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We present a new analytical expression for the moment generating function (MGF) of the end-to-end signal-to-noise ratio of
dual-hop decode-and-forward (DF) relaying systems with relay selection when operating over Nakagami-𝑚 fading channels. The
derived MGF expression, which is valid for arbitrary values of the fading parameters of both hops, is subsequently utilized to
evaluate the average symbol error probability (ASEP) of 𝑀-ary phase shift keying modulation for the considered DF relaying
scheme under various asymmetric fading conditions. It is shown that the MGF-based ASEP performance evaluation results are
in excellent agreement with equivalent ones obtained by means of computer simulations, thus validating the correctness of the
presented MGF expression.

1. Introduction

Cooperative communication through relay nodes has been
shown to be capable of extending the radio coverage and
improving the reliability of emerging wireless systems [1–
3]. One of the bandwidth efficient dual-hop cooperative
techniques combines the decode-and-forward (DF) relaying
protocol with relay selection (RS) [4]. The performance of
this technique has been studied in [4] over Rayleigh fading
channels and in [5–7] for the more general Nakagami-𝑚
fading channel model. However, in the latter works analytical
expressions for the moment generating function (MGF)
of the end-to-end signal-to-noise ratio (SNR) have been
presented, which are valid only for the special case where
the Nakagami𝑚-parameter of both hops takes integer values.
In [5], the authors based their analysis on the tight approxi-
mation for the end-to-end SNR presented in [8], whereas
[6, 7] utilized the end-to-end SNR characterization of [9].
Nevertheless, in realistic wireless communication scenarios,
estimators for 𝑚 from field measurement data typically result
in arbitrary 𝑚 values [10]. Moreover, restricting 𝑚 to only

integer values severely limits the advantageous property of
the Nakagami-𝑚 fading distribution to adequately approx-
imate the Rice and Hoyt ones [11]. Very recently, based on
[9], the authors in [12] investigated the error probability of
opportunistic DF relaying over Nakagami-𝑚 fading channels
with arbitrary 𝑚.

In this paper, capitalizing on the approach of [8], we
present a new closed-form representation for the MGF of the
end-to-end SNR of dual-hop DF RS-based systems which is
valid for arbitrary-valued parameters for both Nakagami-𝑚
faded hops. In addition, the derived expression is utilized to
evaluate the average symbol error probability (ASEP) of 𝑀-
ary phase shift keying (PSK) modulation for the considered
relaying scheme. Numerically evaluated ASEP results match
perfectly with equivalent results obtained from computer
simulations and clearly demonstrate that ASEP is rather
sensitive to even slight variations of any of the hops’ fading
parameter.

The remainder of this paper is organized as follows.
Section 2 presents in brief the corresponding signal and
system model. A new closed-form representation for the
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MGF of DF with RS over arbitrary Nakagami-𝑚 fading
channels is derived in Section 3. An application of the derived
expression in evaluating the ASEP performance of 𝑀-PSK
is demonstrated in Section 4, while closing remarks are
provided in Section 5.

2. Signal and System Model

Consider a wireless dual-hop DF cooperative system com-
prising a source node 𝑆, a destination node 𝐷, and 𝐿 half-
duplex relays, each of which is denoted by 𝑅𝑘, 𝑘 = 1, 2, . . . , 𝐿.
During the first transmission time slot, 𝑆 broadcasts a symbol
to the relays. In the second time slot, the relay with the most
favorable channel to𝐷 is selected to transmit, while 𝑆 remains
silent. Node 𝐷 is assumed to possess perfect channel state
information so that maximum-likelihood combining of the
signals from 𝑆 and the selected relay can be employed.

The wireless channels between any pair of system nodes
are assumed to be subject to the Nakagami-𝑚 fading
distribution [13]. Furthermore, transmission is corrupted by
additive white Gaussian noise (AWGN) with single-sided
power spectral density 𝑁0. The fading parameters for the
𝑆 → 𝐷, 𝑆 → 𝑅𝑘, and 𝑅𝑘 → 𝐷 channels are denoted by
𝑚0, 𝑚1𝑘, and 𝑚2𝑘, respectively, whereas the corresponding
instantaneous received SNRs as 𝛾0, 𝛾1𝑘, and 𝛾2𝑘, respectively. It
is noted that unlike many other studies [4–7], no restrictions
are applied on the Nakagami-𝑚 fading parameters of both
hops. In other words, 𝑚0 and each 𝑚ℓ𝑘, with ℓ = 1, 2 and
𝑘 = 1, 2, . . . , 𝐿, can take any arbitrary positive real value as
long as it obeys the necessary condition for the Nakagami-𝑚
distribution, that is,𝑚0, 𝑚ℓ𝑘 ≥ 0.5.The average received SNRs
at the first and second hop are defined as 𝛾

