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Recent surveys in the energy harvesting system for seismic nodes show that, most often, a single energy source energizes the
seismic system and fails most frequently.-emajor concern is the limited lifecycle of battery and high routine cost. Simplicity and
inexperience have caused intermittent undersizing or oversizing of the system. Optimizing solar cell constraints is required. -e
hybridization of the lead-acid battery and supercapacitor enables the stress on the battery to lessen and increases the lifetime. An
artificial neural network model is implemented to resolve the rapid input variations across the photovoltaic module. -e best
performance was attained at the epoch of 117 and the mean square error of 1.1176e-6 with regression values of training, test, and
validation at 0.99647, 0.99724, and 0.99534, respectively. -e paper presents simulations of Nsukka seismic node as a case study
and to deepen the understanding of the system. -e significant contributions of the study are (1) identification of the con-
siderations of the PV system at a typical remote seismic node through energy transducer and storage modelling, (2) optimal sizing
of PVmodule and lead-acid battery, and, lastly, (3) hybridization of the energy storage systems (the battery and supercapacitor) to
enable the energy harvesting system to maximize the available ambient irradiance. -e results show the neural network model
delivered efficient power with duty cycles across the converter and relatively less complexities, while the supercapacitor
complemented the lead-acid battery and delivered an overall efficiency of about 75%.

1. Introduction

-e acquired seismic data from their nodes are analyzed and
demonstrated to produce a seismic hazard map for miti-
gation measures before the effects of future earthquakes.
-ey are utilized in the design of dams, bridges, and civil
engineering structures [1]. -e success of a seismic node
relatively resides in a steady and continuous source of
electrical power, whether standalone or networked.With the
growing concern in developing near-real-time seismicity of
areas, continuous and long-term seismic data acquisition is a
prerequisite. Most frequently, the energy harvesting system
at conventional remote seismic nodes is by means of a
photovoltaic module and lead-acid batteries, which mostly

fail [2]. In the case study, hardly 1 out of the 7 remote seismic
nodes in the network does exhaust its battery effectively in a
single year without fail. -is causes gaps in the seismic
database or faulty seismometers.-e survey shows naive and
inexperience in the sizing and configuration of its energy
storage. A functional seismic node consists of a seismometer,
seismic recorder, Global Positioning System (GPS) unit, and
network interface, as shown in Figure 1. -e node senses
Earth vibrations, acquires the data continuously, and never
goes to sleep. -e seismometers are categorized based on
sensing local, regional, or global Earth movements. -e
seismic recorder is an embedded system which processes
data and controls and coordinates the activities of the node,
and it runs on Linux orWindows operating system.-e GPS
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introduces the timing signals into the data, while the net-
work interface provides the telemetry. Each subsystem re-
quires a reliable, steady, and continuous power supply to
enhance seismic node processes and their network config-
urations [3, 4]. An unstable power supply generates ripples
along with the vertical component of a broadband seis-
mometer [5]. In a case study carried out in [6], the unstable
power supply led to unpredictable sensor performance, and
this resulted in erroneous observations that can be avoided
by the continuous and steady power supply.

-e continuous and constant operation of the node
prompts the lead-acid battery to deplete. Meanwhile, geo-
scientists need continuous and long-term seismic data to
study the subsurfaces on a near real-time basis. -e pho-
tovoltaic (PV) system is the most friendly and frequently
used energy harvesting solution at remote nodes. However,
it exhibits relatively low efficiency due to the irregularity of
its input parameters such as ambient irradiance and tem-
perature levels as well as nonlinearity characteristics of its
elements. -e lead-acid battery is the secondary energy
source, and as soon as it is depleted, the remote seismic node
is shutdown or malfunctions, causing discontinuities in the
seismic database.

It is expected of all remote seismic nodes to be located in
the quietest remote area where there are no human activities.
Replacing the battery frequently affects the continuity of the
seismic database and the integrity of the data and deters the
real-time analysis of the subsurface. Integration of a lead-
acid battery and supercapacitor can assist in lessening the
stress and increasing the lifecycle of the battery [7]. An
artificial neural network is proposed in this study to predict
optimal duty cycles across the DC-DC converter. -e
classical maximum power tracking methods such as Perturb
and Observe algorithm determine optimal duty cycles slowly
and generate oscillations across the load. -e study presents
the theoretical studies of the subsystems of the PV system
and the lead-acid battery as well as the neural network
algorithm.

