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In hydrodynamic lubrication, at very high rotational speed, the phenomenon of axial fluid leakage is often present. ,is can
involve an increase of shear stress in the contact and consequently a considerable increase of the temperature. For that and in order
to solve this problem, we took interest in the herringbone grooved journal bearings. ,e researches made before on these types of
groove bearing have shown that they present a good dynamical behavior with a low eccentricity and a low axial flow. In this paper,
a numerical study of a herringbone journal bearing operating behavior, under laminar and isothermal regime, is presented. ,e
theoretical model, based on the classical Reynolds equation, is used. In order to include the film rupture and reformation, the
Reynolds equation is modified using a mass conservative algorithm. To understand the behavior of these herringbone grooved
journal bearings well, numerical modeling, using finite element method, has been developed. Various geometrical shapes of the
herringbone grooved journal bearings have been analyzed, allowing us to limit the fluid leakage problem, by working particularly
on the contact form.

1. Introduction

Herringbone grooved journal bearing is one of the best alter-
natives used in businessmachines and other applications, due to
their improved stability characteristics and their implication to
reduce the fluid leakage effect. Studies which treat this type of
groove bearing are not very plentiful. Nevertheless, we can
include the work of Hirs [1], in 1965. He has used this type of
groove to analyze the bearing load and the stability in the
hydrodynamic groove bearings for an incompressible fluid and
a flow supposed isotherm. ,ree different cases have been
developed: a complete herringbone grooved journal bearing, a
partial herringbone grooved journal bearing, and a helicoid
groove bearing. In the same way, Bootsma [2] in 1977 has
realized various experiments on herringbone grooved journal
bearings with different geometrical characteristics. He has used
incompressible fluids with different properties. For each fluid
and different eccentricities, he looked for the rotational speed

value where the fluid flow is null. He indicated that it is im-
possible to have a relation between the eccentricity and the
rotational speed to cancel the axial flow; however, a judicious
choice of the geometrical parameters and the rotational speed
can prevent the flow leakage for certain eccentricities. All these
different works were made in order to eliminate the necessity to
have an additional sealing system. Also they have an important
interest from mechanical, economical, and ecological point of
view [1–9].

In order to correlate the experimental results, numerical
studies using the finite element method (FEM), the finite
volume method, and the finite difference method have been
investigated. Earlier, in 1969 Reddi [3] published the FEM of an
incompressible lubricant fluid. Few years later, Hamrock and
fleming [4] have developed a calculus model which permit the
optimization of the geometrical parameters of a herringbone
grooved journal bearing (slope, depth, width, etc.) in order to
obtain a maximum bearing load.,is method was improved in
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1972 by Smalley [5] who has developed a numerical method for
all groove bearings. In 1994, Bonneau and Absi [6, 9] have
analyzed aerodynamic journal bearings, featuring a small
number of herringbone grooves using a finite element algo-
rithm. ,ey have presented results for herringbone grooved
journal bearing with 4–16 grooves rotating with an arbitrary
eccentricity and a maximum bearing number. In 2007 and in
the same way, Wang [7] has investigated the bifurcation and
nonlinear behavior of an aerodynamic journal bearing system
taking into account the effect of stationary herringbone groove
applying the finite difference method.

While there are few articles on herringbone bearings, there
are more studies on bearings or seals using similar geometries,
including propeller or viscoseals [10]. In 2015, Targaoui et al.,
[11] presented a detailed study of the propeller seals in iso-
thermal regime. ,e numerical method used is the finite ele-
ment method, using the algorithm developed by Hajjam and
Bonneau [12] for the determination of the rupture and the
reformation of the film. ,e results are compared to those of
Boon and Tall [13]. In 2017, Souchet et al. [14] developed a
model for different flow regimes in the case of a propeller joint.
,e results are compared with the experimental results of
Luttrull [15] and make it possible to validate the mathematical
and numerical models chosen as well in laminar mode as
turbulent [16–19].

