
Hindawi Publishing Corporation
Journal of Engineering
Volume 2013, Article ID 749132, 13 pages
http://dx.doi.org/10.1155/2013/749132

Research Article
Fault Tolerant PLBGSA: Precedence Level Based Genetic
Scheduling Algorithm for P2P Grid

Piyush Chauhan and Nitin

Department of Computer Science & Engineering and Information & Communication Technology,
Jaypee University of Information Technology, Waknaghat, Solan 173234, India

Correspondence should be addressed to Nitin; delnitin@ieee.org

Received 1 April 2013; Revised 30 September 2013; Accepted 21 October 2013

Academic Editor: Paolo Colantonio

Copyright © 2013 P. Chauhan and Nitin. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Due tomonetary limitation, small organizations cannot afford high end supercomputers to solve highly complex tasks. P2P (peer to
peer) grid computing is being used nowadays to break complex task into subtasks in order to solve them on different grid resources.
Workflows are used to represent these complex tasks. Finishing such complex task in a P2P grid requires scheduling subtasks of
workflow in an optimized manner. Several factors play their part in scheduling decisions. The genetic algorithm is very useful in
schedulingDAG (directed acyclic graph) based task. Benefit of a genetic algorithm is that it takes into considerationmultiple criteria
while scheduling. In this paper, we have proposed a precedence level based genetic algorithm (PLBGSA), which yields schedules
for workflows in a decentralized fashion. PLBGSA is compared with existing genetic algorithm based scheduling techniques. Fault
tolerance is a desirable trait of a P2P grid scheduling algorithm due to the untrustworthy nature of grid resources. PLBGSA handles
faults efficiently.

1. Introduction

As the complexity of computational problems is increas-
ing continuously, efficient use of computational resources
becomes vital. Complex tasks are causing bottlenecks in
performance throughout the technical arena. Organizations
around the world use high-end computational devices,
servers, and supercomputers to handle complex tasks. How-
ever, all organizations are not able to purchase such devices
because of budget constraints. Grid computing has come up
as a crusader to solve a highly complex task [1, 2]. Grid
utilizes existing heterogeneous computational devices spread
across multiple geographical locations [3].This unification of
computational resources yields manifold increase in compu-
tational capabilities. Initially central scheduler based schedul-
ing algorithms were used by researchers to solve complex
problems [4]. These techniques were effective in scheduling
[5] complex task; however, they have many limitations, like
the fact that failure of central scheduler causes collapse of the
entire grid [6]. Limited capabilities of the central scheduler
give way to scalability issues. Policies vary from company

to company and political issues also caused the existence of
central scheduler problematic [6].

Metascheduler deals with limitations of central scheduler
to some extent [7]. In metascheduling, all clusters have
their personal scheduler. DAG based tasks [8] are scheduled
over the most capable cluster. Problem with global task
scheduling arises when no cluster is capable of executing
complex computational task.The drawback ofmetascheduler
is that it cannot execute gigantic tasks usingminiscule clusters
and single computational resources, spread across various
geographical domains. P2P technologies [9] are effective
enough to act as decentralized grid scheduler. Decentral-
ization makes our grid robust against grid node failures.
Moreover, structure of P2P grid does not cause scalability
issues and other bottlenecks. Further, complex problems are
solved efficiently using genetic algorithm. P2P [10] grid also
uses genetic algorithm to obtain good results [11]. Initially, to
get results quickly, researchers schedule independent gigantic
tasks [11] which are generated on single grid node over
P2P grid resources [12]. Parallel execution of such tasks
over various P2P resources produced results quickly. DAG

2 Journal of Engineering

Level 1

Level 2

Level 3

Level 4

t0

t1 t2 t3 t4

t6 t7 t8

t9

t5

(a)

N3

N1 N2N5

N4N0

(b)

Figure 1: (a) DAG based sample task t; (b) virtual network topology.

based tasks [13] require extra precision in scheduling when
scheduled over grid. Intertask dependencies makes it tough
to schedule subtasks of DAG based task, as efficiently as
independent tasks. Researchers in [14] have used genetic
algorithm to schedule subtasks of DAG based task [15].
Authors of [14] have applied a genetic algorithm to find
schedule for DAG based tasks in one go. The probability of
finding nearly optimal results decreases as tasks of DAG are
divided across various precedence levels.

Our approach says that we have to apply genetic algo-
rithms to obtain the schedule for subtasks of one precedence
level at one time. Also, if there is a single subtask at any
precedence level, then we schedule subtask on P2P grid
resource which gives results quickly. In this way, subtasks of
DAG based task is scheduled over P2P grid resources from
one precedence level to another. The probability of finding a
nearly optimal schedule is higher with the approach adopted
in this paper.

Rest of paper is organized as follows literature review
is given in Section 2. Background of genetic algorithm and
DAG based task scheduling using it is explained in Section 2.
We have proposed fault tolerant precedence level based
genetic scheduling algorithm for P2P Grid in Section 3. In
Section 4, we have represented and discussed simulation
results. Conclusion and future scope of work are discussed in
Section 5. The symbols which are used throughout the paper
are presented in the Abbreviations.

2. Literature Review of Decentralized
Scheduling Techniques Using Genetic
Algorithm to Schedule Tasks

Holland first explained genetic algorithm in 1975. In the
last decade, genetic algorithms have been used by various
researchers to schedule tasks over grid. Both independent
and interdependent tasks were scheduled using genetic algo-
rithms. Estimation of distribution algorithm (EDAs) is a new
class of evolutionary algorithms. In EDAs, promising sched-
ules are obtained by means of probabilistic model. EDAs
give better schedules as compared to the evolutionary algo-
rithms mentioned in [16]. In Section 2.1, we have described
some remarkable decentralized scheduling techniques using
genetic algorithm to schedule independent tasks. Section 2.2
highlights decentralized scheduling algorithm employing
genetic algorithm to schedule subtasks of workflow.

2.1. Decentralized Scheduling Techniques Using Genetic Algo-
rithm to Schedule Independent Tasks. One of the eminent
papers which applied genetic algorithm to schedule indepen-
dent tasks over heterogeneous resources in fully decentral-
ized fashion is given in [17]. Scheduling applications using
genetic algorithms (SAGA) were proposed in [17]. In the
SAGA, computational nodes can connect and leave system
dynamically. This system utilizes lookup services to work as
decentralized scheduler. The SAGA emphasizes on splitting
the task sets and heterogeneous resources into subparts.
Moreover, algorithm is run on each subpart. In the SAGA,
firstly scheduling request is put forward by user. By using grid
monitoring service (MonALISA) [18], we obtain monitoring
data and scheduling request. After this, near optimal schedule
is obtained by using monitoring data and scheduling request.
Execution services then execute this near optimal schedule.
Discovery service is provided in the SAGA to handle failure
and incorporate new computational resources. Schedule and
task information of executed jobs are provided as feedback to
the user. This algorithm decreases the number of generations
required in a genetic algorithm to yield efficient schedule.