-e layout of an energy harvesting system powering
Nsukka seismic node is shown in Figure 1, which comprises
PV module and lead-acid battery as the only sources of
energy without any form of optimization. -e DC-DC
converter employed lacks the Maximum Power Point
Tracking (MPPT) system and characterized by low

efficiency. -e converter takes a lot of life from a conven-
tional battery. Broadband seismometers are active electronic
feedback sensors that require reliable, steady, and contin-
uous power to function optimally [3]. An erratic lifecycle
and limited power or energy density of energy storage hinder
the possibility of lasting acquisition of seismic data, resulting
in an inaccurate seismic analysis [8].

-e target of this study is to develop a neural network
algorithm to train the historical ambient irradiance and
temperature measurements of a seismic node to predict the
duty cycles across the DC-DC converter. -e historical data
are acquired by Perturb and Observe algorithm using
Powersim (PSIM) simulating tool. -e lead-acid battery will
be integrated with the supercapacitor to enhance the op-
erations of seismic instrumentation.

-e contributions of this study can be summarized as
follows:

(i) Identification of the considerations of the PV sys-
tem at a typical remote seismic node through energy
transducer and storage modelling

(ii) Optimal sizing of PV module and lead-acid battery
(iii) Hybridization of the battery and supercapacitor to

enable the energy harvesting system to maximize
the available ambient irradiance

-e remainder of the paper is organized as follows.
Section 2 discusses related works on implementing efficient
energy harvesting systems. Section 3 investigates materials
andmethods, their backgrounds, andmodelling of the study,
including the presentation of a case study at a remote seismic
node. In Section 4, we present the results and discussions.
And Section 5 concludes the paper.

2. Related Works

Several approaches to energize remote nodes by energy
harvesting systems have been reported in the literature.
However, each remote node requires different consider-
ations of energy transducers, energy storage, energy con-
version, and the required constraints are optimized. A
reliable and sustainable energy harvesting system requires
logical optimization at all stages of design and imple-
mentation [9, 10]. Authors [11–14] applied the design of PV
module, battery, buck/boost converter, PWM, and MPPTas
functional subsystems for various efficiencies and optimi-
zation, which led to increased output current resulting in
expensive and complex subsystems. -e author in [15]
pointed out that annexing ambient energy is not the only
necessary process in energy harvesting, but energy storage is
also critical. -e untimely depletion battery adversely affects
remote nodes, even at practical installations [16]. -us, a
supercapacitor, which has a longer lifecycle and is more
efficient than a battery, should be considered when imple-
menting a solar energy harvesting system at remote nodes.

To track maximum power from the PV system, con-
ventional MPPT algorithms such as Perturb and Observe,
are mostly used [17–19], to manage non-uniform inputs and
non-linearity of its cells [20–22]. -ese are undesirable
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Figure 1:-e layout of energy harvesting system powering Nsukka
seismic node.
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considerations and often supply inappropriate duty cycles
across the DC-DC converter and oscillates at the point of
tracking the maximum power. -e lead-acid battery is the
usual energy storage deployed at the remote seismic node,
which frequently gets depleted and unable to deliver
throughout the seasons. A supercapacitor connected parallel
with the battery across a passive DC-DC converter will
enable more energy to be stored and results in an increased
life cycle of the battery. Combined supercapacitor and lead-
acid battery techniques provide optimal and relatively cheap
energy storage for the load [23, 24]. Neural network algo-
rithm has a fast response to nonuniform inputs of a PV
system. It deals with nonlinearity of a system and tracks
maximum optimal power across the PV system [25–31].

-e study in [15, 15] indicated that the supercapacitor
has a high power density and poor energy density. -e
hybrid energy storage of supercapacitor and battery delivers
reliability and extends the lifecycle.-e study in [32] avoided
the use of MPPT by merely connecting the photovoltaic
directly to the battery, and the linear mode regulator was
employed. It caused power wastage due to mismatch and,
ultimately, low efficiency. -e study in [33] used super-
capacitor and battery as hybrid energy storage, charged by a
solar energy harvesting source for remote sensor nodes.
Although the charging circuit prevented the reduction of the
lifecycle of the battery and increased efficiency, the circuit
was naive, and the duty cycle was traded off with the lifecycle
of energy storage. -is will cause inappropriate duty cycles
for the DC-DC converter and loss of power. -e node re-
quires a continuous and cost-effective power supply.