0
= Ω𝑆𝐷𝐸𝑠/𝑁0,

𝛾
1𝑘

= Ω𝑆𝑅𝑘
𝐸𝑠/𝑁0, and 𝛾

2𝑘
= Ω𝑅𝑘𝐷

𝐸𝑠/𝑁0, respectively, where
Ω𝐴𝐵 denotes the average fading power of the 𝐴 → 𝐵 channel
and 𝐸𝑠 is the energy of the symbol transmitted. Clearly, 𝛾0

and 𝛾ℓ𝑘’s are Gamma distributed random variables which are
assumed to be statistically independent.

As shown in [8], a dual-hop transmission 𝑆 → 𝑅𝑘 →

𝐷 employing the DF protocol can be modeled as a single-
hop transmission 𝑆 → 𝐷 with the equivalent instantaneous
received SNR at 𝐷 bounded as

𝛾min −

3.24

𝑀

< 𝛾𝑘 ≤ 𝛾min. (1)

In (1), 𝛾min = min{𝛾1𝑘, 𝛾2𝑘} and 𝑀 denotes the transmitted
signal’s modulation order. For relatively large SNR and 𝑀

values, setting 𝛾𝑘 = 𝛾min yields a tight approximation
for 𝛾𝑘 [8]. To this effect, by using RS, the corresponding
received SNR at 𝐷 can be accurately approximated as 𝛾RS =

max𝑘=1,2,...,𝐿𝛾𝑘 [5]. Utilizing next a time-diversity version of
maximal-ratio combining [11], the instantaneous received
SNR at 𝐷’s output can be expressed as

𝛾𝐷 = 𝛾0 + 𝛾RS. (2)

3. MGF of DF RS in Nakagami-𝑚 Fading

By differentiating [5, equation (3)], a closed-form expression
for the probability density function (PDF) of 𝛾𝑘 for any
arbitrary value of 𝑚1𝑘, 𝑚2𝑘 ≥ 0.5 can be obtained as follows:

𝑓𝛾𝑘
(𝑥) =

2

∑

𝑝=1

𝑎

𝑚𝑝𝑘

𝑝𝑘

Γ (𝑚𝑝𝑘)

𝑥
𝑚𝑝𝑘−1 exp (−𝑎𝑝𝑘𝑥)

× 𝐺 [𝑚(3−𝑝)𝑘, 𝑎(3−𝑝)𝑘𝑥] ,

(3)

where 𝑎1𝑘 = 𝑚1𝑘/𝛾
1𝑘
, 𝑎2𝑘 = 𝑚2𝑘/𝛾

2𝑘
, and 𝐺(𝑐, 𝑑𝑥) =

Γ(𝑐, 𝑑𝑥)/Γ(𝑐), with 𝑐, 𝑑 ∈ R, while Γ(⋅) and Γ(⋅, ⋅) denote the
incomplete [14, equation (8.310)] and the upper incomplete
Gamma function [14, equation (8.350.2)], respectively. Sub-
stituting [5, equation (3)] and (3) into [5, equation (6)] and
after some algebraic manipulations, the following expression
for the PDF of 𝛾RS is deduced:

𝑓𝛾RS
(𝑥) =

2

∑

𝑝=1

𝐿

∑

𝑘=1

𝐿

∑

𝑙=0

̃
∑

𝑙

∏

𝑡=1

(−1)
𝑙
𝑎

𝑚𝑝𝑘

𝑝𝑘

𝑙!Γ (𝑚𝑝𝑘)

𝑥
𝑚𝑝𝑘−1

× exp (−𝑎𝑝𝑘𝑥) 𝐺 [𝑚𝑝𝑛𝑡
, 𝑎𝑝𝑛𝑡

𝑥]