Decentralized grid scheduling is achievable using P2P
technique and it was proved in [11]. In [11], after authorization
and authentication checks, any grid node can issue a job
submission query. Cyclone is recursively accessed to find
𝛽 × 𝑁 nodes. 𝛽 is a parameter of the algorithm. 𝑁 Nodes
which decrease optimization function give the first schedule.
It is impossible to investigate all possible permutations of 𝑁
nodes out of total 𝛽×𝑁. Only in two cases (𝑁 is exceptionally
petite or 𝛽 ≈ 1), we can investigate all permutations. Thus,
genetic algorithm is used for the selection process to obtain
nearly optimal schedules. A limitation of this algorithm is that
it can only schedule independent tasks like SAGA.

2.2. Decentralized Scheduling Techniques Using Genetic Algo-
rithm to Schedule Subtasks of DAG Based Task. In grid envi-
ronment, genetic algorithm [19] was used to schedule [20]
DAG based task in [14]. We know that scheduling subtasks
of DAG based task over a grid is an NP hard problem.
Genetic algorithm and other stochastic search algorithms are
utilized to obtain near optimal schedule for DAG based task’s
scheduling on grid nodes.

DAG based workflow chosen by us to put into operation
[14] is shown in Figure 1(a). DAG based task 𝑡 is divided into
10 subtasks. These subtasks are further subdivided into four

Journal of Engineering 3

Table 1: Fault tolerant PLBGSA for P2P grid.

Begin Cost Time
(1) Construct priority based subtask sequence 𝛽 𝑐

1
1

(2) Assign level 𝑙 = 0 𝑐
2

1
(3) Do 𝑐

3
𝑛 + 1

(4) Choose all 𝑗 subtasks present at level 𝑙 from 𝛽 𝑐
4

𝑛 + 1

(5) if Ntl == 1 𝑐
5

𝑛 + 1

(6) Single subtask ST𝑙
𝑆
assigned to node having minimum

𝑐
6

𝑛 + 1
WldST𝑆
𝑁

where𝑁 ∈ [0, 𝑃 − 1]
(7) Endif
(8) if Ntl > 1 𝑐

7
𝑛 + 1

(9) for 𝑖 = 0 to ℎ 𝑐
8

(𝑛 + 1)(𝑛 + 1)

(10) Using RnG assign all ST𝑙
𝑗
to set 𝑃 𝑐

9
𝑛(𝑛 + 1)

(11) Calculate Ftm ST𝑙
𝑗

𝑐
10

𝑛(𝑛 + 1)

(12) Finish time value of Sd𝑙
𝑗𝑖
= Ftm ST

𝑙

𝑗
𝑐
11

𝑛(𝑛 + 1)

(13) Endfor
(14) GNo = 2 𝑐

12
𝑛 + 1

(15) for 𝑖 = ℎ to (𝑢 × ℎ) −1 𝑐
13

(𝑛 + 1)(𝑘 ⋅ 𝑛 + 1)
(16) if 𝑖%ℎ == 𝑟 where 𝑟 ∈ [0, 𝑘 − 1] 𝑐

14
𝑘 ⋅ 𝑛 (𝑛 + 1)

(17) Using RWS choose Sd𝑙
𝑗𝑖
schedule from Rng Sd

𝑐
15

(𝑛 + 1) (𝑘 ⋅ 𝑛 − 1)
where Rng Sd ∈ [(𝑖 − ℎ + 𝑟), (ℎ − 𝑟 + 1)]

(18) Calculate Ftm ST𝑙
𝑗

𝑐
16

(𝑛 + 1) (𝑘 ⋅ 𝑛 − 1)

(19) Endif
(20) if 𝑖%ℎ == 𝑒 where 𝑒 ∈ [𝑘, (GNo × ℎ) − 1] 𝑐

17
(𝑘 ⋅ 𝑛) (𝑛 + 1)

(21) Shortlist Sd𝑙1st and Sd𝑙2nd from Rng Sd
𝑐
18

(𝑛 + 1) (𝑘 ⋅ 𝑛 − 1)
where Rng Sd ∈ [((GNo × ℎ) − ℎ), ((GNo × ℎ) − ℎ + 𝑘)]

(22) using CxGO (occasional MtGO) on Sd𝑙1st and Sd𝑙2nd we obtain Sd𝑙
𝑗𝑖

𝑐
19

(𝑛 + 1) (𝑘 ⋅ 𝑛 − 1)

(23) Calculate Ftm ST𝑙
𝑗

𝑐
20

(𝑛 + 1) (𝑘 ⋅ 𝑛 − 1)

(24) if 𝑒 == (GNo × ℎ) − 1 𝑐
21

(𝑛 + 1) (𝑘 ⋅ 𝑛 − 1)

(25) GNo + + 𝑐
22

(𝑛 + 1) (𝑘 ⋅ 𝑛 − 2)

(26) Endif
(27) if 𝑖 == (𝑢 × ℎ) − 1 𝑐

23
(𝑛 + 1) (𝑘 ⋅ 𝑛 − 1)

(28) Shortlist Sd𝑙smallest from Rng Sd where Rng Sd ∈ [0,
𝑐
24

(𝑛 + 1) (𝑘 ⋅ 𝑛 − 2)
((𝑢 × ℎ) − 1)]

(29) for 𝑓 = ℎ to (𝑢 × ℎ) − 1 𝑐
25

(𝑘 ⋅ 𝑛 − 2) (𝑘 ⋅ 𝑛 + 1) (𝑛 + 1)

(30) Sd𝑙
𝑗𝑓
= Sd𝑙smallest 𝑐

26
(𝑛 + 1) (𝑘 ⋅ 𝑛 − 2) (𝑘 ⋅ 𝑛)

(31) Endfor
(32) Endif
(33) Endif
(34) Endfor
(35) Endif
(36) if NdF == 1 𝑐

27
(𝑛 + 1) (𝑛 + 1)

(37) Remove failed node from set 𝑃 𝑐
28

𝑛 (𝑛 + 1)

(38) Goto step 3 𝑐
29

𝑛 (𝑛 + 1)

(39) End if
(40) 𝑙 + + 𝑐

30
(𝑛 + 1) (𝑛 + 1)

(41) while 𝑙 <=Max Level 𝑐
31

(𝑛 + 1) (𝑛 + 1)

(42) End doWhile
(43) Finish time for Sd𝑙smallest at level 𝑙 =Max Level will be the finish time of

𝑐
32

1
task 𝑡

END

4 Journal of Engineering

Order of
execution

for subtasks
in schedule

for DAG
(shown as
DNA) will
be top to
bottom,

as this way
precedence

level
distribution
is followed.

Here subtask is scheduled to
node

<=>

<=>

<=>

<=>
<=>
<=>

<=>

<=>

<=>

<=>

First generation

We make q
new schedules

by applying
various genetic
operators over

previously
shortlisted m

schedules.

Level 1 subtask
start

Level 2 subtasks
start

Level 3 subtasks
start

Level 4 subtasks
start

present in

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...

solution to schedule subtasks of t.