,e applied Reynolds equation assumes fully flooded
clearance gap.,is is not true in reality.,emodel of Jacobson
is the first model that inspired the universal equation method
of Reynolds to take into account the phenomenon of cavi-
tation (the active and inactive zone at the same time). To take
into account the reformation of the film and ensure the
continuity of the mass, Jakobsson, Floberg, and Olsson de-
veloped, in the 1960s, a boundary condition of mass-con-
serving cavitation, called after the JFO boundary condition
which separates the active and inactive area, but unfortunately,
its complexity made it difficult to implement digitally, because
the location of the cavitation limits is not known a priori.
Hajjam and Bonneau [12] developed a modified version of the
Reynolds equation and introduced a single variable from
which the pressure fields and a complementary variable are
reconstructed. It is this model that was introduced here. ,e
publications, written in part by Souchet et al. [11, 14], describe
the Reynolds equation thus modified as well as the numerical
algorithm of resolution [11, 12, 14, 19].

To minimize the problem of fluid leakage into systems and
from models developed and validated with theoretical and
experimental results on the viscoseals [11, 14], in this paper our
study will be extended to different herringbone grooved journal
bearing geometries, for an incompressible lubricant. ,e
Reynolds equation will be solved by the finite element method
(FEM). ,e pressure distribution and the fluid flow will be
calculated and analyzed.

2. Mathematical Modeling and
Analytical Method

2.1. Governing Equations. ,e herringbone grooved journal
bearing is centered on a shaft or on boring with axial and
radial eccentricities being null. ,e flow is supposed

isotherm and laminar and the oil is incompressible. Different
geometries of herringbone grooved journal bearing (Fig-
ure 1) were chosen.

Figure 1(a) is a classical herringbone grooved journal
bearing with a herringbone angle of 45° and a number of
grooves NG � 8. It has a helicoid form which goes from the
edges to the middle of the bearing. ,e Cartesian case of
this type of bearing is clearly schematized on Figure 2
where B0 is the initial part of the shaft, B is the machined
part, HG is the groove depth, and C is the radial clearance.
In order to simplify our gait, the typical herringbone
grooved journal bearing will be noted (case A). Under the
same assumptions, grooves have been modeled on each
edge of the bearing, Figure 1(b) (case B) with a width of
groove supposed to be equal to 2mm. A circumferential
groove was also modeled in the middle of the bearing,
Figure 1(c) (case C), and in both the middle and each side
of the bearing, Figure 1(d) (case D).

2.1.1. Modified Reynolds Equation. To simplify the com-
putations, all mathematical expressions are deduced in the
Cartesian coordinates. ,e shaft and the housing are
developed in the (x, z) plane plotted in Figure 2. ,e film
thickness is according to the y-axis. As cited above, the new
feature in this paper is on lubrication sealing devices.
Indeed, in thin film theory, it is assumed that the fluid
curvature could be neglected. ,is could find reason in the
most important assumption that assumes the ratio of film
thickness to radius of curvature to be of the order of o
(10−3).

In addition, the inertia effects are negligible and the
regime is laminar. Hence, the Reynolds equation governing
the incompressible, viscous, and Newtonian thin films flow
is expressed by
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where p and h represent the pressure and the film thickness,
respectively, ω the rotational speed, and µ the lubricant
viscosity.

,e setup of the sealing could be described by a separation
phenomenon that occurs between liquid and ambient air. An
adaptive model is presented as follows. It is a modified form of
Reynolds equation (MRE) detailed in [12] that can be used in
the whole domain both in the active and the inactive regions. In
fact, the chosen mass conservative algorithm is mainly dedi-
cated to the prediction of the breakdown or the reformation of
the lubricating film. ,e considered MRE can be written as
follows:
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where E is a universal variable and F a switch function that
identifies the active and the inactive zone, such as
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active zone: E � p

F � 1􏼨 ,

inactive zone: E � r − h

F � 0􏼨 , where r � ρ/ρ0h.

ρ0 is the lubricant density, ρ represents the lubricant-gas
mixture density, and r is the “filling” coefficient that char-
acterizes the level of filling of liquid [12].

,e boundary conditions used for the resolution of the
MRE are based on the separation of the active and inactive
zones.