Solar energy harvesting has a high energy density, and,
hence, it is considered a good energy source for remote
seismic nodes. However, due to the intermittencies of inputs
across the PV module, efficient energy storage is incorpo-
rated. -e energy storage, as in the case of a seismic node, is a
lead-acid battery, charged by the PV module to provide
energy when the module falls short. A lead-acid battery is
fairly sustainable for seismic deployment at a remote site
because they are usually not funded adequately [34, 35]. In the
PV system, the battery could be connected in parallel with the
supercapacitor and then to a passive DC-DC converter to
make more power available for the seismic instrumentation.
-e hybrid of lead-acid battery and supercapacitor enhances
the lifecycle and performance [36–38].

According to the literature cited, optimization of energy
harvesting systems was performed for only one subsystem,
either the energy transducer, energy storage, or DC-DC
converter. While the approaches enhanced the subsystems,
due to their complexity, they fail regularly. -ese are not
universal solutions for low power electronics like remote
seismic nodes. Moreover, the loads across the PV system are
not for operations such as remote seismic node where little
funding, long-term, and sustainability are put into consid-
eration. -e case study at Nsukka seismic node is not dif-
ferent from the rest of the other seismic nodes in Africa. -e
neural network algorithm on the Matlab program simply
trains historical data acquired by Perturb and Observe al-
gorithm on the PSIM program and predicts duty cycles
across the converter.

3. Materials and Methods

3.1. Energy Transducer and Storage Modelling. Modelling is
the primary tool of a practical system. It enables the in-
fluence of different considerations of the system to be
revealed. -e energy transducer of an energy harvesting
system is a subsystem that harvests ambient energy and
recharges the energy storage connected to it. In this study,
the PV transducer is the energy transducer, and it converts
the ambient irradiance levels to electrical energy. -e energy
storage is a critical subsystem in an energy harvesting sys-
tem, and integrating two or more different energy storage
techniques leads to a combination of their advantages and
improves the overall performance. While designing an en-
ergy harvesting system, models of the subsystems are re-
quired to represent equivalent circuits derived from
analytical equations. -ese models should be able to sim-
ulate correctly with the variations of their parameters.

3.1.1. Energy Transducer Modelling. -e solar cell is a typical
PV transducer, produced from a semiconductor diode.
When irradiance levels are inclined on it, electrical energy
levels are generated. In this study, the single-diode equiv-
alent circuit model is employed and taken as the reference
model. An ideal solar cell equivalent circuit consists of a
current source connected in parallel with a forward-biased
p − n junction and a shunt resistance, Rsh, all in series with
resistance Rs, as shown in Figure 2. Ambient irradiance and
temperature levels influence these parameters and their
outputs.

A Matlab simulation plot shown in Figure 3 is obtained
from the solar cell model under irradiance and temperature
variations. -e photovoltaic module is characterized by its
inherent parameters Rsh, Rs, Ipv, and ID as shown in Fig-
ure 2, as well as external parameters, ambient irradiance, and
temperature levels. -emodelling of the PVmodule is based
on (2):

IL � IPV − ID − Ish, (1)

IL � IPV − Isat exp q Voc + ILRs( 􏼁

KTA
􏼢 􏼣 − 1􏼨 􏼩 −

Voc + ILRs

Rsh
.

(2)

3.1.2. Ambient Irradiance Consideration. Ambient irradi-
ance is a key consideration of energy conversion in PV
systems. It is the amount of light energy that strikes on a
square meter per second. It is a promising source of energy
due to the huge amount of energy available daily. -e plots
in Figures 4 and 5 represent the typical behaviors of the solar
cell. Along the plots are the maximum power points to
deliver optimal outputs.

-e figures were observed to generate increased current
and power output when the values of the irradiance were
increased.

3.1.3. Ambient Temperature Consideration. An increase in
ambient temperature levels adversely affects the parameters
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of solar cells [39]. -e inherent nonlinear parameters of the
solar cell strongly depend on the operating temperature [39]
as expressed in (2) and influence the saturation current of
the diode in the cell. Figures 6 and 7 exhibit increased
temperature levels and lowered voltage outputs. In com-
parison, the increased irradiance levels increased the current
and power outputs.