× 𝐺 [𝑚(3−𝑝)𝑘, 𝑎(3−𝑝)𝑘𝑥] 𝐺 [𝑚(3−𝑝)𝑛𝑡
, 𝑎(3−𝑝)𝑛𝑡

𝑥] ,

(4)

where symbol ̃
∑ is used for short-hand representation of

multiple summations of the form ∑
𝐿

𝑛1=1
∑
𝐿

𝑛2=1
⋅ ⋅ ⋅ ∑

𝐿

𝑛𝑙=1
with

𝑛1 ̸= 𝑛2 ̸= ⋅ ⋅ ⋅ ̸= 𝑛𝑙.
In order to derive an explicit expression for the MGF of

𝛾R𝑆, which is defined as 𝑀𝛾RS
(𝑠) = ∫

∞

0
𝑓𝛾RS

(𝑥) exp (𝑠𝑥) 𝑑𝑥

[11, equation (1.2)], for arbitrary valid values of both 𝑚1𝑘

and 𝑚2𝑘, one is required to analytically evaluate integrals that
involve combinations of arbitrary powers, exponentials, and
𝐺(⋅, ⋅) functions. To this end, by expressing all G(⋅, ⋅)’s in (4)
according to [14, equation (8.354.2)], utilizing [14, equation
(8.310)], and performing some rather long but basic algebraic
manipulations, one obtains the following explicit expression
for 𝑀𝛾RS

(𝑠):

𝑀𝛾RS
(𝑠) =

𝐿

∑

𝑘=1

𝐿

∑

𝑙=0

̃
∑

𝑙

∏

𝑡=1

(−1)
𝑙

𝑙!

2

∏

ℓ=1

1

Γ (𝑚ℓ𝑘) Γ (𝑚ℓ𝑛𝑡
)

× {𝑎
𝑚1𝑘

1𝑘

8

∑

𝑝=1

A𝑝 + 𝑎
𝑚2𝑘

2𝑘

8

∑

𝑝=1

B𝑝}

(5)

which is valid for 𝑎1𝑘, 𝑎2𝑘 ̸= 𝑠 for all 𝑘 = 1, 2, . . . , 𝐿. In (5),
parametersA𝑝 andB𝑝, with 𝑝 = 1, 2, . . . , 8, are given by

{

A1

B1

} =

2

∏

ℓ=1

Γ (𝑚ℓ𝑛𝑡
) Γ (Ξ) 𝐻3 (1, 1, 1) , (6)
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{

A2

B2

} = −Γ (𝑚2𝑛𝑡
) Γ (Ξ)

∞

∑

𝑖=0

(−1)
𝑖

𝑖!

𝑎

𝑚1𝑛𝑡
+𝑖

1𝑛𝑡
𝐻2 (𝑚1𝑛𝑡

+ 𝑖, 1, 1) ,

{

A3

B3

} = −

2

∏

ℓ=1

Γ (𝑚ℓ𝑛𝑡
)

∞

∑

𝑖=0

(−1)
𝑖

𝑖!

{

𝑎2𝑘

𝑎1𝑘

}

Ξ+𝑖

𝐻2 (Ξ + 𝑖, 1, 1) ,

{

A4

B4

} = Γ (𝑚2𝑛𝑡
)

∞

∑

𝑖,𝑗=0

(−1)
𝑖+𝑗

𝑖!𝑗!

𝑎

𝑚1𝑛𝑡
+𝑗

1𝑛𝑡
{

𝑎2𝑘

𝑎1𝑘

}

Ξ+𝑖

× 𝐻1 (Ξ + 𝑖, 𝑚1𝑛𝑡
+ 𝑗, 1) ,

{

A5

B5

} = −Γ (𝑚1𝑛𝑡
) Γ (Ξ)

∞

∑

𝑖=0

(−1)
𝑖

𝑖!

𝑎

𝑚2𝑛𝑡
+𝑖

2𝑛𝑡
𝐻2 (𝑚2𝑛𝑡

+ 𝑖, 1, 1) ,

{

A6

B6

} = Γ (Ξ)

∞

∑

𝑖,𝑗=0

(−1)
𝑖+𝑗

𝑖!𝑗!

