≤ x2). Now, the orthogonal property of the
increments implies

g
(
x2
)− g

(
x1)

= 1
2

var
{(
Z
(
x2
)− Z

(
x1
))

+
(
Z
(
x1
)− Z

(
x0
))}

− 1
2

var
(
Z
(
x1
)− Z

(
x0
))

= 1
2

var
(
Z
(
x2
)− Z

(
x1
))

+ E
{(
Z
(
x2
)− Z

(
x1
))(

Z
(
x1
)− Z

(
x0
))}

= 1
2

var
(
Z
(
x2
)− Z

(
x1
))

= γ
(
x1, x2

) ≥ 0.

(22)

Case 3 (x1 ≤ x2 ≤ x0). This is similar to case 2.
If we replace g(x) in its definition by −h(x), then h(x) is

a nonincreasing function on D and (13) holds as well.
(ii)⇒(iii): consider the case where g(x) is strictly increas-

ing or decreasing on D , while other cases may be treated
with modification. In this case, g−1(x), the inverse function
of g(x), is well defined on Rg , so that we can define a new
stochastic process:

Z0(x) = Z
(
g−1(x)

)
, x ∈ Rg. (23)

Clearly, the variogram of {Z0(x), x ∈ Rg} is the same as (15),
and in terms of {Z0(x), x ∈ Rg}, {Z(x), x ∈ D} can be
expressed as (14).

(iii)⇒(ii): the proof is obvious.

The property (ii) of Theorem 2 is known in the particular
case where {Z(x), x ∈ R} is a second-order process (see,
e.g., [15, Subsection 37.5]).

Corollary 2. A second-order stochastic process {Z(x), x ∈
D} has orthogonal increments if its covariance function is of
the form

C
(
x1, x2

) = g
(

min
(
x1, x2

))
, x1, x2 ∈D , (24)

where g(x), x ∈ D , is a nondecreasing and nonnegative func-
tion on D .

The variogram corresponding to (24) is

γ
(
x1, x2

) = 1
2

∣
∣g
(
x1
)− g

(
x2
)∣∣, x1, x2 ∈D , (25)

which indicates that g(x) in the expression (13) for the var-
iogram of a second-order process having orthogonal incre-
ments is bounded from below. Generally speaking, however,
this may not hold for other processes having orthogonal in-
crements.

Unlike (13), the function g(x) in (24) has to be nonde-
creasing on D , because the Cauchy-Schwartz inequality im-
plies that
∣
∣ cov

(
Z
(
x1
)
, Z
(
x2
))∣∣

≤
√

var
(
Z
(
x1
)) √

var
(
Z
(
x2
))

, x1, x2 ∈D ,
(26)

or

g
(

min
(
x1, x2

)) ≤
√
g
(

min
(
x1, x2

))√
g
(

max
(
x1, x2

))
;
(27)

in other words,

g
(

min
(
x1, x2

)) ≤ g
(

max
(
x1, x2

))
, x1, x2 ∈D . (28)

The inverse of Corollary 2 is obtained under an addi-
tional assumption.

Corollary 3. For a second-order stochastic process {Z(x), x ∈
D} that satisfies

lim
x→x0

var
(
Z(x)

) = 0, (29)

where x0 = min x∈D x, if it has orthogonal increments, then its
covariance function is given by (24), where the nondecreasing
and nonnegative function g(x), x ∈D , takes the form

g(x) = var
(
Z(x)

)
, x ∈D . (30)

In fact, condition (29) implies that for any x1 ≤ x2 and
x1, x2 ∈D ,

cov
(
Z
(
x0
)
, Z
(
x2
)− Z

(
x1
)) = 0, (31)

so that

cov
(
Z
(
x1
)
, Z
(
x2
)− Z

(
x1
))

= cov
(
Z
(
x1
)− Z

(
x0
)
, Z
(
x2
)− Z

(
x1
)) = 0,

(32)

and moreover

cov
(
Z
(
x1
)
, Z
(
x2
))

= cov
(
Z
(
x1
)
, Z
(
x2
)− Z

(
x1
))

+ cov
(
Z
(
x1
)
, Z
(
x1
))

= var
(
Z
(
x1
))
.

(33)

Condition (29) in Corollary 3 is typical. For example,
when defining a Wiener process on the interval [0, 1], we of-
ten assume that Z(0) ≡ 0.

It would be of interest to find the most general form of
the covariance function, just like (13) for the variogram, for
a second-order stochastic process on D that has orthogonal
increments. So far, what we know is that, according to the
definition of orthogonal increments,

cov
{
Z
(
x0
)− Z

(
x1
)
, Z
(
x2
)− Z

(
x0
)} = 0, (34)

where x0 is an arbitrary point between x1 and x2, which
means that the covariance function must be of the form

C(x1, x2) = C(x1, x0) + C(x2, x0)− C(x0, x0), x1 ≤ x0 ≤ x2.
(35)

The function g(x) in (13) or (24) is not necessarily
bounded from both sides. When it is so, the next theorem
provides a series expansion for the corresponding stochastic
process with orthogonal increments, which may be employed
to simulate the process (e.g., [16]) or for numerical synthesis.



