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1. INTRODUCTION

This paper is concerned with the development of time-
varying (TV) long-term fading (LTF) wireless channel mod-
els based on system identification and estimation algorithms
to extract various parameters of the LTF channel using re-
ceived signal measurements. TV wireless channel models
capture both the space and time variations of wireless sys-
tems, which are due to the relative mobility of the receiver
and/or transmitter and scatterers [1–3]. In the TV models,
the statistics of channel are time-varying. This contrasts with
the majority of published work that mainly deals with time-
invariant (static) random models or simple free space model,
where the channel statistics do not depend on time [4–6]. In
time-invariant models, channel parameters are random but
do not depend on time, and they remain constant through-
out the observation and estimation phase. This contrasts
with TV models, where the channel dynamics become TV
random (stochastic) processes [1–3].

The TV LTF channel model is discussed in [2] and rep-
resented by stochastic differential equations (SDEs). We pro-
pose to estimate the TV power path loss of the LTF chan-
nel and its parameters from received signal strength data,
which are usually available or easy to obtain in any wireless
network. The expectation maximization (EM) algorithm [7]

and Kalman filtering [8] are employed in the identification
and estimation of the channel parameters and path loss. The
proposed identification and estimation algorithms are recur-
sive and only based on received signal measurements. Nu-
merical results are provided to determine the performance
of the proposed estimation algorithm.

The paper is organized as follows. In Section 2, the TV
LTF mathematical channel model is introduced. In Section 3,
the EM algorithm together with the Kalman filter, to esti-
mate the channel parameters as well as the channel power
loss from signal measurements, is developed. In Section 4,
numerical results are presented. Finally, Section 5 provides
the conclusion.

2. TV LTF WIRELESS CHANNEL
MATHEMATICAL MODEL

Wireless channels suffer from short-term fading (STF) due
to multipath, and LTF due to shadowing depending on the
geographical area. In suburban areas, which are populated
with less obstacles like vehicles, buildings, mountains, and
so forth, their communication signal undergoes phenome-
nal LTF (lognormal shadowing) [5]. For such propagation
environments, the random process power loss (PL) in dB,
{X(t, τ)}t≥0,τ≥τ0

, which is a function of both time t and space



2 Research Letters in Signal Processing

represented by the time delay τ, is generated by a mean-
reverting version of a general linear time-varying SDE given
by [2, 3]

dX(t, τ) = β(t, τ)
(
γ(t, τ

)− X(t, τ)
)
dt + δ(t, τ)dW(t),

X
(
t0, τ

) = N
(
PL(d)[dB]; σ2

t0

)
,

(1)

where {W(t)}t≥0 is the standard Brownian motion (zero
drift, unit variance) which is assumed to be independent of
X(t0, τ), N (μ; κ) denotes a Gaussian random variable with
mean μ and variance κ, and PL(d) [dB] is the average PL in
dB. The parameter γ(t, τ) models the average TV PL at dis-
tance d from transmitter, which corresponds to PL(d) [dB] at
d indexed by t. This model tracks and converges to this value
as time progresses. The instantaneous drift β(t, τ)(γ(t, τ) −
X(t, τ)) represents the local mean while β(t, τ) represents the
local standard deviation. Note that β(t, τ) can be selected
to control the speed of adjustment towards a specific mean
value associated with (1).

In [2, 3], this model is shown to capture the spatiotempo-
ral variations of the propagation environment as the random
parameters {β(t, τ), γ(t, τ), δ(t, τ)}t≥0 can be used to model
the TV characteristics of the LTF channel. The received sig-
nal, y(t), at any time t can be expressed as

y(t) = s(t)H(t) + v(t), (2)

where s(t) is the information signal, v(t) is the channel dis-
turbance at the receiver, andH(t) is the signal attenuation co-
efficient defined by H(t) � ekX(t,τ), where k = − ln (10)/20
[5].

The general spatiotemporal lognormal model in (1) and
(2) can be realized by a stochastic state space system given by

Ẋ(t, τ) = A(t, τ)X(t, τ) + B(t, τ)w(t),

y(t) = s(t)ekX(t,τ) +D(t)v(t),
(3)

where A(t, τ) = −β(t, τ), B(t, τ) = [δ(t, τ) β(t, τ)γ(t, τ)],
and w(t) = [dW(t) 1]T .