𝑎

𝑚1𝑛𝑡
+𝑖

1𝑛𝑡
𝑎

𝑚2𝑛𝑡
+𝑗

2𝑛𝑡

× 𝐻1 (𝑚1𝑛𝑡
+ 𝑖, 𝑚2𝑛𝑡

+ 𝑗, 1) ,

{

A7

B7

} = Γ (𝑚1𝑛𝑡
)

∞

∑

𝑖,𝑗=0

(−1)
𝑖+𝑗

𝑖!𝑗!

{

𝑎2𝑘

𝑎1𝑘

}

Ξ+𝑖

𝑎

𝑚2𝑛𝑡
+𝑗

2𝑛𝑡

× 𝐻1 (Ξ + 𝑖, 𝑚2𝑛𝑡
+ 𝑗, 1) ,

{

A8

B8

} = −

∞

∑

𝑖,𝑗,𝑧=0

(−1)
𝑖+𝑗+𝑧

𝑖!𝑗!𝑧!

{

𝑎2𝑘

𝑎1𝑘

}

Ξ+𝑖

𝑎

𝑚1𝑛𝑡
+𝑗

1𝑛𝑡
𝑎

𝑚2𝑛𝑡
+𝑧

2𝑛𝑡

× 𝐻0 (Ξ + 𝑖, 𝑚1𝑛𝑡
+ 𝑗, 𝑚2𝑛𝑡

+ 𝑧) .

(7)

In (6)-(7) the notation {
𝑥
𝑦 } = {

𝑐

𝑑 } is used for short-hand
representation of 𝑥 = 𝑐 and 𝑦 = 𝑑, and symbols Ξ and Υ

represent {
𝑚2𝑘
𝑚1𝑘

} and {
𝑎1𝑘
𝑎2𝑘

}, respectively, whereas the function
of 𝑠 denoted by 𝐻𝑛(𝜅, 𝜆, 𝜇), with 𝜅, 𝜆, 𝜇 ∈ R and 𝑛 = 0, 1, 2

and 3, is defined as

𝐻𝑛 (𝜅, 𝜆, 𝜇) =

Γ ({
𝑚1𝑘
𝑚2𝑘

} + 𝜅 + 𝜆 + 𝜇 − 𝑛)

𝜅𝜆𝜇(Υ − 𝑠)
{
𝑚1𝑘
𝑚2𝑘

}+𝜅+𝜆+𝜇−𝑛

. (8)

Importantly, after careful inspection of A𝑝’s and B𝑝’s
for 𝑝 = 2, 3, . . . , 8 in (5), it follows that they can all be
expressed in terms of well-known generalized hypergeome-
tric functions [14, equation (9.14)]. To this end, for the A𝑝’s
andB𝑝’s with 𝑝 = 2, 3, and 5, by expressing every term of the
form (𝑥 + 𝑦) as (𝑥 + 𝑦)!/(𝑥 + 𝑦 − 1)! and using the identity
Γ(𝑥 + 𝑦) = (𝑥)𝑦Γ(𝑦), where (𝑥)𝑦 is the Pochhammer symbol
[14, page xliii], yields

{

A2

B2

} = Γ (𝑚2𝑛𝑡
) Γ (Ξ) 𝐼 (𝑚1𝑛𝑡

, 𝑎1𝑛𝑡
) ,

{

A3

B3

} =

2

∏

ℓ=1

Γ (𝑚ℓ𝑛𝑡
) 𝐼 (Ξ, {

𝑎2𝑘

𝑎1𝑘

}) ,

{

A5

B5

} = Γ (𝑚1𝑛𝑡
) Γ (Ξ) 𝐼 (𝑚2𝑛𝑡

, 𝑎2𝑛𝑡
) ,

(9)

where 𝐼(𝜅, 𝜆) is given by

𝐼 (𝜅, 𝜆) = −𝜆
𝜅
𝐻2(𝜅, 1, 1)2𝐹1 ({

𝑚1𝑘

𝑚2𝑘

} + 𝜅, 𝜅; 𝜅 + 1;

𝜆

𝑠 − Υ

) .