We select m best schedules from schedules

t0

t0

t1

t2

t3

t4

t6

t7

t8

t9

t5

N3

N3

N1

N1

N2

N2

N2

N0

N0

N0

Z − 1 generation.
Zth generation

Sch. 1
Sch. 2

Sch. 3 Sch. N

Sch. 1, 2 · · · qSch. 1, 2 · · · m

N3

Most efficient DNA is selected as final

Figure 2: DNA representing scheduling for subtasks of task 𝑡 and use of genetic algorithm to obtain good schedule.

Level 2

Level 3

Level 4

N

N

N

N

Level 1

1st subtask to be executed on node

3rd subtask to be executed on node
2nd subtask to be executed on node

t0

t1

t2

t3

t4

t6

t7

t8

t9

t5

Figure 3:The sequence in which subtasks of 𝑡, assigned to the same
node, will be executed.

precedence levels. Once all subtasks of previous precedence
level have returned results to origin node, subtasks at next
precedence level start executing in parallel. Subtasks present
at the same precedence level are executed in parallel on the
separate grid nodes. Virtual network topology followed to be
simulated [14] by us is shown in Figure 1(b). DAGbased task 𝑡
is generated at origin node (𝑁0). We used genetic algorithm
to schedule subtasks of 𝑡 over grid nodes 𝑁0, 𝑁1, 𝑁2, and
𝑁3.

Figure 2 represents how [14] used genetic algorithm to
schedule subtasks of DAG based task 𝑡. Initial population of
schedules is produced in [14] by arbitrarily assigning every

subtask to a grid node. Offspring for the next generation
are chosen from an initial population using roulette wheel
selection method. Authors have applied genetic operators on
these shortlisted schedules to obtain the rest of population
for given generation. Genetic operators used are crossover
andmutation.When stagnation in population arises, then the
probability of mutation increases. From population, the best
DNA representing schedule for subtasks of 𝑡 is chosen.

We know subtasks of 𝑡 are divided into precedence levels.
Subtasks at the same precedence level can be executed in
parallel on different grid nodes. A prerequisite for subtasks
at level 𝑙 to start execution is that subtasks at level 𝑙 − 1 have
finished and returned results. This sequence is followed in
DNA representation of the schedule. Subtask at the first level
is the first subtask at the top ofDNA. Ifmore than one subtask
is assigned to the node, then the subtask which comes first in
DNA will be executed first. Figure 3 explains the sequence in
which subtasks of 𝑡 assigned to same node will be executed.
In Figure 3, subtasks at the same precedence level are having
the same color. Subtasks of level 3 are represented by orange
color. Level 3 subtasks will start executing once subtasks at
level 2 have finished and delivered results. Level 2 tasks are
represented by green boxes and will execute in parallel on
different nodes. In case grid node leaves the grid, we have to
reschedule all subtasks of 𝑡 again using [14].

In P2P grid, nodes can leave freely. Hence, our algorithm
exploits precedence level approach to handle node failures.

3. Fault Tolerant Genetic Algorithm Based
Decentralized Scheduling Technique for
P2P Grid

In this paper, we have proposed a decentralized scheduling
technique for P2P grid, which utilizes a precedence level

Journal of Engineering 5

DNA for subtasks at level
l = 3

DNA for subtasks at level
l = 2

Generation 1 Generation Z

solution to schedule for subtasks at level l = 2

solution to schedule for subtasks at level l = 3

Subtask at level l = 1

Subtasks at level l = 2

Subtasks at level l = 3

Subtasks at level l = 4

Finally, we combine efficient schedules of subtasks at all precedence levels and
combine them to obtain finish time for task t.

all P2P grid nodes

Schedule on
P2P grid node

having minimum
finish time

Calculate finish time
of on all P2P grid

nodes

Schedule on P2P grid node
having minimum finish time

2 · · · N

2 · · · N

2 · · · m

2 · · · m

Such that N = m + q

Such that N = m + q

· · · · · · · · ·

· · · · · · · · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

<=>

<=>

<=>

<=>

<=>

<=>

<=>

<=>

t1

t0

t0
t0

t0

t9

t9

t9

t2

t3

t4

t6

t7

t8

t5

N3

N3

N1

N1

N2

N2

N2

N0

N3

N0

N1

N2

N3

N0

N0N1

N2

Sch. 1, Sch. 1, Sch. 1, 2 · · · q

Sch. 1, Sch. 1, Sch. 1, 2 · · · q

NX

Most efficient DNA is selected as final

Most efficient DNA is selected as final

Calculate finish time of t9 on

Figure 4: Diagrammatic presentation of PLBGSA.

based genetic algorithm (PLBGSA) to schedule subtasks
of DAG based task 𝑡. In DAG based task, subtasks have
intertask dependencies. In addition to schedule subtasks
over various grid nodes, we have to find out the associated
computation and communication cost [21]. We store in all
P2P nodes a list 𝛼 mentioned in [22]. This list 𝛼 is modified
whenever scheduling happens. Accordingly, neighbors also
modify their list 𝛼. In [23], authors put forward the concept
of workload (computing field) of subtask over any P2P grid
resource. It is given in (1) as follows:

CF =
∑
𝑏

𝑎=1
𝑇
𝑎

Pr ×MIPSPr
, (1)

where Pr represents the total number of processing elements
present in P2P grid node.MIPSPr the gives number ofmillion
instructions per second single processing element can pro-
cess. 𝑇

𝑎
is size in million instructions of 𝑎th waiting subtask

in the task queue of 𝑏 length on grid node. Communication
cost [22] is the time to send subtask fromone node to another,
explained by (2) as follows:

TrtST
𝑙

𝑗𝑖

𝑋𝑁
= (

𝑇Kb
𝑎

Wsz
𝑥𝑦

) × RT
𝑥𝑦
. (2)

In the above equation, Wsz
𝑥𝑦

is window size and RT
𝑥𝑦

is
round trip time between nodes 𝑥 and 𝑦. Size of subtask 𝑎 in
Kb is represented by𝑇Kb

𝑎
. Subtask will also depend upon time

consumed to finish subtasks at a previous precedence level

6 Journal of Engineering

and to return results to the origin node. Previous algorithms,
have used DNA containing details of all subtasks of DAG
based task 𝑡. Genetic algorithm was applied using initial
population of randomly generated DNAs. Task 𝑡 shown in
Figure 1(a) is divided into precedence levels. In our proposed
approach, when any precedence levels contain only one
subtask, we need not to apply genetic algorithm on that
particular subtask. Instead, we calculate finish time of subtask
on all available P2P grid nodes. Finally, we schedule single
subtask on the node which gives fastest result. As shown in
Figure 4, single subtask 𝑡0 is scheduled without using genetic
algorithm.This scheduling value for 𝑡0 is stored in list 𝛼. This
value will be taken as prerequisite to schedule subtasks at the
next level.