The above system parameters and state variable values are
estimated from received signal measurements. The EM algo-
rithm and Kalman filtering are employed in the system pa-
rameters and state estimation, respectively. These algorithms
are introduced next.

3. WIRELESS CHANNEL ESTIMATION VIA THE EM
ALGORITHM AND KALMAN FILTERING

This section describes the procedure employed to estimate
the channel model parameters and states associated with the
state space model in (3), based on the EM algorithm [7] to-
gether with Kalman filtering [8]. Since the estimation and
identification processes are carried out in discrete instants,
we consider a sampled version of the state space model (3) in
discrete time as

xt+1 = Atxt + Btwt,

yt = ste
kxt +Dtvt,

(4)

where xt ∈ Rn is a state vector, yt ∈ Rd is a measurement
vector, wt ∈ Rm is a state noise, and vt ∈ Rd is a measure-
ment noise. Note that the state space model is nonlinear since
the output equation in (4) is nonlinear.

The channel parameters θt = {At ,Bt,Dt} are unknown
and they are estimated together with the path loss repre-
sented by the system states xt from a finite set of received
signal measurement data, YN = {y1, y2, . . . , yN}. The pro-
posed methodology is recursive and based on the EM algo-
rithm combined with the extended Kalman filter (EKF). The
latter is used due to the nonlinear output equation.

3.1. Channel state estimation—The EKF

The EKF approach is based on linearizing the nonlinear sys-
tem model (4) around the previous estimate. It estimates the
channel states xt for given system parameter θt = {At,Bt,Dt}
and measurements Yt . It is described by the following equa-
tions [8]:

x̂t|t = Atx̂t−1|t−1 + Pt|tCTt D
−2
t

(
yt − CtAtx̂t−1|t−1

)
,

x̂t|t−1 = Atx̂t−1|t−1,

Ct = st
d
(
ekxt|t

)

dxt|t

∣
∣
∣
∣
xt|t=x̂t−1|t−1

= stke
kxt|t
∣
∣
xt|t=x̂t−1|t−1

,

(5)

where t = 0, 1, 2, . . . ,N , and Pt|t is given by

P
−1
t|t = P−1

t−1|t−1 + ATt B
−2
t At,

P−1
t|t = CTt D

−2
t Ct + B−2

t − B−2
t Pt|tATt B

−2
t ,

Pt|t−1 = AtPt−1|t−1A
T
t + B2

t ,

(6)

where B2
t = BtB

T
t and D2

t = DtD
T
t . The channel parameters

θt = {At ,Bt,Dt} are estimated based on the EM algorithm,
which is introduced next.

3.2. Channel parameter estimation—The EM
algorithm

The EM algorithm uses a bank of Kalman filters to yield a
maximum likelihood (ML) parameter estimate of the state
space model. It is an iterative scheme for computing the ML
estimate of the system parameters θt, given the set of data
Yt . Specifically, each iteration of the EM algorithm consists
of two steps: the expectation step and the maximization step
[9]. The filtered expectation step only uses filters for the first-
and second-order statistics. The algorithm yields parameter
estimates with nondecreasing values of the likelihood func-
tion and converges under mild assumptions [10]. The expec-
tation step evaluates the conditional expectation of the log-
likelihood function given the complete data as

Λ(θt, θ̂t) = Eθl

{
log

dFθt
dFθ̂t

| Yt
}

, (7)
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where {Fθt ; θt ∈ Θ} denotes a family of probability mea-

sures induced by the system parameters θt , and θ̂t denotes
the estimated system parameters at time step t. The maxi-
mization step finds that

θ̂t+1 ∈ arg max
θt∈Θ

Λ
(
θt, θ̂t

)
. (8)

The expectation and maximization steps are repeated until
the sequence of model parameters converges to the real pa-
rameters. The EM algorithm is given by [7, 9]

Ât = E

( t∑

k=1

xkx
T
k−1 | Yt

)

×
[

E

( t∑

k=1

xkx
T
k | Yt

)]−1

,

B̂2
t =

1
t
E

( t∑

k=1

((
xk − Akxk−1

)(
xk − Akxk−1

)T) | Yt
)