(10)

In (10), 2𝐹1(⋅) represents the Gauss hypergeometric function
[14, equation (9.14.2)]. Likewise, for the A𝑝’s and B𝑝’s with
𝑝 = 4, 6, and 7, each infinite series can be ultimately expressed
in terms of the Appell hypergeometric function 𝐹2(⋅) [14,
equation (9.180.2)] as

{

A4

B4

} = Γ (𝑚2𝑛𝑡
) 𝐽 (Ξ, 𝑚1𝑛𝑡

, {

𝑎2𝑘

𝑎1𝑘

} , 𝑎1𝑛𝑡
) ,

{

A6

B6

} = Γ (Ξ) 𝐽 (𝑚1𝑛𝑡
, 𝑚2𝑛𝑡

, 𝑎1𝑛𝑡
, 𝑎2𝑛𝑡

) ,

{

A7

B7

} = Γ (𝑚1𝑛𝑡
) 𝐽 (Ξ, 𝑚2𝑛𝑡

, {

𝑎2𝑘

𝑎1𝑘

} , 𝑎2𝑛𝑡
) ,

(11)

where 𝐽(𝜅, 𝜆, 𝜇, ]), with ] ∈ R, is given by

𝐽 (𝜅, 𝜆, 𝜇, ]) = 𝜇
𝜅
]
𝜆
𝐻1 (𝜅, 𝜆, 1)

× 𝐹2 ({

𝑚1𝑘

𝑚2𝑘

}+𝜅+ 𝜆; 𝜅, 𝜆; 𝜅+1, 𝜆 + 1;

𝜇

𝑠 − Υ

,

]

𝑠 − Υ

) .

(12)

Finally, by using once more all aforementioned identities, it
follows that the A8 and B8 coefficients can be expressed
in terms of the generalized Lauricella function 𝐹

(3)

𝐴
(⋅) [15,

equation (1.1)], yielding

{

A8

B8

} = − 𝑎
𝜆

1𝑛𝑡
𝑎
𝜇

2𝑛𝑡
{

𝑎2𝑘

𝑎1𝑘

}

Ξ

𝐻0 (Ξ, 𝜆, 𝜇)

× 𝐹
(3)

𝐴
(

{
𝑚1𝑘
𝑚2𝑘

}+Ξ+𝜆+𝜇;Ξ,𝜆,𝜇;

Ξ+1,𝜆+1,𝜇+1;

{
𝑎2𝑘
𝑎1𝑘

}

𝑠 − Υ

,

𝑎1𝑛𝑡

𝑠 − Υ

,

𝑎2𝑛𝑡

𝑠 − Υ

) .

(13)

To this effect, substituting (6), (9), (11), and (13) to (5), a
novel expression for 𝑀𝛾RS

(𝑠) is deduced which is valid for
arbitrary 𝑚1𝑘, 𝑚2𝑘 ≥ 0.5. It is noted that in Appendices A and
B we present MATLAB routines for computational efficient
implementations of functions 𝐹2(⋅) and 𝐹

3

𝐴
(⋅), respectively.

Using the previously derived 𝑀𝛾RS
(𝑠) expression, the

MGF of 𝛾0 and by recalling that 𝛾RS and 𝛾0 are statistically
independent, the MGF of 𝛾𝐷 is straightforwardly deduced,
namely,

𝑀𝛾𝐷
(𝑠) = (

𝑚0

𝛾
0

)

𝑚0

(𝑠 +

𝑚0

𝛾
0

)

−𝑚0

𝑀𝛾RS
(𝑠) . (14)
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Figure 1: Average symbol error probability, 𝑃se, of 8-PSK of dual-
hop DF relaying with RS as a function of the average symbol to
noise power,𝐸𝑠/𝑁0, for𝐿 = 3 relays and variousNakagami-𝑚 fading
conditions.

4. ASEP Performance Evaluation

The ASEP performance of various modulation schemes
for the considered dual-hop DF relaying system with RS
over Nakagami-𝑚 fading channels can be directly evaluated
using the 𝑀𝛾𝐷

(𝑠) expression and the MGF-based approach
presented in [11, Chapter 1]. For example, the ASEP of𝑀-PSK
modulation is easily obtained as

𝑃se =

1

𝜋

∫

𝜋−𝜋/𝑀

0

𝑀𝛾𝐷
[

sin2 (𝜋/𝑀)

sin2 (𝜃)

] 𝑑𝜃. (15)