On the other hand, if precedence level of subtask contains
more than one subtask, we use a genetic algorithm to find
good schedule. As shown in Figure 4, at precedence level 2,
five subtasks are present. Schedule to finish these 5 subtasks is
represented by DNA.𝑁 such DNAs are randomly generated
for initial generation.The𝑍 such generations are generated by
applying genetic operators on shortlisted DNAs of previous
generation. Crossover and mutation are genetic operators
used in this paper. The roulette wheel selection technique
is used to shortlist DNAs from all DNAs present at any
generation. We select DNA from all these generations such
that it finishes subtasks the fastest.We schedule using the best
schedule among all generations. Values are stored accordingly
in list 𝛼. Again, we apply genetic algorithm for subtasks
at level 3 and find good schedule. Scheduling is performed
according to this good schedule and list 𝛼 will be updated.
Again, there is a single task 𝑡9 in level 4, just like in level 1.
Hence, 𝑡9 is scheduled on node giving results fastest.This way
all subtasks of DAG based task 𝑡 are scheduled.

Algorithm for PLBGSA is shown in Figure 5. In this
algorithm, first we arrange all subtasks in priority based task
sequence 𝛽. Assign level 𝑙 value 1. Choose all 𝑗 subtasks
present at level 𝑙 from 𝛽. If only one subtask is present at
level 𝑙, then single subtask ST𝑙

𝑆
is assigned to a node having

minimum WldST𝑆
𝑁

. WldST𝑆
𝑁

is workload after subtask ST𝑙
𝑆
is

assigned to node 𝑁. Range of 𝑁 is 0 to 𝑃 − 1, where
𝑃 represents the number of P2P grid nodes available for
scheduling. If more than one subtask is present at level 𝑙,
we use genetic algorithm to schedule all subtasks on set
𝑃. While applying genetic algorithm, first we generate an
initial population of 𝑁 DNAs. To obtain single DNA we
use RnG and assign all ST𝑙

𝑗
to set 𝑃 ⋅ ST𝑙

𝑗
represents a set

of 𝑗 subtasks present at level 𝑙 from 𝛽. Then we calculate
Ftm ST𝑙

𝑗
for DNA. Finish time value of Sd𝑙

𝑗𝑖
is made equal

to Ftm ST𝑙
𝑗
. Further, generations are obtained by applying

genetic operators on the previous generation. Ftm ST𝑙
𝑗
will

be calculated by scheduling subtasks at level 2 one by one in
sequence in which they are found in 𝛽. Consider

Ftm ST𝑙
𝑗
= min
𝑖∈[0,𝑗]

{CFST
𝑙

𝑗𝑖

𝑐 } . (3)

When we schedule subtask, workload of the node on which
subtask is scheduled will also vary.This new workload will be
as follows:

CFST
𝑙

𝑗𝑖

𝑐 = MEF + tldST
𝑙

𝑗𝑖

𝐶
,

MEF = max {CFold
𝑐
,TrtST

𝑙

𝑗𝑖

𝑋𝑁
,Rbk𝑙−1} .

(4)

Here, MEF is the most efficient factor and will be the greatest
of these three values. First value is the old workload on P2P
grid node CFold

𝑐
. Second is transport time TrtST

𝑙

𝑗𝑖

𝑋𝑁
to send

a task from one node to another. Rbk𝑙−1 is the third value
which gives time when all subtasks at previous level will be
finished and had returned results. An origin node where task
𝑡 is generated will use these values to make a scheduling
decision.However, entities in list𝛼 are changedwhenwe have
found the best schedule using genetic algorithm.We shortlist
𝑚 schedules from an initial population by applying roulette
wheel selection method (RWS).This way second generation’s
first m schedules will be obtained from predecessors. We
choose two schedules Sd𝑙

1st, Sd
𝑙

2nd from thesem schedules and
apply CxGO, MtGO genetic operators. Two new schedules
will be obtained by this method. In this manner 𝑞 new
schedules for second generation are obtained. MtGO is
a mutation operator which will be applied more often if
stagnation in schedules occurs. We shortlist Sd𝑙smallest from
Rng Sd and schedule according to Sd𝑙smallest. Update list 𝛼
according to Sd𝑙smallest. Similarly, we calculate Sd𝑙smallest for
all levels and update list 𝛼 accordingly for all levels. Finally,
at level 𝑙 having value Max Level, Sd𝑙smallest represents finish
time for task 𝑡. The schedule obtained using this algorithm
is better than the algorithm presented in [14]. Our proposed
algorithm is depicted in Table 1.

In Table 1, cost is the statement that takes 𝑐
𝑖
steps to

execute and 𝑐
𝑖
step executes n times. Hence, we find that,

in the worst case, the running time of the above scheduling
algorithm is

𝑇 (𝑛) = 𝑐
1
⋅ 1 + 𝑐

2
⋅ 1 + 𝑐

3
⋅ (𝑛 + 1) + 𝑐

4
⋅ (𝑛 + 1)

+ 𝑐
5
⋅ (𝑛 + 1) + 𝑐

6
⋅ (𝑛 + 1) + 𝑐

7
⋅ (𝑛 + 1)

+ 𝑐
8
⋅ [(𝑛 + 1) (𝑛 + 1)] + 𝑐9 ⋅ [𝑛 ⋅ (𝑛 + 1)]

+ 𝑐
10
⋅ [𝑛 ⋅ (𝑛 + 1)] + 𝑐11 ⋅ [𝑛 ⋅ (𝑛 + 1)]

+ 𝑐
12
⋅ (𝑛 + 1) + 𝑐

13
⋅ [(𝑘 ⋅ 𝑛 + 1) (𝑛 + 1)]

+ 𝑐
14
⋅ [𝑘 ⋅ 𝑛 (𝑛 + 1)] + 𝑐15 [(𝑘 ⋅ 𝑛 − 1) (𝑛 + 1)]

+ 𝑐
16 [(𝑘 ⋅ 𝑛 − 1) (𝑛 + 1)] + 𝑐17 ⋅ [𝑘 ⋅ 𝑛 (𝑛 + 1)]

+ 𝑐
18 [(𝑘 ⋅ 𝑛 − 1) (𝑛 + 1)] + 𝑐19 ⋅ [(𝑘 ⋅ 𝑛 − 1) (𝑛 + 1)]

+ 𝑐
20
⋅ [(𝑘 ⋅ 𝑛 − 1) (𝑛 + 1)] + 𝑐21 ⋅ [(𝑘 ⋅ 𝑛 − 1) (𝑛 + 1)]

+ 𝑐
22
⋅ [(𝑘 ⋅ 𝑛 − 2) (𝑛 + 1)] + 𝑐23 ⋅ [(𝑘 ⋅ 𝑛 − 1) (𝑛 + 1)]

+ 𝑐
24
⋅ [(𝑘 ⋅ 𝑛 − 2) (𝑛 + 1)]

+ 𝑐
25
⋅ [(𝑘 ⋅ 𝑛 − 2) (𝑘 ⋅ 𝑛 + 1) (𝑛 + 1)]

Journal of Engineering 7

Subtask at level l = 1 is scheduled upon
node giving results fastest. Store these

values in list 𝛼.

Subtasks at level l = 2 are scheduled using
DNA, obtained from genetic algorithm.
Values are stored accordingly in list 𝛼.

Values are stored accordingly in list 𝛼.

Subtasks at level l = 3 are scheduled using
DNA, obtained from genetic algorithm.