3.1.4. Series and Shunt Resistances Considerations. -e re-
sistances of series and shunt elements in a solar cell circuit
are shown in Figure 2. -ere are parasitic losses, which
affect the relationships among current, voltage, and power
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levels, as well as the efficiency of the cell. -e photovoltaic
model is efficiently designed when its shunt and series re-
sistance are optimally selected because they are characterized
by power losses [40, 41], as shown in Figures 8–11. -e
photocurrent, Ipv produced by a solar cell can be expressed
by (3) [42] as

IPV � Isc + ki ∗ T − Tref( 􏼁( 􏼁􏼂 􏼃∗
G

Gref
, (3)

Ish �
Voc + IL ∗Rs( 􏼁

Rsh
, (4)

Isat � Irs
T

Tref
􏼠 􏼡

3

exp
q∗Eg0

A∗K

1
T

−
1

Tref
􏼠 􏼡􏼢 􏼣, (5)

Irs � Isc exp
q∗Voc

(A∗K∗T)
􏼠 􏼡−1􏼢 􏼣, (6)

where Irs is reverse saturation current of the cell.
Generated power, P� IV, where

P � V IPV − Isat exp
q Voc + IRs( 􏼁

KTA
􏼠 􏼡 − 1􏼢 􏼣 −

Voc + IRs

Rsh
􏼨 􏼩.

(7)

Fixed Rs and varying Rsh are shown in Figures 8 and 9.
An increase in Rsh led to higher current as well as power.
While in Figures 10 and 11, when Rs is varied and with
constant Rsh, increased in Rs, the output current and power
levels decreased, but the VOC remained unchanged.
Neglecting Rsh andRS values leads to a change in the current,
voltage, and power relationships, as shown in Figures 8–11,
and the key factor is in obtaining the maximum power
points.-e variations in the curves arose due to power losses
from the resistances [43]. -is shows the practical behaviors
of Rsh and Rs against the PV module.
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3.2. Lead-Acid Battery and Supercapacitor Modelling. In
seismic deployment, where long-term continuous and low
funding are taken into consideration, optimal selecting of
the size, cost, and lifecycle of energy storage are required. No
single energy storage can meet all the requirements of a
sensitive sensor node like a seismic node [44], and the lead-
acid battery is not an exception. -e lead-acid battery is easy
to install, fairly cheap, and reliable. -e lead-acid battery has
a limited lifespan compared to the supercapacitor, which is a
better option due to its longer lifespan. -e two consider-
ations of a lead-acid battery are Voc and the state of charge
(SOC). -ey determine the state of charge and percentage of
battery at the time of charging, respectively. Figures 12 and
13 [45, 46] show a simple lead-acid battery and super-
capacitor topology that are appropriate for our application,
respectively.

Integrating the battery and the supercapacitor, as shown
in Figure 14, without losing their efficiencies, can relatively
deal with the lifespan, charge, and discharge rate challenges
at the node.-e combination of the lead-acid battery and the
supercapacitor is to slow down the depletion of the battery
energy and optimally utilize the much-wasted energy when
the battery is fully charged [45].

3.3. Case Study at a Remote Seismic Node. In this section,
observations at a remote seismic node, located in southeast
Nigeria, Nsukka seismic node 060 52.022N, 07025.045 E,
were taken. -is is to deepen the understanding of the
considerations of the energy harvesting system at a remote
seismic node. -e data of irradiance, temperature, and
battery voltage were acquired and analyzed using original
energy harvesting system parameters. -e photovoltaic
power supply has four 60W PVmodules, a lead-acid battery
12V, 200Ah, and a DC-DC regulation without optimiza-
tion. Tables 1 and 2 are populated with the electrical
specifications at the seismic node, and Figure 15 shows the
topology of the Nsukka seismic node.

-e simulations of the energy harvesting system were
done using aMatlab program.-e plots of ambient irradiance
and temperature measurements at the Nsukka seismic node
are presented in Figures 16 and 17, respectively. -e mea-
surements were obtained from a weather station operated by
Centre for Atmospheric Research, Anyigba, Nigeria.

3.3.1. Determination of the Subsystems and the Considerations.
In this study, subsystems IPV, Irs, Isat, and Ish were con-
sidered and varied based on their input parameters, while
ambient irradiance and temperature levels were considered
as the external parameters. -e final outputs are current, IL,
and the voltage across the load. Table 3 shows how the
variations of the parameters affect the subsystems. Case
study parameters were used to determine the outputs using
Simulink.

3.3.2. Photocurrent, IPV , as a Consideration. Photocurrent
values depend on solar cells ambient irradiance (G) and
temperature (T) levels, which are key considerations in cell

modelling. It is computed using (8) [47]. Based on (3), the
short-circuit current, Isc, is provided by the vendor in the
module datasheet and modelled as shown in Figure 18:

IPV(G, T) �
G

Gref
ISC + KidT( 􏼁. (8)

3.3.3. Reverse Saturation Current, Irs, as a Consideration.
-e reverse saturation current, Irs subsystem, relies on the
ambient temperature input T, as shown in Figure 19. Its
variations, which directly affect both Isc and Isat, are pre-
sented in Table 4, based on (5) and (6). -ey are mostly
negligible but worth monitoring to avoid adverse reactions
and power losses.