Let us assume a relaying system with 𝐿 = 3 relays, no
direct link 𝑆 → 𝐷, and the following four asymmetric fading
scenarios: (i) Scenario A: 𝑚11 = Ω11 = 0.6, 𝑚12 = Ω12 = 1.1,
𝑚13 = Ω13 = 1.7, and 𝑚2𝑘 = Ω2𝑘 = 0.7 for 𝑘 = 1, 2, and
3; (ii) Scenario B: 𝑚11 = Ω11 = 1.1, 𝑚12 = Ω12 = 2.1,
𝑚13 = Ω13 = 3.1, and 𝑚2𝑘 = Ω2𝑘 = 1.1 for 𝑘 = 1, 2, and
3; (iii) Scenario C: 𝑚11 = Ω11 = 1.1, 𝑚12 = Ω12 = 2.3,
𝑚13 = Ω13 = 3.8, and 𝑚2𝑘 = Ω2𝑘 = 1.8 for 𝑘 = 1, 2, and
3; and (iv) Scenario D: 𝑚11 = Ω11 = 1.6, 𝑚12 = Ω12 = 3.3,
𝑚13 = Ω13 = 4.2, and 𝑚2𝑘 = Ω2𝑘 = 2.6 for 𝑘 = 1, 2

and 3. The ASEP performance, 𝑃se, of 8-, 16- and 32-PSK
modulation is depicted in Figures 1, 2, and 3, respectively,
as a function of the average symbol to noise power, 𝐸𝑠/𝑁0,
over various Nakagami-𝑚 fading conditions. As expected,
𝑃se improves with increasing 𝐸𝑠/𝑁0 and/or decreasing 𝑀

and/or increasing any of the fading parameters. Furthermore,
all figures clearly depict the excellent agreement between the
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Figure 2: Average symbol error probability, 𝑃se, of 16-PSK of dual-
hopDF relaying with RS as a function of the average symbol to noise
power, 𝐸𝑠/𝑁0, for 𝐿 = 3 relays and various Nakagami-𝑚 fading
conditions.

numerically evaluated ASEP results and the equivalent ones
obtained from Monte Carlo simulations. In addition, it is
observed that the higher is the 𝐸𝑠/𝑁0, the more sensitive
is 𝑃se to slight variations of the fading conditions. More
specifically, for the case of 8-PSK modulation, it can be
observed that the differences in the 𝑃se curves among the
four considered fading scenarios for the low 𝐸𝑠/𝑁0 regime,
for example, at 5 dB, are 51% between Scenarios A and B;
52% between Scenarios B and C; and 54% between Scenarios
C and D. For the same modulation order, the differences
in the high 𝐸s/𝑁0 regime, for example, at 20 dB, are: 98%
between Scenario A and B; 100% between Scenario B and
C; and 103% between Scenario C and D. Likewise, for the
case of 16-PSK and for 𝐸𝑠/𝑁0 = 5 dB, the differences in
the 𝑃se curves for the different scenarios are 23% between
Scenarios A and B; 29% between Scenarios B and C; and 36%
between Scenarios C and D. For 16-PSK modulation and for
𝐸𝑠/𝑁0 = 20 dB, the differences among the various 𝑃se curves
are 84% between Scenarios A and B; 90% between Scenarios
B and C; and 98% between Scenarios C and D. Finally, for
32-PSK modulation, it is evident that the 𝑃se curves differ
at 𝐸𝑠/𝑁0 = 5 dB: 11% between Scenarios A and B; 14%
between Scenarios B and C; 19% between Scenarios C and
D whereas, for 𝐸𝑠/𝑁0 = 20 dB, the 𝑃se differences among
scenarios are: 46% between Scenarios A and B; 62% between
Scenarios B and C; and 79% between Scenario C and D. It is
evident from the above quantitative results that the sensitivity
of the ASEP on the fading severity parameter 𝑚 is high in all
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Function F2 = Appell(a,b1,b2,c1,c2,x,y);
f1 = gamma(c1).∗gamma(c2);
f2 = gamma(b1).∗gamma(b2);
f3 = gamma(c1-b1).∗gamma(c2-b2);
f = f1./(f2.∗f3);
Q = @(u,v)f.∗u.̂(b1-1).∗(v.̂(b2-1)).∗...

((1-u).̂(c1-b1-1)).∗...

((1-v).̂(c2-b2-1))./...