Node failure occurs and we fail to schedule tasks
at level l = 3; then we again use genetic algorithm.

Now value of P is different and hence new
solution schedule will be obtained.

Subtask at level l = 4 is scheduled upon
node giving results fastest. Store these

values in list 𝛼.

Subtasks at level l = 3 are rescheduled
using DNA, obtained from genetic

algorithm. Values are stored accordingly
in list 𝛼.

Subtask at level l = 4 is rescheduled upon
node giving results fastest. Store these

values in list 𝛼 and task t finishes.

Figure 5: Working of fault tolerance in PLBGSA.

0

2

4

6

8

10

12

14

16

18

Node 0 Node 1 Node 2 Node 3

Idle Idle

Idle

IdleSubtask 0

Idle.

Subtask 1Subtask 2 Subtask 3

Subtask 4

Subtask 5

Waiting 1

Waiting 1
Waiting 1 Waiting 1

Subtask 6
Subtask 7Waiting 2

Subtask 8 Waiting 2 Waiting 2Waiting 2

Subtask 9

Random scheduling

Subtask 9
Waiting 2
Subtask 8
Subtask 7
Subtask 6
Waiting 1
Subtask 5

Subtask 4
Subtask 3
Subtask 2
Subtask 1
Idle.
Subtask 0
Idle

Ti
m

e (
s)

Figure 6: Detailed timewise schedule for all subtasks of DAG based task 𝑡 using random scheduling.

+ 𝑐
26
⋅ [(𝑘 ⋅ 𝑛 − 2) × 𝑘 ⋅ 𝑛 (𝑛 + 1)]

+ 𝑐
27
⋅ [(𝑛 + 1) (𝑛 + 1)]

+ 𝑐
28
⋅ [𝑛 (𝑛 + 1)] + 𝑐29 ⋅ [𝑛 (𝑛 + 1)]

+ 𝑐
30
⋅ [(𝑛 + 1) (𝑛 + 1)] + 𝑐31 ⋅ [(𝑛 + 1) (𝑛 + 1)] ⋅

+ 𝑐
32
⋅ 1,

(5)

8 Journal of Engineering

0

2

4

6

8

10

12

Node 0 Node 1 Node 2 Node 3

Idle Idle Idle
Idle

Subtask 0

Idle.
Subtask 1
Subtask 2

Subtask 3
Subtask 4 Subtask 5
Waiting 1 Waiting 1

Waiting 1

Waiting 1
Subtask 6Subtask 7 Subtask 8

Waiting 2
Waiting 2

Waiting 2
Subtask 9

Scheduling using old genetic algorithm

Subtask 9
Waiting 2
Subtask 8
Subtask 7
Subtask 6
Waiting 1

Subtask 5
Subtask 4
Subtask 3
Subtask 2
Subtask 1
Idle.

Ti
m

e (
s)

Figure 7: Detailed timewise schedule for all subtasks of DAG based task 𝑡 using genetic algorithm for DAG scheduling in grid.

0

1

2

3

4

5

6

7

8

9

Node 0 Node 1 Node 2 Node 3

Idle Idle
Idle

Subtask 0

Subtask 1Subtask 2

Subtask 3Subtask 4
Subtask 5

Waiting 1 Waiting 1 Waiting 1
Subtask 6Subtask 7Subtask 8

Waiting 2
Waiting 2

Waiting 2
Waiting 2

Subtask 9

Scheduling using PLBGSA

Subtask 9
Waiting 2
Subtask 8
Subtask 7
Subtask 6
Waiting 1

Subtask 5
Subtask 4
Subtask 3
Subtask 2
Subtask 1
Subtask 0

Ti
m

e (
s)

Figure 8: Detailed timewise schedule for all subtasks of DAG based task 𝑡 using PLBGSA.

which on simplifying gives

𝑇 (𝑛) = (𝑐
25
⋅ 𝑘2 + 𝑐

26
⋅ 𝑘2) 𝑛3

+ (𝑐
8
+ 𝑐
9
+ 𝑐
10
+ 𝑐
11
+ 𝑐
13
⋅ 𝑘 + 𝑐

14
⋅ 𝑘 + 𝑐

15
⋅ 𝑘

+ 𝑐
16
⋅ 𝑘 + 𝑐

17
⋅ 𝑘 + 𝑐

18
⋅ 𝑘 + 𝑐

19
⋅ 𝑘 + 𝑐

20
⋅ 𝑘

+ 𝑐
21
⋅ 𝑘 + 𝑐

22
⋅ 𝑘 + 𝑐

23
⋅ 𝑘 + 𝑐

24
⋅ 𝑘

+ 𝑐
25
⋅ (𝑘2 − 𝑘) + 𝑐

26
⋅ (𝑘2 − 2𝑘) + 𝑐

27

+ 𝑐
28
+ 𝑐
29
+ 𝑐
30
+ 𝑐
31
) 𝑛2

+ (𝑐
3
+ 𝑐
4
+ 𝑐
5
+ 𝑐
6
+ 𝑐
7
+ 2 ⋅ 𝑐

8
+ 𝑐
9
+ 𝑐
10
+ 𝑐
11

+ 𝑐
12
+ 𝑐
13
⋅ (𝑘 + 1) + 𝑐

14
⋅ 𝑘 + 𝑐

15
⋅ (𝑘 − 1)

+ 𝑐
16
⋅ (𝑘 − 1) + 𝑐

17
⋅ 𝑘 + 𝑐

18
⋅ (𝑘 − 1) + 𝑐

19
⋅ (𝑘 − 1)

+ 𝑐
20
⋅ (𝑘 − 1) + 𝑐

21
⋅ (𝑘 − 1) + 𝑐

22
⋅ (𝑘 − 2)

Journal of Engineering 9

8.5

9.5

10.5

11.5

12.5

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Ti
m

e (
s)

Old GA
PLBGSA

Figure 9: Ten runs of old GA and PLBGSA, with 𝑢 generations.

9.5

10.5

11.5

12.5

R1 R2 R3 R4 R5 R6 R7 R8 R9

Ti
m

e (
s)

u

2u

5u

8u

Figure 10: Ten runs of old GA algorithm with 𝑢, 2𝑢, 5𝑢, and 8𝑢
generations.

8.5

9.5

10.5

11.5

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Ti
m

e (
s)

Old GA(8u)
PLBGSA(u)

Figure 11: Comparison of 10 runs of old GA algorithm with 8𝑢
generations and PLBGSA with 𝑢 generations.

0
2
4
6
8

10
12
14

O
ld

 G
A

(u
)

O
ld

 G
A

(2
u

)

O
ld

 G
A

(5
u

)

O
ld

 G
A

(8
u

)

PL
BG

SA
(u

)

Average finsih time after 10 runs

Ti
m

e (
s)

Figure 12: Comparison of average finish time for task 𝑡 using oldGA
with u, 2u, 5u, and 8u generations and PLBGSA with 𝑢 generations.