3.3.4. Saturation Current, Isat, as a Consideration. -e sat-
uration current, Isat, is a function of the ambient temper-
ature as shown in the simulation model of Figure 20. Isat
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flows due to reverse saturation through the diode, and it
varies inversely with output current IL as demonstrated
earlier in Table 4.

3.3.5. Shunt Current, Ish, as a Consideration. Shunt current
flows through the resistance, Rsh, as shown in Figure 21. -e
simulation model of Figure 21 and (1) explained how the
load current, IL, is obtained by subtracting the shunt and
diode current from IPV.

3.3.6. 3e Remote Seismic Node PV Module Model. Using
Simulink, the model of the solar cell is developed from its
mathematical equations. -e simulations and the encap-
sulated model are shown in Figure 22. -e considerations
were implemented, and ambient irradiance and temperature
measurements in Figures 16 and 17 were utilized as inputs
for the PVmodel. -e voltage across the node, the generated
current, and power measurements were plotted in

Table 1: Summary of notations and definitions.

Notation Definition
IPV Photocurrent generated from irradiance incident on the solar cell
ID Diode current
Ish Current flowing through parallel resistance
IL Load current
Rs Parasitic series resistance
Rsh Parallel shunt resistance
VOC Open circuit voltage
Isc Short circuit current
Isat Saturation current of the diode
T Operating temperature
Tref Reference temperature
G Ambient irradiance
Gref Reference irradiance
q Charge of an electron
K Boltzmann’s constant
A Ideality constant of the diode
Eg0 Band gap energy of the semiconductor

Table 2: Summary of notations and definitions.

Notation Definition
Em Open circuit voltage of the lead-acid battery
R1 Resistance of the first elemental circuit of RC branch
R2 Resistance of the second elemental circuit of RC branch
C1 Capacitance of the first elemental circuit of RC branch

C2
Capacitance of the second elemental circuit of RC

branch
ROb Internal resistance of the lead-acid battery
RS Internal equivalent series resistance
RP Internal equivalent parallel resistance
Iob Lead-acid battery output current
IOSC Supercapacitor output current
VOb Lead-acid battery output voltage
VOCS Open circuit voltage of the supercapacitor

Ihybrid
Hybrid load current of lead-acid battery and

supercapacitor

Ethernet
internet

Data
acquisition

system

Microcontroller
Energy

harvesting
system

Seismometer

Global
positioning

system

Figure 15: A topology of a functional seismic node.
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Figures 23–25, respectively. It can be revealed that the PV
module simulated outputs of the model have good consis-
tency with the theoretically expected results.

3.4. Lead-Acid Battery at the Case Study. At the Nsukka
seismic node, a lead-acid battery with 12V and 200Ah

Table 3: Observations and computed values at the remote seismic node.

Ambient irradiance (Wm−2 ) Ambient temperature (°C) Ipv (A) At 250C Ipv (A) At 1000Wm−2 Isat(A) at 1000Wm−2 Ish (A)

0 18.41 0 3.789 3.951∗ 10− 10 0.3734
34.81 19.03 0.1323 3.79 4.221∗ 10− 10 0.3732
96.2 20.1 0.3656 3.792 4.73∗ 10− 10 0.373
185.2 21 0.7038 3.793 5.204∗ 10− 10 0.37328
227.4 22 0.8641 3.795 5.788∗ 10− 10 0.37326
517.9 23 1.968 3.797 6.437∗ 10− 10 0.3734
719.1 25 2.733 3.8 7.96∗ 10− 10 0.372
800 26 3.04 3.802 8.851∗ 10− 10 0.3718
985 27 3.743 3.803 9.842∗ 10− 10 0.3716
1000 35.88 3.8 3.813 2.522∗ 10− 9 0.3697
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Figure 18: Modelled and implemented IPV at the node.
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Table 4: -e PV module Specifications.