,e boundary conditions that the MRE must satisfy are
as follows:

In the outside boundaries of the domain, at z � 0 and
z � L, the pressure p is set to the atmospheric pressure.
In order to respect the continuity of the E function on
the developed geometry, it is required, at x � 0 and
x � πD, that Ex�0 � Ex�πD.
On the sealing boundary (breakdown), the so-called
Reynolds conditions are applied: p � 0 and
dp/dx � 0.

One must also express the mass flow preservation, in
stationary case:

(h3/μU)(dp/dx)|xb
� 0, where xb is the film breakdown

point.
On the reformation film boundary, the mass flow

preservation is given by
(h3/μU)(dp/dx)|xr

� 0, where xr is the film reformation
point.

2.1.2. Numerical Solution and Numerical Algorithm. ,e
problem is discretized using four-node quadratic linear
elements. ,e finite element method has been chosen
because it can be easily applied to film thickness discon-
tinuities generated by the spiral grooves. ,e integral form
of equation [1] defined on the domain Ω of the lubricant
film is
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Case D

(d)

Figure 1: Herringbone grooved journal bearing shapes. (a) Case A. (b) Case B. (c) Case C. (d) Case D.
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where W is a weighting function defined on Ω. In the
active zones (F � 1), the partial differential equation to be
solved is elliptical (diffusion equation). In the inactive
zones (F � 0), the equation is hyperbolic (convection
equation). ,erefore, in the active zones the weighting
function will be equal to the interpolation function
(Bubnov–Galerkin method), and in the inactive zones the
weighting functions will be polynomial functions which
are upwind decentered (Petrov–Galerkin method). It
must be mentioned that in this equation the source term is
integrated by parts in order to carry over the derivation
onto the weighting function which enables us to correctly
take into account the film thickness discontinuities.
However, care is taken in order to precisely have a co-
incidence between the discontinuities and the element
borders.

,e numerical algorithm in represented.,e wetted area
in the each side of the herringbone L is evaluated by an
iterative algorithm. ,e outlet flow rate is calculated starting
from an initial value, measured from the seal inlet. If the
value is positive, the length of the herringbone or sealing
length is increased by the length of an element in the flow
direction (z). If the value is negative, the length is decreased
by the length of an element. ,e convergence is attained
when, for two consecutive iterations, the flow rate changes
from positive to negative or vice versa. ,e present algo-
rithm is generally based on the one proposed by Hajjam and
Bonneau [12] and is described in Algorithm 1.

In relation to the stability state of the breakdown and
reforming domain boundary, the convergence criterion is
associated with the node number that changes state (active,
inactive) between two successive iterations. ,is number
must not exceed 2% of the total node number to declare the
convergence.

Otherwise, it is interesting to underline that the nu-
merical model used for the characterization of a her-
ringbone bearing has been validated in the case of
viscoseals in laminar and turbulent regime [14]. In the
case of a laminar regime, the results on the optimal ge-
ometry [11] were compared with those of Boon and Tall
[13]. ,e study in the case of a herringbone grooved
journal bearing does not change in any way, in the
mathematical and numerical modeling. ,e main

difference is only that we have to manage both edges of the
landing but the principle stays the same.

3. Discussion

We use, in the different calculus, the values of grooves
number and the grooves angle given in the case of aero-
dynamic herringbone [6, 9] and these given in the case of
viscoseals [13–16].

,e data of the operating conditions are summarized in
Table 1.

Figure 3(a) gives the pressure repartition for a typical
case (case A), obtained for a rotational speed of 25000 rpm
and C�HG�500 µm. It shows regular forms of pressure
followed by regular depression forms. ,ese regular forms
guarantee not having an overload on the remainder struc-
ture. ,e maximum pressure is defined at 0.0579MPa; this
value is relatively low compared to results found in literature
[7], probably due to the supposed value of the given lu-
bricating film thickness. However the minimal pressure is
given at −0.01140MPa and it ensures that we avoid the
cavitation phenomena.

For case B, a slight decrease of the maximum pressure
(Figure 3(b)) around 0.0511MPa can be noticed. ,ough,
there is no considerable effect on the minimal value of the
pressure compared with the first case (≈−0.0137MPa).