= 1
t
E

( t∑

k=1

((
xkx

T
k

)− Ak
(
xkx

T
k−1

)T − (xkxTk−1

)
ATk

+ Ak
(
xk−1x

T
k−1

)
ATk
) | Yt

)

,

D̂2
t =

1
t
E

( t∑

k=1

((
yk − Ckxk

)(
yk − Ckxk

)T) | Yt
)

= 1
t
E

( t∑

k=1

((
yk y

T
k

)− (ykxTk
)
CTk − Ck

(
ykx

T
k

)T

+ Ck
(
xkx

T
k

)
CTk
)
| Yt

)

,

(9)

where E(·) denotes the expectation operator, and t =
0, 1, 2, . . . ,N . The system parameters {Ât, B̂2

t , D̂2
t } are com-

puted from the following conditional expectations[7]:

L(1)
t = E

{ t∑

k=1

xTk Qxk | Yt
}

,

L(2)
t = E

{ t∑

k=1

xTk−1Qxk−1 | Yt
}

,

L(3)
t = E

{ t∑

k=1

[
xTk Rxk−1 + xTk−1R

Txk
] | Yt

}

,

L(4)
t = E

{ t∑

k=1

[
xTk Syk + yTk S

Txk
] | Yt

}

,

(10)

where Q, R, and S are given by

Q =
{ eie

T
j + eje

T
i

2

}
, R =

{ eie
T
j

2

}
,

S =
{
eie

T
k

2

}
, i, j = 1, 2, . . . ,n, k = 1, 2, . . . ,d,

(11)

in which ei is the unit vector in the Euclidean space, that is,
ei = 1 in the ith position and 0 elsewhere. For instance, con-
sider the case n = d = 1, then E(

∑ t
k=1xkx

T
k−1 | Yt) is

E

( t∑

k=1

xkx
T
k−1 | Yt

)

= L(3)
t

[
R = 1

2

]
. (12)

The other terms in (9) can be computed similarly.

The conditional expectations {L(1)
t , L(2)

t , L(3)
t , L(4)

t } can
be estimated from measurements Yt as follows.

(1) Filter estimate of L(1)
t is

L(1)
t =E

{ t∑

k=1

xTk Qxk | Yt
}

= −1
2

Tr
(
N (1)
t Pt|t

)− 1
2

t∑

k=1

Tr
(
N (1)
k−1Pk|k

)

− 1
2

t∑

k=1

(
−2xTk|kP

−1
k|kr

(1)
k +2xTk|k−1P

−1
k|k−1r

(1)
k|k−1 − xTk|kN (1)

k xk|k

+xTk|k−1B
−2
k AkPk|kN

(1)
k−1Pk|kA

T
k B

−2
k xk|k−1

)
,

(13)

where Tr(·) denotes the matrix trace. In (13), r(1)
k and N (1)

k
satisfy the following recursions:

r(1)
k = (Ak − Pk|kCTk D−2

k CkAk
)
r(1)
k−1 + 2Pk|kQxk|k−1

− Pk|kN (1)
k Pk|kCTk D

−2
k

(
yk − Ckxk|k−1

)
,

r(1)
k|k−1 = Akr

(1)
k ,

r(1)
0 = 0m×1,

N (1)
k = B−2

k AkPk|kN
(1)
k−1Pk|kA

T
k B

−2
k − 2Q,

N (1)
0 = 0m×m.

(14)

(2) Filter estimate of L(2)
t is

L(2)
t = E

{ t∑

k=1

xTk−1Qxk−1 | Yt
}

= Eθ
{
xT0 Qx0 | Yt

}

+ Eθ

{ t∑

k=1

xTk Qxk | Yt
}

− Eθ
{
xTt Qxt | Yt

}
.

(15)

Therefore, L(2)
t can be obtained from L(1)

t .
(3) Filter estimate of L(3)

t is

L(3)
t = E

{ t∑

k=1

(
xTk Rxk−1 + xTk−1R

Txk
)
| Yt

}

= −1
2

Tr
(
N (3)
t Pt|t

)− 1
2

t∑

k=1

Tr
(
N (3)
k−1Pk|k

)

− 1
2

t∑

k=1

(
− 2xTk|kP

−1
k|kr

(3)
k + 2xTk|k−1P

−1
k|k−1r

(3)
k|k−1 −xTk|kN (3)

k xk|k

+xTk|k−1B
−2
k AkPk|kN

(3)
k−1Pk|kA

T
k B

−2
k xk|k−1

)
.