Description Specification
PV array 60W X 4 module
Voc 21.1V
Vmax 17.1V
Isc 3.8 A
Imax 3.5 A
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characteristics is installed. It is expected to last for three years
or more, and, during this period, it usually underperforms
and exhibits irregular voltage levels [48]. Figure 26 shows the
simulation plot of the lead-acid battery effects and the output
voltage levels in three years at the node. Relating Figures 26
and 27, during the first year, at the times of the nonavail-
ability of irradiance levels, the voltage levels were above
13.2V. After a year, the voltage dropped below 12.75V. -is
implied that the battery has lost its ability to take charge well
and discharges quickly, and lifespan has started to degrade.
-e slow charging curve of the battery is shown in Figure 28.
Figure 29 shows how it hurriedly discharges when the
battery is fully charged. It is important to note that Figure 27
clearly shows how the energy applied to the module and
forwarded to the battery is not efficiently utilized. At 14:00
hours during the day, the battery is fully charged, and over
50% of the ambient irradiance are wasted away due to the
inability of the battery to efficiently utilize the available
energy provided by the module.

A hybrid of the lead-acid battery and supercapacitor is
presented in this study. -is is to avoid voltage level drops

during the three years of the expiring period of the battery
and maximize the available irradiance.

-e consideration for the sizing of the PV system
consists of sun hours at the node, system losses, the load in
Ampere hour (Ah) expected to be consumed in 24 hours, the
number of modules, and lead-acid battery specification.
Based on Table 2 values, these considerations were sized to
meet the requirements of the electrical demand of the re-
mote seismic node.
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Figure 23: Modelled and implemented PV module node: block diagram.
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-e average energy consumed per day [49] is expressed
as follows:

Ah
day

�
power consumed

voltage across the load
∗ 24 hours

�
9.6
12
∗ 24 � 19.2Ah/day.

(9)

For the PVmodule, the number of the module in parallel
is expressed as follows:

� Ah/day ∗
(1∗ (systems losses in%))∗ALR

((sun hours of the node)∗ t(Imax of themodule))

� 19.2
(1 + 20%)∗ 1.3

5∗ 3.5
� 1.7modules of 60Watts each,

(10)
where ALR is array to load ratio.

For the lead-acid battery, the capacity is expressed as

�
Ah/day ∗ battery autonomy

maximumbattery depth of discharge

�
19.2∗ 5
80%

� 120Ah.

(11)

-ere are several losses at individual remote seismic
nodes triggered by these factors: parameters of the sub-
systems, mismatch of the subsystems, aging of the subsys-
tems, ambient temperature, air, and soil pollutions. At the
Nsukka seismic node, which is a typical African location, the
following assumptions were adopted:

(i) Sun hours� 5
(ii) Battery autonomy� 5
(iii) Depth of discharge of a lead-acid battery� 80%
(iv) System losses include DC-DC losses and associated

peripherals� 20%

3.5. Electrical Power Conditioning. -e electrical power
conditioning system for a solar harvesting system based
MPPT comprises MPPT electronic circuit, power converter,
and energy storage, as shown in Figure 30. -e system
exploits solar energy sources using an algorithm to deter-
mine optimal duty cycles for its power converter. Figures 31
and 32 are the PV system circuits for simulating MPPT
operations to deliver maximum power levels. -e converter
requires duty cycles to deliver a fixed voltage at the load and
energy storage irrespective of the input voltage levels. Neural
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Figure 29: A lead-acid battery voltage charging curve.
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network-based MPPT is proposed to provide optimal duty
cycles across the DC-DC converter. -e Perturb and Ob-
serve algorithm is only used in this study to acquire his-
torical data using PSIM as the simulating tool. At the same
time, the neural network model trains these data and predict
duty cycles. -e historical data consists of ambient irradi-
ance and temperature levels as the input measurements, and
the outputs are duty cycles.

3.6. Proposed Solution Design. -e proposed design is pre-
sented in Figure 33, consisting of a PV module, DC-DC
converters, neural network controller with a hybrid of lead-
acid battery, and supercapacitor to feed the remote seismic
nodes.

3.7. Hybrid of Lead Acid and Supercapacitor. Simulink tool
was used for the proposed design, and the parameters in the
case study were considered. Figures 34 and 35 are DC-DC
buck converters connected to battery only, a hybrid of the
battery, and supercapacitor, respectively.

-e simulation plots from Figures 36–39 are the sim-
ulated results, with the DC-DC converter feeding available
energy to both energy storage and the load. Since seismic
instrumentations are low power systems with a relatively
small budget, a passive connection of the lead-acid battery
and supercapacitor is an optimal choice. -e overall power

capacity is optimized with a passive connection between the
energy storage [50].