Figure 4(a) shows the pressure repartition for case C
obtained under the same conditions as before. ,e max-
imum pressure is localized on both sides of the middle of
the bearing and it is around 0.0411MPa. In the same way,
Figure 3(a) gives the repartition of pressure for case D with
the maximum pressure noticed around 0.0345MPa. ,e
minimal values of pressure for both cases are quasi-
similar.

In Figure 5, we have regrouped the pressure reparti-
tion and the correspondent film thickness versus the
number of nodes for the four cases in the radial axis for
one element. As reported before, the maximum pressure is
higher for case A and it is lower for case D comparing with
the other cases. Note the presence of two zones corre-
sponding to grooves modeled in each side of the bearing
cases (B and D). ,eir presence should ensure that the
pressure falls rapidly and help to have a gradient of

B0
Z

BTC

h

y

x

Figure 2: Cartesian form of case A.
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pressure near zero on the edge. In the same way, the
presence of a circumferential groove in the middle of the
bearing drops the pressure.

3.1. Effect of the Rotational Speed. In order to investigate the
effect of the rotational speed, some numerical results will be
presented and discussed. ,e data remains similar to pre-
cedent except the rotational speed which varies between
2000 rpm and 25000 rpm.

Figure 6 gives the influence of the rotational speed on the
maximum pressure for different herringbone grooved
journal bearings. For all cases, the pressure increases with
the rotational speed. Nevertheless, the pressure is lower in
both cases C and D compared with the other geometries, due
to the presence of the circumferential groove in the middle
of the bearing. As for case B, the obtained values are lower
than those of case A. Furthermore, the presence of

circumferential grooves in each side of the bearing accen-
tuates also a little the drop of pressure. Obviously, it is
judicious to note that the fluid flow remains null whatever
the speed for both cases B and D is. Furthermore, the friction
torque values were found to be much close for the four
geometries.

3.2. Effect of the Herringbone Angle and the Number of
Grooves. Taking into account the initial data given in
Section 3.1 and the case of a typical bearing, case A, under a
constant rotational speed of 25000 rpm, in this section we
will investigate the effect of the herringbone angle and the
number of grooves varying successively the angle from 30° to
90° and the number of grooves (NG) from 6 to 12.

Figure 7 gives the influence of the groove and/or the
herringbone angle on the maximum pressure for different
number of grooves. ,e results show a slight decrease of the
maximum pressure with the increasing of the herringbone
angle. Further, for bearing with 6 grooves the pressure is
sensibly higher than those with 12 grooves. ,erefore, two
different zones can be noticed: the first one for angles from 30°
to 45° where the pressure is maximal for all cases (note that at
35° for NG� 6, Pmax� 0.066228MPa; for NG� 8,
Pmax� 0.059366MPa; for NG� 10, Pmax� 0.055403MPa; and
for NG� 12, Pmax� 0.053020MPa) and the second one for
angles above 45° where the pressure drops. Absi [9] has shown
that the best performance of a herringbone grooved journal
bearing, in the case of aerodynamic bearing,is obtained for a

Input data
Initialization
Do until stability of area (breakdown and reforming domain boundary)
Compute E (modified Reynolds equation)
Do For each node
If node is full
If E< 0

the node is set to the inactive state
else
the node still active

end if
else
If E≥ 0

the node is set to the active state
else
the node still inactive

end if
end if
End

End
Do For each x-coordinate (circumferential direction)
Do For each z-coordinate (axial direction)
Determine Zp� the nearest z-coordinate with p�Patm

End
Sealing length�Max (Zp)

End
Write pressure, sealing length, . . .

End algorithm

ALGORITHM 1: Algorithm proposed by Hajam and Bonneau [12].

Table 1: Data of the operating conditions.
Diameter D 50mm
Width of herringbone w 20mm
Radial clearance C 500 µm
Depth of groove HG 500 µm
Lubricant µ Oil ISO VG 32 (MPa s)
Rotational speed ω 2000 rpm to 25000 rpm
Number of grooves NG 8
Herringbone angle β 45°
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herringbone angle ranging between 30° and 40°. ,e results
show that the best performance for a hydrodynamic herring-
bone bearing is the same amplitude angle.