((1-u.∗x-v.∗y).̂a);
F2 = dblquad(Q,0,1,0,1);

Algorithm 1: MATLAB Program for evaluating 𝐹2(⋅).
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Figure 3: Average symbol error probability, 𝑃se, of 32-PSK of dual-
hopDF relaying with RS as a function of the average symbol to noise
power, 𝐸𝑠/𝑁0, for 𝐿 = 3 relays and various Nakagami-𝑚 fading
conditions.

considered communication scenarios and particularly in the
case of modulation schemes with low 𝑀 and/or high 𝐸𝑠/𝑁0

values.

5. Conclusion

This work was devoted to the derivation of a new analytical
expression for the MGF of the end-to-end SNR of dual-hop
DF relaying communication systemswith RS overNakagami-
𝑚 fading conditions. The presented expression involves well-
known generalized hypergeometric functions and is valid
for any arbitrary value of the fading parameters of both
hops. Using the MGF-based approach, the ASEP of 𝑀-
PSK modulation for the considered system was evaluated
and a perfect match with equivalent computer simulated

performance results was shown. More importantly, it was
evident that the ASEP is sensitive to even slight variations of
any of the hops’ fading parameters and particularly for low
order modulation schemes and high SNR values.

Appendices

A. MATLAB Program for the Evaluation
of 𝐹2( ⋅ )

The Appell hypergeometric function 𝐹2(⋅) is defined by the
double infinite series given by [14, equation (9.180.2)]. An
equivalent expression for 𝐹2(⋅) in a double integral form
with finite limits is given by [14, equation (9.184.2)]. The
latter expression can be easily evaluated using the MATLAB
function shown in Algorithm 1.

B. MATLAB Program for the Evaluation
of 𝐹

(3)

𝐴
( ⋅ )

The generalized Lauricella function 𝐹
(3)

𝐴
(⋅) is expressed

according to the triple infinite series given by [15, equation
(1.1)]. With the aid of the integral representation for 𝐹2(⋅) in
[14, equation (9.184.2)], the following triple integral form for
𝐹
(3)

𝐴
(⋅) with finite limits is deduced:

𝐹
(3)

𝐴
(𝑎; 𝑏1, 𝑏2, 𝑏3; 𝑐1, 𝑐2, 𝑐3; 𝑥, 𝑦, 𝑧)

= ∫

1

0

∫

1

0

∫

1

0

𝑓 (𝑢, V, 𝑤) 𝑑𝑢 𝑑V 𝑑𝑤,

(B.1)

where 𝑎, 𝑏1, 𝑏2, 𝑏3, 𝑐1, 𝑐2, 𝑐3, 𝑥, 𝑦, 𝑧 ∈ R and

𝑓 (𝑢, V, 𝑤) =

𝑢
𝑏1−1V𝑏2−1𝑤

𝑏3−1
(1 − 𝑢)

𝑐1𝑏1−1

Γ (𝑏1) Γ (𝑏2) Γ (𝑏3) (𝑐1)
−𝑏1

(𝑐2)
−𝑏2

×

(1 − V)
𝑐2−𝑏2−1

(1 − 𝑤)
𝑐3−𝑏3−1

(𝑐3)
−𝑏3

(1 − 𝑢𝑥 − V𝑦 − 𝑤𝑧)
𝑎 .

(B.2)

To this effect, the MATLAB function shown in Algorithm 2
evaluates 𝐹

(3)

𝐴
(⋅) using (B.1).
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Function FA = Lauricella (a,b1,b2,b3,c1,c2,c3,x,y,z);

f1 = gamma(c1).∗gamma(c2).∗gamma(c3);

f2 = gamma(b1).∗gamma(b2).∗gamma(b3);

f3 = gamma(c1-b1).∗gamma(c2-b2).∗gamma(c3-b3);
f = f1./(f2.∗f3);

Q = @(u,v,w)f.∗(u.̂(b1-1)).∗...

(v.̂(b2-1)).∗(w.̂(b3-1)).∗...

((1-u).̂(c1-b1-1)).∗...

((1-v).̂(c2-b2-1)).∗...

((1-w).̂(c3-b3-1))./...

((1-u.∗x-v.∗y-w.∗z).̂a);

FA = triplequad(Q,0,1,0,1,0,1);

Algorithm 2: MATLAB Program for evaluating 𝐹
(3)

𝐴
(⋅).
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