3.8. Implementation of the Neural Network Algorithm.
-e neural network model has successfully tackled complex
problems in various areas of application, such as learning
trend patterns in the time series and predicting accurately
within the data and future patterns. -e nonuniformity of
ambient irradiance and temperature levels throughout the
year has made a PV system inefficient and requires pre-
diction [51]. -e neural network algorithm delivers accurate
predictions from historical data of the system [52]. -e
procedure of the network is to acquire historical data
containing patterns of input and target measurements. In
this study, a neural network algorithm is implemented in the
solar energy harvesting system to optimally predict duty
cycles based on ambient irradiance and temperature levels at
the remote seismic node. As shown in Figure 33 stated
earlier, the DC-DC converter duty cycles are adjusted using
the neural network algorithm and tend to offer simplicity
and efficiency.

Perturb and Observe algorithm on the PSIM platform
was used to simulate ambient irradiance and temperature
levels at Nsukka seismic node to acquire corresponding duty
cycle values. -e acquired measurements, serving as the
historical data for the neural network, were trained and used
to carry out predictions on the samples within and outside
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Figure 30: A lead-acid battery voltage discharging curve.
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the historical data. Inputs for the training of the historical
data contain 2038 samples. -e number of neurons controls
how the model learns from historical data. Fewer neurons

underfit the data, and excessive ones overfit it [53]. -e
optimal number lies between the underfitting and the
overfitting. -e proposed study selected 11 neurons as the
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optimum number, which linked the input information to
hidden layers after numerous adjustment tests of the hidden
neuron layer and learning rate, as shown in Figure 40.
-erefore, the network architecture is 2-11-1, with 2 input
layer neurons (ambient irradiance and temperature levels),
11 neurons in the hidden layer, and 1 output layer neurons
(duty cycle).

-e neural network model trained the data and delivered
the corresponding duty cycles and Vmax measurements. -e
validations of the training are shown in Table 5, which
demonstrates the capability of the model.

4. Results and Discussion

As stated earlier, the target is to avoid intermittent oversizing
or undersizing the energy harvesting system at the remote
seismic node and deliver efficient power. -e case study
simulations confirmed that ambient irradiance and tem-
perature measurements were not regular and depend on the
hour of the day. -ere are direct relationships among the
measurements of current, voltage, and power based on
(1)–(8), as well as Figures 8–11. Figures 26–29 results for the
lead-acid display indicate that the battery was not optimally
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Figure 40: Terminal voltage at the node.

Table 5: Verification of the neural network algorithm.

Ambient irradiance
(Wm−2 )

Ambient temperature
(°C)

Observed duty
cycle ObservedVmax(V)

Predicted duty
cycle PredictedVmax(V)

54.51738 25.17504 0.752801 15.94047 0.7520 15.9460
54.73272 25.17576 0.752800 15.94049 0.7520 15.9457
54.94806 25.17648 0.752799 15.94051 0.7520 15.9454
55.1634 25.17720 0.752798 15.94054 0.7520 15.9451
345.208 25.42702 0.752227 15.95263 0.7512 15.9376
347.116 25.42804 0.752267 15.95179 0.7513 15.9339
349.024 25.42906 0.752312 15.95082 0.7513 15.9312
629.3632 25.74456 0.742146 16.16932 0.7415 16.1687
629.3824 25.74642 0.742147 16.16931 0.7415 16.1686
629.4016 25.74828 0.742147 16.16929 0.7415 16.1686
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Figure 39: Generated power by the hybrid.
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utilized and deteriorates relatively faster, and available en-
ergy is wasted. Consequently, if the state of charge falls below
50% and the terminal voltage drops lower than 10V, the
battery performance worsens [54].

Observing Figures 26–29, it is confirmed that almost
50% of the ambient irradiance is wasted after the battery is
fully charged. -e hybrid solution of the energy storage
enables the supercapacitor to hurriedly feed the node, while
the battery supplies during a steady state. Furthermore, the
supercapacitor plays a role of optimizing the available
energy being wasted and supplies energy when the battery
is underperforming. It serves as an energy buffer, as

demonstrated in Figures 37 and 38. -is saves enough
energy and sustains the life of the node on a long-term basis
and justifies the cost of the installation. In the case study,
the operational PV array was four 60W modules and a
lead-acid battery of 200Ah. Based on the analysis, it is
excessive and unjustified, yet it frequently fails the seismic
instrumentation of 10W.