Finally we have to note that the reliability of the results
was achieved in the case of viscoseals. A study of the vis-
coseals in the case of different regimes (laminar, transition,
turbulent) was carried out by [14]. ,e numerical results
have been compared with the experimental results obtained
by Luttrull [15] and show a good correspondence with those
of the developed model.

3.3. Effect of the Grooves. To analyze the influence of the
grooves width and depth, various numerical studies corre-
sponding to different values of depth have been carried out.

3.3.1. Effect of the Grooves Width. Tables 2–4 give, respec-
tively, the effect of the grooves width (cases B, C, and D) on
the maximum pressure, on friction torque, and on the fluid
flow. ,e herringbone angle is given at 45°, the number of

grooves NG� 8, C�HG� 500 µm, and the rotational speed
is constant at 25000 rpm.

In all cases, the maximum pressure and the friction torque
values decrease with the increasing of the width of grooves.
However, for the minimum pressure values, although they
decrease with the width of grooves in case C, they enhance
slightly in both cases B and D. However, they are still not very
significant and they are far from the cavitation effect.

To compare these results, in Table 2, the obtained results of
the particular case (case A) have been added. ,e fluid flow
seems less important compared with case C, where it has been
considered only a groovemodeled in themiddle of the bearing.
As for the fluid flow values, they become null for a groovewidth
greater than and equal to 0.5mm in both cases B and D.

According to these results, the effect of grooves modeled at
each side of the bearing has been clearly shown. ,e phe-
nomenon of the axial flow leakagewill be considerably reduced.
,ese interesting results are in perfect concordance with
Bootsma [2] work which has confirmed that the lubricant can
be maintained in the groove without any sealing element.

Pmin = –0.1120MPa
Pmax = 0.4110MPa

x 1.E – 01
0.4110

–0.1120

(a)

Pmin = –0.1320 MPa
Pmax = 0.3450 MPa

x 1.E – 01
0.3450

–0.1320

(b)

Figure 4: Pressure repartition (case C and case D, respectively). (a) Case C. (b) Case D.

Pmin = –0.1140MPa
Pmax = 0.5790MPa

x 1.E – 01
0.5790

–0.1140

(a)

Pmin = –0.1370MPa
Pmax = 0.5110MPa

x 1.E – 01
0.5110

–0.1370

(b)

Figure 3: Pressure repartition (case A and case B, respectively). (a) Case A. (b) Case B.
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3.3.2. Influence of the Grooves Depth. For various grooves
depths (HG from 0.01mm to 0.1mm) (case A) with NG� 8,
herringbone angle equal to 45°, and a clearance (C)
constant� 500 µm, Figures 8–10 give, respectively, the
evolution of the maximum and/or the minimum pressure,
the fluid flow, and the friction torque versus the rotational
speed (from 2000 rpm to 25000 rpm).

It can be noticed that the maximum pressure increases
with the rotational speed and the increasing of the her-
ringbone depth. Similar results were found for the minimum
pressure and the fluid flow. However, there is no difference
between the friction torque values. ,ese results lead us to
conclude that the speed has no effect on friction torque
whatever the value of the groove depth is.

From this parametric study, we can say that the presence
of grooves in a bearing reduces considerably the pressure
and the axial leakage of the fluid.

3.3.3. Calculus of the Herringbone Grooved Bearings Stability.
In the literature, it is well known that the herringbone
grooved bearings, in addition to the role which they hold in
reducing the fluid leakage, present a great stability compared
to simple bearings.

We used Bootsma’s work [2] for a spiral grooved bearing
distinguishing between the situation where the load vector
remains fixed and the case where it does not. ,e equations
to calculate the admissible load P, the friction losses E, the
eccentricity e, and the stability factor Mc, where Mc char-
acterizes the stability compared to the half load, were given
under the following:

For a fixed load vector,

P � 5
ηωR

4

(ΔR)
2 ϵ pour ϵ≤ 0, 6,

E � 10
ηω2

R
4

(ΔR)
ϵ pour ϵ≤ 0, 6,

MC � 1, 8 pour ϵ � 0.

(4)

For a not fixed load vector,

P � 4
ηωR

4

(ΔR)
2 ϵ pour ϵ≤ 0, 6,

E � 10
ηω2

R
4

(ΔR)
ϵ pour ϵ≤ 0, 7,

MC � 1, 8 pour ϵ � 0.