0
2
4
6
8

10
12
14
16

Random scheduling
Old GA
PLBGSA

Su
bt

as
k

0

Su
bt

as
k

1

Su
bt

as
k

2

Su
bt

as
k

3

Su
bt

as
k

4

Su
bt

as
k

5

Su
bt

as
k

6

Su
bt

as
k

7

Su
bt

as
k

8

Su
bt

as
k

9

Ti
m

e (
s)

Waiting time for each subtask of t

Figure 13: Waiting time for each subtask of 𝑡 with random
scheduling, old GA, and PLBGSA.

+ 𝑐
23
⋅ (𝑘 − 1) + 𝑐

24
⋅ (𝑘 − 2) − 𝑐

25
⋅ (𝑘 + 2)

−𝑐
26
⋅ 2𝑘 + 𝑐

27
⋅ 2 + 𝑐

28
+ 𝑐
29
+ 𝑐
30
⋅ 2 + 𝑐

31
⋅ 2) 𝑛

+ (𝑐
1
+ 𝑐
2
+ 𝑐
3
+ 𝑐
4
+ 𝑐
5
+ 𝑐
6
+ 𝑐
7
+ 𝑐
8
+ 𝑐
12

+ 𝑐
13
− 𝑐
15
− 𝑐
16
− 𝑐
18
− 𝑐
19
− 𝑐
20
− 𝑐
21
− 2 ⋅ 𝑐

22

−𝑐
23
− 2 ⋅ 𝑐

24
− 2 ⋅ 𝑐

25
+ 𝑐
27
+ 𝑐
30
+ 𝑐
31
+ 𝑐
32
) ⋅ 1

= 𝑂 (𝑛3) .

(6)

The running time of the algorithm is the sum of running
times for each statement executed. We can express the above
equation in the formof 𝑎𝑛3+𝑏𝑛2+𝑐𝑛+𝑑 for constants 𝑎, 𝑏, 𝑐, 𝑑,
and 𝑘 that again depends on statement costs 𝑐

𝑖
; it is thus a

quadratic function of 𝑛, that is, 𝑛3.
The concept of fault tolerance is also introduced in

our algorithm. Fault tolerance [24] mechanism used in this
approach is the modified version of fault tolerance [25, 26]
mechanism of our previous work [22]. Two components
present on all P2P grid nodes are notification generator
and notification receiver in order to handle failure situation.
These components either transfer or receive the three types
of messages, the heartbeat message, the task completion

10 Journal of Engineering

Node sitting idle
Node processing subtask

N3N1 N2N0

Figure 14: Utilization of P2P nodes in random scheduling.

Node sitting idle
Node processing subtask

N3N1 N2N0

Figure 15: Utilization of P2P nodes in old GA.

message, and task failure message. If no message is received
and periodic time expires, then an automatic task failure
message is generated at the node. When failure message is
generated then we reschedule subtasks at level 𝑙. Further,
levels beyond 𝑙 are again rescheduled, accordingly.

In this manner, we achieve two goals by applying genetic
algorithm separately for each level instead of applying on
all levels at once. Firstly, we obtain better schedule. Also,
fault tolerance approach will be applicable because of the
unreliable nature of P2P grid nodes. Simulation results and
discussion are given in the next section in support of PLBGSA
algorithm.

4. Simulation Results and Discussion

Virtual network topology followed in this paper is shown
in Figure 1(b). 𝑁0 node is the origin node where DAG
based task t is generated. Nodes set P{𝑁0,𝑁1,𝑁2,𝑁3}
represents P2P grid nodes and the number of cores in P2P
grid nodes is {2, 3, 4, 3}, respectively. Window size for each
node is {75.0, 100.0, 75.0, 100.0}. Round trip time for P2P
grid nodes is {0.1, 0.4, 0.2, 0.4}. Computation capacity in
million instructions per second for each P2P grid node is
{1.2, 1.0, 0.9, 1.4}.

DAG based task t consists of 10 subtasks
{𝑡0, 𝑡1, . . . , 𝑡9} and sizes of each subtask in million
instructions are {8.0, 7.0, 4.0, 3.0, 6.0, 4.0, 2.0, 4.0, 3.0, 6.0},

respectively. Size in Kb for each subtask is
{800, 700, 400, 300, 600, 400, 200, 350, 350, 550}. Origin
node of all subtasks is the same (𝑁0). Subtask level is also
visible in Figure 1(a).

Now, when random scheduling is used to schedule
subtasks of 𝑡, finish time of 𝑡 comes at 17.551 seconds as shown
in Figure 6. Then we use genetic algorithm for scheduling
DAG based task 𝑡, as mentioned in [14]. Results are obtained
for task 𝑡 in 12.019 seconds. Detailed scheduling of all subtasks
is shown in Figure 7. When we use precedence level based
genetic algorithm for decentralized scheduling of task 𝑡 on
P2P grid nodes, we get results in 8.973 seconds as shown in
Figure 8.

After executing 10 times the proposed algorithm and
the algorithm proposed in [14], schedules obtained by our
techniques always come better as shown in Figure 9.Here, the
number of generations was equal. In Figure 10, the algorithm
of [14] is run with 𝑢, 2𝑢, 5𝑢, and 8𝑢 generations. However,
with the increase in generation, schedules obtained in 10 runs
have not much reduced in size. In Figure 11, comparison of
schedules obtained by running 10 times algorithm proposed
in [14] and our algorithm is shown. Reference [14] is having
8𝑢 number of generations and our algorithm is run only
with 𝑢 generations.However, schedules of previous algorithm
were not as good as compared to our proposed algorithm.
This fact is demonstrated in Figure 11.

Figure 12 shows that average finish time of our algorithm
with only u generations is much better than the average

Journal of Engineering 11

Node sitting idle
Node processing subtask

N3N1 N2N0

Figure 16: Utilization of P2P nodes in PLBGSA.

0

2

4

6

8

10

12

14

16

18

20

Node 0 Node 1 Node 2 Node 3

Idle Idle IdleSubtask 0

Subtask 1Subtask 2
Subtask 5Subtask 4 Subtask 3

Waiting 1 Waiting 1 Waiting 1
Node 3 fails Node 3 fails Node 3 fails Node 3 fails

Idle 2 Idle 2
Idle2Subtask 0.

Idle.
Subtask 1.

Subtask 2.

Subtask 3.
Subtask 4.

Subtask 5.

Waiting 1. Waiting 1.
Waiting 1.

Subtask 6 Subtask 7Subtask 8Waiting 2 Waiting 2 Waiting 2
Subtask 9

Subtask 9
Waiting 2
Subtask 8
Subtask 7
Subtask 6
Waiting 1.
Subtask 5.
Subtask 4.
Subtask 3.
Subtask 2.
Subtask 1.
Idle.

Subtask 0.
Idle 2
Node 3 fails
Waiting 1
Subtask 5
Subtask 4
Subtask 3
Subtask 2
Subtask 1
Subtask 0
Idle

Ti
m

e (
s)

Figure 17: Detailed time wise schedule for all subtasks of DAG
based task t using old GA when N3 fails at level 3 of task t. Here
we reschedule using old GA.

finish time of [14], even when the number of generations is
increased to 8u. Also, waiting time for subtasks at all levels is
decreased with our algorithm as shown in Figure 13.