In this study, DC-DC conversion is taken as one of the
considerations to deliver efficient power at the remote
seismic node. Since the PV module receives irregular in-
puts characterized by nonlinearity, the classical MPPT
algorithm of the converter delivers output oscillations at
the points of tracking maximum power. -e neural net-
work model is adopted simply because of its ability to
handle nonlinear processes. Figure 41 gives a diagrammatic
detail of the proposed design, simulated using the Simulink
tool.

-e historical data contains 2038 different points uti-
lizing inputs from the case study. -e results are shown in
Figures 38 and 39. From the results in Figures 38 and 39, it is
clear that the P and O algorithm was able to deliver
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Figure 41: -e regression results of the trained neural network for training, testing, and validation.

Table 6: -e remote seismic node electrical specifications.

Unit Operating voltage (VDC)/power (W)
Seismometer 12/2.4
Seismic recorder 12/3.6
GPS 12/1.2
Mobile router 12/2.4
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consistent historical data for training, validation, and testing.
At the same time, the neural network model was able to
predict within and outside the historical data to deliver

efficient power. Additionally, current and voltage sensors
usually incorporated in the usual MPPT controllers are kept
away to lower power losses and complexities.

Figure 42: Neural training with NNET tool.
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-e responses from the proposed design using the neural
network model are shown in Tables 6 and 3, as well as
Figures 42 and 43. -ey demonstrate that the predictions of
the neural network model are relatively precise on the inputs
measurements within and outside the historical data with no
current and voltage sensors.

A smaller mean square error (MSE) implies algorithms
of high quality, and the value ranges from 0 to infinity.
Models with a smaller mean square error (MSE) value
implies a high quality of the algorithms, and the value
ranges from 0 to infinity. -e errors of the model are
presented in Table 3 containing root mean square error
(RMSE) and MSE exhibiting the quality of the algorithm. It
demonstrates pretty similar measurements, mathematically
based on (12) and (13). -e table equally shows the re-
gression and tight relationship between the observed and
the predicted points:

MSE �
􏽐

N
i�1 Ti − Pi( 􏼁

2

N
, (12)

RMSE �

������������

􏽐
N
i�1 Ti − Pi( 􏼁

2

N

􏽳

. (13)

N is number of samples, T is outputs, and point is
predictions.

Table 7 shows the comparison between the Perturb and
Observe MPPT outputs and that of the neural network al-
gorithm. Figure 44 represents a summary of the best vali-
dation performance results, indicating that the network was
trained until it achieved a very small MSE of 1.1176e-6 after
117 epochs. Also, the 11 neurons selected for the hidden
layer were enabled to deliver an increased regression co-
efficient (R2) of 0.9928 (Table 8).

Table 7: Prediction errors in the training.

Samples MSE RMSE Regression
Training 1426 1.33521∗10− 6 1.1555∗10− 3 0.994179
Validation 306 1.34929∗10− 6 1.1615∗10− 3 0.990734
Testing 306 1.74384∗10− 6 1.3205∗10− 3 0.990302
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Figure 44: -e plot simulated comparing the Vmax of measured and predicted Vmax.

Table 8: Summary of notations and definitions.

Notation Definition
IPV(G, T) Photocurrent
G Irradiance
Gref Reference irradiance
ISC Short circuit current of the solar cell
dT Difference between the reference and ambient temperature levels
Ki Temperature coefficient of ISC
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Figure 45 represents the regression plot of the model. It
can be observed that all the sample points were fitted along
the lines, implying the model is accurate and can be used for
predicting the outputs.

-e proposed overall circuit is shown in Figure 41,
consisting of a PV system with neural network-basedMPPT,
including a hybrid of lead-acid battery and supercapacitor
(Figure 46).

5. Conclusion

-rough simulations, the study has demonstrated that the
hybrid of lead-acid battery and supercapacitor energy
storage can generate up to 180W from the case study

parameters at steady-state, with high efficiency. Optimally
and conveniently, 50% of the resources presented at the case
study can deliver the power requirements at a remote
seismic node and sustain the node on a long-term basis. DC-
DC converter and neural network design have been pro-
posed in this study, with an efficiency of 75%. -e proposed
designs have obvious improvements over the usual tech-
niques utilized at the remote seismic nodes by means of
simulations. Extracting maximum power from the PV
system at a remote seismic node is essential due to low
funding for seismic deployments across the globe, which will
ensure the long-term and continuous seismic data acqui-
sition for the near real-time prediction of an earthquake to
be feasible.

Figure 46: Proposed overall circuit.
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