(5)

Mc � mω(ΔR)2/µR4 formula was taken from Muij-
derman’s work [10].
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Figure 5: ,e maximum pressure and the film thickness versus the number of nodes for our geometries. (a) Case A. (b) Case B. (c) Case
C. (d) Case D.
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Figure 6: Variation of maximum pressure versus speed for dif-
ferent herringbone grooved journal bearings.
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For a bearing mass of 50 g and a rotational speed of
2000 rpm, the numerical calculation gives a value of
Mc� 1.004. Compared to the critical value given by Boot-
sma, the obtained value is very low. ,at leads us to say that
the herringbone grooved bearing, whatever its geometry is,
holds its role of being very stable.

3.3.4. Effect of the Ratio B0/BT. Figure 11 presents the
variation of the maximum pressure versus the ratio of the
initial part of the shaft and the machined part (Figure 2),
case A. ,e figure has a parabolic form with an optimal
value around 0.057MPa at 0.5. Below and above this value,

the maximum pressure seems quasi-symmetrical; it in-
creases between 0.1 and 0.5 and decreases beyond 0.5. ,is
result stays important in order to have optimal and co-
herent results.

3.4. Influence of the Eccentricity. In the previous sections we
have supposed the ideal case when a bearing is centered on a
shaft with an eccentricity equal to zero. In this section, we
will suppose different values of axial eccentricity εx (from 0
to 0.6), with grooves width equal to 2mm, a constant ro-
tational speed of 25000 rpm, a herringbone angle of 45°, and
a radial clearance equal to 500 µm.
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Figure 7: Variation of the maximum pressure versus the herringbone angles and the number of grooves.

Table 2: Effect of the grooves width (case B).

Width of grooves (mm) Pmin (MPa) Pmax (MPa) Friction torque (Nmm) Fluid flow (mm3/s)
0 (case A) −0.011400 0.057894 349.74 95676.24
0.2 −0.011589 0.057296 349.42 0.03178
0.5 −0.011964 0.056388 345.22 0
1 −0.012597 0.054721 337.95 0
1.5 −0.013181 0.052952 330.46 0
2 −0.013696 0.051116 322.81 0

Table 3: Effect of the grooves width (case C).

Width of grooves (mm) Pmin (MPa) Pmax (MPa) Friction torque (Nmm) Fluid flow (mm3/s)
0.2 −0.011336 0.053758 349.38 168769.01
0.5 −0.011302 0.050236 345.86 166860.53
1 −0.011271 0.046353 340.58 163726.03
1.5 −0.011250 0.043435 335.68 160534.76
2 −0.011230 0.041114 331.00 157257.79

Table 4: Effect of the grooves width (case D).

Width of grooves (mm) Pmin (MPa) Pmax (MPa) Friction torque (Nmm) Fluid flow (mm3/s)
0.2 −0.011589 0.057296 349.42 0.03178
0.5 −0.011824 0.045243 336.07 0
1 −0.012401 0.043896 329.24 0
1.5 −0.012773 0.037534 314.01 0
2 −0.013250 0.034466 303.59 0
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Figure 8: Effect of the grooves depth on pressure.
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Figure 10: Effect of the grooves depth on friction torque.

0

1000

2000

3000

4000

5000

6000

0 5000 1000
0

1500
0

2000
0

2500
0

3000
0

Rotational speed (rpm)

Fl
ui

d 
flo

w
 (m

m
3 /s

)

HG = 0.01
HG = 0.03
HG = 0.06

HG = 0.08
HG = 0.1

Figure 9: Effect of the grooves depth on fluid flow.
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Figures 12 and 13, respectively, give the variation of
the maximum pressure and the fluid flow versus the ec-
centricity and the grooves depth (Case B). It can be ob-
served that the maximum pressure increases when the

groove depth increases. Contrarily to the fluid flow, it
increases when the groove depth decreases. ,e higher
value of fluid flow is obtained at a groove depth of HG =
0.01 mm. Of course that stays true for case D.
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Figure 11: Maximum pressure versus the ratio B0/BT.
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Figure 13: Variation of fluid flow versus the eccentricity and the grooves depth.
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,us, considering higher values of grooves depth, the
fluid flow can relatively be reduced whatever the value of
the eccentricity is.