Chunsheng Ma 5

Theorem 3. If {Z(x), x ∈ D} is a stochastic process with or-
thogonal increments and g(x) in the variogram (13) is bounded
by 0 ≤ g(x) ≤ 1, x ∈D , then

Z(x) = √2
∞∑

n=1

εn
sin
{

(n− 1/2)πg(x)
}

(n− 1/2)π
, x ∈D , (36)

where {εn,n = 1, 2, . . . } is white noise with mean 0 and vari-
ance 1, and the series at the right-hand side of (36) converges
to Z(x) in mean square and uniformly for x ∈D .

Proof. For a stochastic process {Z0(t), t ∈ [0, 1]} with vari-
ogram (15) on the interval [0, 1], it is known (see, e.g., [17,
Section 1.4]) that {Z0(t), t ∈ [0, 1]} has the Karhunen-
Loéve expansion

Z0(x) = √2
∞∑

n=1

εn
sin
{

(n− 1/2)πx
}

(n− 1/2)π
, 0 ≤ x ≤ 1, (37)

where {εn,n = 1, 2, . . . } is a sequence of uncorrelated ran-
dom variables with mean 0 and variance 1. Substituting x
with g(x) in (37) yields (36).

The boundedness of g(x) is required for the representa-
tion (36), while 0 ≤ g(x) ≤ 1 might not be necessary.

In the Gaussian case, {εn,n = 1, 2, . . . } are independent,
and thus for each x the series at the right-hand side of (36)
converges almost surely. Obviously, the expansion (36) is
more transparent than (2.8) of Cambanis [13] for processes
with orthogonal Gaussian increments.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under Grant DMS 0604942, and in part by a
university fellowship at Statistical and Applied Mathemati-
cal Sciences Institute (SAMSI), Research Triangle Park, NC,
where the author took his sabbatical leave in the academic
year 2006-2007.

REFERENCES

[1] A. V. Kolmogorov, “Stationary sequences in Hilbert space,”
Bull. MGU, Ser. Mat, vol. 2, pp. 1–40, 1941.

[2] A. V. Kolmogorov, “Local structure of turbulence in an in-
compressible fluid at very high Reynolds numbers,” Doklady
Akademii Nauk SSSR, vol. 30, pp. 299–303, 1941.

[3] J.-P. Chilès and P. Delfiner, Geostatistics: Modeling Spatial Un-
certainty, John Wiley & Sons, New York, NY, USA, 1999.

[4] G. Christakos, “On the problem of permissible covariance and
variogram models,” Water Resources Research, vol. 20, no. 2,
pp. 251–265, 1984.

[5] N. Cressie, Statistics for Spatial Data, John Wiley & Sons, New
York, NY, USA, Revised edition, 1993.

[6] C. Ma, “The use of the variogram in construction of station-
ary time series models,” Journal of Applied Probability, vol. 41,
no. 4, pp. 1093–1103, 2004.

[7] C. Ma, “Spatio-temporal variograms and covariance models,”
Advances in Applied Probability, vol. 37, no. 3, pp. 706–725,
2005.

[8] C. Ma, “Linear combinations of space-time covariance func-
tions and variograms,” IEEE Transactions on Signal Processing,
vol. 53, no. 3, pp. 857–864, 2005.

[9] G. Matheron, “The intrinsic random functions and their ap-
plications,” Advances in Applied Probability, vol. 5, no. 3, pp.
439–468, 1973.

[10] A. Shapiro and J. D. Botha, “Variogram fitting with a general
class of conditionally nonnegative definite functions,” Compu-
tational Statistics & Data Analysis, vol. 11, no. 1, pp. 87–96,
1991.

[11] V. Solo, “Intrinsic random functions and the paradox of 1/ f
noise,” SIAM Journal on Applied Mathematics, vol. 52, no. 1,
pp. 270–291, 1992.

[12] A. M. Yaglom, Correlation Theory of Stationary and Related
Random Functions, Springer, New York, NY, USA, 1987.

[13] S. Cambanis, “Bases in L2 spaces with applications to stochas-
tic processes with orthogonal increments,” Proceedings of the
American Mathematical Society, vol. 29, no. 2, pp. 284–290,
1971.

[14] S. Cambanis, “Representation of stochastic processes of sec-
ond order and linear operations,” Journal of Mathematical
Analysis and Applications, vol. 41, no. 3, pp. 603–620, 1973.
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