Node utilization for random scheduling is shown in
Figure 14.Whenwe schedule subtasks using oldGAproposed
in [14], node 2 is sitting idle throughout all precedence levels.
This is shown in Figure 15. Nodes are utilizedmore uniformly
in PLBGSA as shown in Figure 16.

If 𝑎 distinct P2P grid nodes are to be arranged along
𝑝 subtasks of task 𝑡, where repetition of nodes is allowed,
then the total number of ways of doing this scheduling is

0

2

4

6

8

10

12

Node 0 Node 1 Node 2 Node 3

Idle Idle Idle
Subtask 0

Subtask 1Subtask 2
Subtask 3Subtask 4

Subtask 5

Waiting 1 Waiting 1 Waiting 1

Node 3 fails Node 3 fails Node 3 fails Node 3 fails

Subtask 6 Subtask 7Subtask 8
Waiting 2 Waiting 2 Waiting 2

Subtask 9

Subtask 9
Waiting 2
Subtask 8
Subtask 7
Subtask 6
Node 3 fails
Waiting 1

Subtask 5
Subtask 4
Subtask 3
Subtask 2
Subtask 1
Subtask 0

Ti
m

e (
s)

Figure 18:Detailed timewise schedule for all subtasks ofDAGbased
task t using PLBGSA when N3 fails at level 3 of task t. Here we
reschedule using PLBGSA.

𝑞; here 𝑞 = 𝑎𝑝. To find out the best schedule among all
possible schedules is a very exhaustive task. Hence, using a
genetic algorithm we generate 𝑔 number of schedules out of
𝑞 possible schedules. Finally, we select the fastest schedule
among these 𝑔 schedules. Now the probability of finding the
best schedules in randomly selected 𝑔 schedules is as follows:

Pr.𝑞best = (
𝐶
𝑞−1

𝑔−1
× 𝐶1
1

𝐶
𝑞

𝑔

) , where 𝑐𝑥1
𝑥2
=

𝑥
1
!

𝑥
2
! (𝑥
1
− 𝑥
2
)!
. (7)

On solving the right-hand side of (7), we get

Pr.𝑞best = (
𝑔

𝑞
) . (8)

Our approach first schedules tasks at level 2 then at level 3 and
henceforth up to 𝐿th level (second last level) of DAG based

12 Journal of Engineering

task 𝑡. Subtasks at level 2 are 𝑝
1
. Hence the total number of

ways of doing scheduling is 𝑤
1
(here 𝑤

1
= 𝑎𝑝1). Now the

probability of finding best schedules in randomly selected 𝑔
schedules is as follows:

Pr.𝑤1best = (
𝐶
𝑤1−1

𝑔−1
× 𝐶1
1

𝐶
𝑤1
𝑔

) =
𝑔

𝑤
1

. (9)

Level 3 contains 𝑝
2
subtasks; hence, the total number of ways

of doing scheduling is 𝑤
2
(here 𝑤

2
= 𝑎𝑝2). Consider

Pr.𝑤2best = (
𝐶
𝑤2−1

𝑔−1
× 𝐶1
1

𝐶
𝑤2
𝑔

) =
𝑔

𝑤
2

. (10)

Similarly, at level 𝐿,

Pr.𝑤𝐿−1best = (
𝐶
𝑤𝐿−1−1

𝑔−1
× 𝐶1
1

𝐶
𝑤𝐿−1
𝑔

) =
𝑔

𝑤
𝐿−1

. (11)

Now, since 𝑝
1
+ 𝑝
2
⋅ ⋅ ⋅ + 𝑝

𝐿−1
< 𝑝, therefore 𝑤

1
× 𝑤
2
× ⋅ ⋅ ⋅ ×

𝑤
𝐿−1
= 𝑎𝑝1 × 𝑎𝑝2 × ⋅ ⋅ ⋅ × 𝑎𝑝𝐿−1 = 𝑎𝑝1+𝑝2+⋅⋅⋅+𝑝𝐿−1 < 𝑞.

From (8)–(11),
Pr.𝑞best < Pr.𝑤1best, since (𝑞 > 𝑤

1
) ,

Pr.𝑞best < Pr.𝑤2best, since (𝑞 > 𝑤
2
) .

(12)

Similarly,

Pr.𝑞best < Pr.𝑤𝐿−1best , since (𝑞 > 𝑤
𝐿−1
)

Pr.𝑞best < (Pr.
𝑤1

best × Pr.
𝑤2

best × ⋅ ⋅ ⋅ × Pr.
𝑤𝐿−1

best) ,

since (𝑞 > 𝑤
1
× 𝑤
2
× ⋅ ⋅ ⋅ × 𝑤

𝐿−1
) .

(13)

Hence, the probability of getting better schedule using our
approach is higher. Moreover, we store the results after
scheduling all subtasks at any precedence level; we can incor-
porate fault tolerance in our approach. If we schedule using
[14] and if some node fails, then again we have to schedule
all subtasks present at all the levels shown in Figure 17.
However, PLBGSA assigns genetic algorithm for subtasks of
all levels separately; hence, we reschedule subtasks at a level
where node failure happened and subtasks, beyond that level.
This way we obtain results much faster as shown in Figure 18.

5. Conclusion and Future Scope of Work

We have applied genetic algorithm in every precedence level
to schedule subtasks on P2P grid nodes. Moreover, PLBGSA
is better and efficient than the algorithm proposed by Pop et
al. [14]. Probability of finding good schedule is higher than
the previous works. P2P grid resources are utilized more
uniformly with PLBGSA. Further, fault detection and recov-
ery mechanism is proposed in PLBGSA. This fault tolerance
mechanism is yielding good results. We obtain near optimal
schedule with a reduced number of generations in PLBGSA.
In the future scope of work, we can apply other optimization
heuristics using precedence level based scheduling for P2P
grid. Also, we will incorporate task duplication technique
before applying genetic scheduling at each precedence level
in our future algorithm.

Abbreviations

PLBGSA: Fault tolerant precedence level based
genetic scheduling algorithm for P2P grid

ST𝑙
𝑆
: Single subtask present on level 𝑙

WldST𝑆
𝑁

: Workload of task 𝑆𝑇
𝑆
on node𝑁

𝑃: Number of P2P grid nodes available
RnG: Random number generator
Ftm ST𝑙

𝑗
: Time required to finish all subtasks 𝑗 of

level 𝑙
𝑗: Number of subtasks present at level 𝑙
ST𝑙
𝑗
: Set of 𝑗 subtasks present at level 𝑙

RWS: Roulette wheel selection method
Rng Sd: Range of schedules
Sd𝑙
𝑗
: Individual schedule to finish set 𝑗 of

subtasks at level 𝑙
Sd𝑙
𝑗𝑖
: 𝑖th schedule to finish set 𝑗 of subtasks at

level 𝑙
Sd𝑙
1st and Sd𝑙

2nd: Pair of schedules shortlisted for genetic
operations from a defined range in
previous schedules

Sd𝑙smallest: Schedule having the smallest Ftm ST𝑙
𝑗

from all schedules for level 𝑙
CxGO: Crossover genetic operator
MtGO: Mutation genetic operator
Max Level: Highest level present in DAG based task 𝑡
𝑢: Total number of generations
GNo: Generation number
ℎ: Size of generation
𝑁𝑡𝑙: Number of subtasks at level 𝑙
NdF: Node failure flag
𝑐: Node to which subtask is assigned in any

schedule
𝑡𝑙𝑑

ST𝑙
𝑗𝑖

𝐶
: Load on 𝑐 node of subtask 𝑖 at level 𝑙

CFST
𝑙

𝑗𝑖

𝑐 : Workload after task 𝑖 at level 𝑙 is added to
any node 𝑐

CFold
𝑐
: Old workload on node 𝑐

TrtST
𝑙

𝑗𝑖

𝑋𝑁
: Time required in sending subtask 𝑖 at level

𝑙 from node𝑋 to node𝑁
MEF: Factor having maximummagnitude

among 3 factors
Rbk𝑙−1: Time at which results will be returned for

all subtasks at previous level
𝑘: Number of DNAs selected from previous

generation.