4. Conclusion

,e present paper represents an important step toward our
long term research goal of developing a numerical model
capable of predicting herringbone grooved journal bearing
performance with good accuracy, as it may prove very useful
in sealing industry and (visco)seals designing. We investi-
gated the mechanical herringbone performances using a
combination of a hydrodynamic model and an adaptive
mass conservative algorithm.

A numerical model has been developed by finite element
method to solve the equation generating the phenomenon in
order to calculate the pressure, the friction torque, and the fluid
flow. Different herringbone geometry (circumferential width)
and operating conditions were investigated. ,e principal ob-
tained results have affirmed clearly that grooves modeled on
bearings have the following effects

(i) ,ey reduce significantly the axial fluid flow, which
limits the phenomenon of the axial flow. ,is
phenomenon could be an advantage to minimize the
use of seals in systems when performing dynamic
tests.

(ii) However, they reduce the maximum fluid pressure
and the friction in contact and so reduce the thermal
effect in the contact.

In conclusion, the herringbone grooved journal
bearings, whatever their geometries are, play an important
role in reducing the pressure and the fluid flow. ,at
confirms our interest and the interest of the industries in
using this type of element to guide devices requiring a
high stability with very high rotation speed.

,e study will be next extended to a numerical in-
vestigation of the influence of the thermal effects on the
seal geometry and operating conditions on the pressure,
the friction torque, and the fluid flow. A global thermal
model will be used. In addition, the numerical model will
be developed in order to determine the dynamics stiffness
and damping coefficients.

Nomenclature

HG: Groove depth (mm)
B0: Initial part of the shaft
BT: Machined part
C: Nominal film clearance (mm)
R: Radius of journal bearing (mm)
D: Diameter of journal bearing (mm)
εx, εz: Eccentricity in x and z direction
P: Pressure (MPa)
μ: Fluid viscosity (MPa.s)
ω: Journal angular speed (rd/s)
θ: Circumferential coordinate rotating with journal
(x, z): Coordinate system attached to the grooved journal.

Data Availability

No data are included in the manuscript.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,e authors would like to acknowledge “SKF France” for
supporting this research project.

References

[1] G. G. Hirs, “,e load capacity and stability characteristics of
hydrodynamics grooved journal bearings,” in Proceedings of
the ASME-ASLE International Lubrication Conference,
Washington, DC, USA, 1965.

[2] J. Bootsma and L. P. M. Tielemans, “Conditions of leakage-
free operation of herringbone grooved journal bearings,”
Journal of Lubrication Technology, vol. 99, no. 2, pp. 215–222,
1977.

[3] M. M. Reddi, “Finite-element solution of the incompressible
lubrication problem,” Journal of Lubrication Technology,
vol. 91, no. 3, pp. 524–533, 1969.

[4] B. J. Hamrock and D. P. Fleming, “Optimization of Self-
Acting Herringbone Grooved Journal Bearings for Maximum
Radial Load Capacity,” in Proceedings of the 5th Gas Bearing
Symposium, Southampton, UK, March 1971.

[5] A. J. Smalley, “,e narrow groove theory of spiral grooved gas
bearings: development and application of a genearlized for-
mulation for numerical solution,” ASME Journal of Lubri-
cation Technology, vol. 94, pp. 86–92, 1972.

[6] D. Bonneau and J. Absi, “Analysis of aerodynamic journal
bearings with small number of herringbone grooves by finite
element method,” Journal of Tribology, vol. 116, no. 4,
pp. 698–704, 1994.

[7] C.-C. Wang, “Bifurcation analysis of an aerodynamic journal
bearing system considering the effect of stationary herring-
bone grooves,” Chaos, Solitons & Fractals, vol. 33, no. 5,
pp. 1532–1545, 2007.

[8] G. H. Hang and J. W. Yoon, “Nonlinear dynamic analysis of a
hydrodynamic journal bearing considering the effect of a
rotating or stationary herringbone groove,” ASME Journal of
Tribology, vol. 124, pp. 297–304, 2002.
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