(16)
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In this case, r(3)
k and N (3)

k satisfies the following recur-
sions:

r(3)
k = (Ak − Pk|kCTk D−2

k CkAk
)
r(3)
k−1

− Pk|kN (3)
k Pk|kCTk D

−2
k

(
yk − Ckxk|k−1

)

+
(
2Pk|kR + 2Pk|kB−2

k AkPk|kRTAk
)
xk−1|k−1,

r(3)
k|k−1 = Akr

(3)
k ,

r(3)
0 = 0m×1,

N (3)
k = B−2

k AkPk|kN
(3)
k−1Pk|kA

T
k B

−2
k

− 2RPk|kATk B
−2
k − 2B−2

k AkPk|kRT ,

N (3)
0 = 0m×m.

(17)

(4) Filter estimate of L(4)
t is

L(4)
t = E

{ t∑

k=1

(
xTk Syk + yTk S

Txk
) | Yt

}

=
t∑

k=1

(
xTk|kP

−1
k|kr

(4)
k − xTk|k−1P

−1
k|k−1r

(4)
k|k−1

)
,

(18)

where r(4)
k satisfies the following recursions:

r(4)
k = (Ak − Pk|kCTk D−2

k CkAk
)
r(4)
k−1 + 2Pk|kSyk,

r(4)
k|k−1 = Akr

(4)
k ,

r(4)
0 = 0m×1.

(19)

Using the filters for L(i)
t (i = 1, 2, 3, 4) and the extended

Kalman filter described in (5) and (6), the system parameters
θt = {At,Bt,Dt} are estimated through the EM algorithm de-
scribed in (9). Numerical results that show the applicability
of the above algorithm are discussed next.

4. NUMERICAL RESULTS

In this section, the accuracy of the EM algorithm together
with the extended Kalman filter to estimate channel parame-
ters, as well as channel PL from the received signal measure-
ments, is determined. The measurement data are generated
by the system parameters:

γ(t, τ) = γm(τ)
(

1 + 0.15e−2t/T sin
(

10πt
T

))
,

δ(t, τ) = 5, β(t, τ) = 0.2,
(20)

where γm(τ) is the average PL at a specific location τ and it
is chosen to be 25 dB, T is the observation interval, and the
variances of the state and measurement noises are 10−2 and
10−6, respectively. Figure 1 shows the actual and estimated
received signals using the EM algorithm together with the
extended Kalman filter for 500 sampled data. From Figure 1,
it can be noticed that the received signal has been estimated
with very good accuracy. Figure 2 shows the received signal
estimates’ root mean square error (RMSE) for 100 runs. It
can be noticed that it takes just few iterations (less than 15)
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Figure 1: Real and estimated received signals for the channel model.

0 100 200 300 400 500

Samples

0

0.2

0.4

0.6
R

M
SE

Figure 2: Received signal estimates’ RMSE for 100 runs using the
EM algorithm together with the extended Kalman filter.

for the filter to converge, and the steady-state performance
of the proposed channel estimation algorithm using the EM
together with Kalman filtering is excellent. Since our stochas-
tic model in (3) is first-order, the computational cost of the
proposed estimation algorithm is very low, and thus it can be
implemented online. Moreover, the filters of the expectation
step are recursive and decoupled, and hence easy to imple-
ment in parallel on a multiprocessor system [9].

5. CONCLUSION

This paper develops a general scheme for extracting mathe-
matical LTF channel models from noisy received signal mea-
surements. The proposed estimation algorithm is recursive
and consists of filtering based on the extended Kalman fil-
ter to remove noise from data, and identification based on
the EM algorithm to determine the parameters of the model
which best describe the measurements. The proposed esti-
mation and parameter identification algorithms estimate the
path loss and the channel parameters. Performance of the lat-
ter is investigated through a numerical example that shows
excellent results. Therefore, the proposed algorithms have
good potential for real-time applications. Future work in-
cludes combining identification and estimation with other
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performance requirements, such as power control, admission
control, and base station assignment.
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