References

[1] F. Dong and S. G. Akl, “Scheduling algorithms for grid comput-
ing: state of the art and open problems,” Tech. Rep. 2006- 504,
School of Computing, Queen’s University Kingston, Ontario,
Canada, 2006.

[2] I. Foster and C. Kesselman, The Grid: Blueprint for A New
Computing Infrastructure, Morgan Kaufmann, San Francisco,
Calif, USA, 1998.

Journal of Engineering 13

[3] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
enabling scalable virtual organizations,” International Journal
of High Performance Computing Applications, vol. 15, no. 3, pp.
200–222, 2001.

[4] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour,
“Evaluation of job-scheduling strategies for grid computing,” in
Proceedings of the 1st IEEE/ACMInternationalWorkshop onGrid
Computing, pp. 191–202, 2000.

[5] F. Pop and V. Cristea, “Intelligent strategies for DAG scheduling
optimization in grid environments,” in Proceedings of the 16th
International Conference on Control Systems and Computer
Science (CSCS16 ’07), pp. 98–103, Bucharest, Romania, 2007.

[6] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor—a hunter
of idle workstations,” in Proceedings of the 8th International
Conference on Distributed Computing Systems, pp. 104–111, 1988.

[7] H. Mohamed and D. Epema, “KOALA: a co-allocating grid
scheduler,” Concurrency Computation Practice and Experience,
vol. 20, no. 16, pp. 1851–1876, 2008.

[8] A. Agarwal and P. Kumar, “Economical task scheduling algo-
rithm for grid computing systems,” Global Journal of Computer
Science and Technology, vol. 10, no. 11, pp. 48–53, 2010.

[9] S. Voulgaris, D. Gavidia, and M. Van Steen, “CYCLON:
inexpensive membership management for unstructured P2P
overlays,” Journal of Network and Systems Management, vol. 13,
no. 2, pp. 197–216, 2005.

[10] A. J. Chakravarti, G. Baumgartner, andM. Lauria, “The organic
grid: self-organizing computation on a peer-to-peer network,”
IEEE Transactions on Systems, Man, and Cybernetics A, vol. 35,
no. 3, pp. 373–384, 2005.

[11] M. Fiscato, P. Costa, and G. Pierre, “On the feasibility of
decentralized grid scheduling,” in Proceedings of the 2nd IEEE
International Conference on Self-Adaptive and Self-Organizing
Systems Workshops (SASOW ’08), pp. 225–229, October 2008.

[12] P. Chauhan andNitin, “Resource based optimized decentralized
grid scheduling algorithm,” Advances in Computer Science,
Engineering & Applications, vol. 167, pp. 1051–1060, 2012.

[13] B. Simion, C. Leordeanu, F. Pop, and V. Cristea, “A hybrid
algorithm for scheduling workflow applications in grid envi-
ronments (icpdp),” in Proceedings of on the Move to Meaningful
Internet Systems: CoopIS, DOA, GADA, and ODBASE and IS,
vol. 4804 of Lecture Notes in Computer Science, pp. 1331–1348,
2007.

[14] F. Pop, C. Dobre, and V. Cristea, “Genetic algorithm for DAG
scheduling in Grid environments,” in Proceedings of the IEEE
5th International Conference on Intelligent Computer Communi-
cation and Processing (ICCP ’09), pp. 299–305, August 2009.

[15] H. Cao, H. Jin, X. Wu, S. Wu, and X. Shi, “DAGMap: efficient
scheduling forDAG gridworkflow job,” in Proceedings of the 9th
IEEE/ACM International Conference on Grid Computing (GRID
’08), pp. 17–24, October 2008.

[16] P. Larrañaga and J. A. Lozano, Estimation of Distribution
Algorithms: ANewTool for Evolutionary Computation, Springer,
2001.

[17] G. V. Iordache, M. S. Boboila, F. Pop, C. Stratan, and V.
Cristea, “A decentralized strategy for genetic scheduling in
heterogeneous environments,” Multiagent and Grid Systems,
vol. 3, no. 4, pp. 355–367, 2007.

[18] H. B. Newman, I. C. Legrand, P. Galvez, R. Voicu, and C.
Cirstoiu, “MonALISA: a distributed monitoring service archi-
tecture,” in Proceedings of the Computing in High Energy and
Nuclear Physics (CHEP ’03), pp. 1–8, La Jola, Calif, USA, 2003.

[19] A. Y. Zomaya and Y.-H. Teh, “Observations on using genetic
algorithms for dynamic load-balancing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 12, no. 9, pp. 899–911, 2001.

[20] U. Fissgus, “Scheduling using genetic algorithms,” in Pro-
ceedings of the 20th International Conference on Distributed
Computing Systems (ICDCS ’00), pp. 662–669, April 2000.

[21] P. Chauhan and Nitin, “Decentralized computation and com-
munication intensive task scheduling algorithm for p2p grid,”
in Proceedings of the 14th International Conference on Computer
Modelling and Simulation (UKSim ’12), pp. 516–521, 2012.

[22] P. Chauhan and Nitin, “Fault tolerant decentralized scheduling
algorithm for p2p grid,” in Proceedings of the 2nd International
Conference on Communication, Computing & Security (ICCCS
’12), vol. 6, pp. 698–707, Procedia Technology, 2012.

[23] Z. Dong, Y. Yang, C. Zhao, W. Guo, and L. Li, “Computing
field scheduling: a fully decentralized scheduling approach for
grid computing,” in Proceedings of the 6th Annual ChinaGrid
Conference (ChinaGrid ’11), pp. 68–73, August 2011.

[24] P. Townend and J. Xu, “Fault tolerance within a grid environ-
ment,” in Proceedings of the UK e-Science All HandsMeeting, pp.
272–275, 2003.

[25] R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauve, “Faults in
Grids: why are they so bad and what can be done about it?” in
Fourth Workshop on Grid Computing, pp. 18–24, 2003.

[26] S. Hwang and C. Kesselman, “A flexible framework for fault
tolerance in the grid,” Journal of Grid Computing, no. 13, pp. 251–
272, 2003.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

