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In this paper, we optimize the throughput of millimeter wave communications using relay selection techniques. We study
opportunistic amplify and forward (OAF), opportunistic decode and forward (ODF), and partial and reactive relay selection (PRS
and RRS). Our analysis is valid for interference-limited millimeter wave communications. We suggest a new optimal power
allocation (OPA) strategy that offers significant performance enhancement with respect to uniform power allocation (UPA). 'e
proposed OPA offers up to 2 dB gain with respect to UPA. Our analysis is confirmed with extensive simulation results for
Nakagami fading channels.

1. Introduction

Millimeter wave (mmWave) communications offer high
data rates of several Gb/s [1–3]. Millimeter wave com-
munication operates on an important bandwidth from 3 to
300 GHz [1–6]. Cooperation is mandatory in mmWave
communications because the mmWave signals cannot
penetrate through walls [1–7]. Dual relaying can be used
where the signal goes from a source S to relay Rk and then
to the destination D. Multihop multibranch relaying al-
lows to extend the coverage of mmWave communications
[7–12]. Amplify and forward relays use an adaptive or
fixed gain. When the gain is adaptive, these are called
nonblind relays. Otherwise, relays with fixed gain are less
complex and are called blind relays. AF can be imple-
mented with relay selection techniques such as OAF, PRS,
and RRS.

In decode and forward (DF) relaying, each relay decodes
the signal and is allowed to transmit only if it has correctly
decoded the packet [13–15]. In opportunistic DF (ODF), the
chosen relay offers the best SINR of the second hop between
relays and destination D [15–18].

Optimal power allocation has not been yet proposed for
mmWave communication with an analysis at the packet
level. In previous studies, power allocation has been opti-
mized to minimize the symbol or bit error probabilities [19].
'e innovations of the paper are as follows:

(i) We derive the throughput and packet error prob-
ability (PEP) of millimeter wave communications
for OAF, ODF, PRS, and RRS. Previous papers
[1–10] studied only the symbol and bit error
probabilities. To the best of our knowledge, the PEP
has not been yet derived in closed form for
mmWave communication with OAF, ODF, PRS,
and RRS.

(ii) We propose a new optimal power allocation (OPA)
strategy that offers up to 2 dB gains with respect to
uniform power allocation (UPA). Our optimization
is performed at the packet level.

(iii) Our analysis is valid for quadrature amplitude
modulation (QAM), amplitude-shift keying (ASK),
and phase-shift keying (PSK) modulations with any
number of relays having arbitrary positions.
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'e paper contains seven sections. 'e signal to in-
terference plus noise ratio (SINR) is analyzed in Section 2.
Section 3 derives the cumulative distribution function
(CDF) of SINR of different relay selection techniques. In
Section 4, we derive the throughput of mmWave commu-
nications. Section 5 suggests an optimal power allocation
strategy, while Section 6 gives some simulation and theo-
retical results. 'e last section summarizes the obtained
results.

2. SINR Statistics

'e system model illustrated in Figure 1 contains a source S,
M relays Rk, and a destination D. It is assumed that the
received signal k − th relay Rk is affected by PRk

interferers as
shown in Figure 1. In interference-limited millimeter wave
communications, the SINR at k-th relay is equal to [9]

ΓSRk
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, (1)

where ES is the transmitted energy per symbol of the source
S, hSRk

is the channel coefficient between S and Rk, N0 is the
power spectral density (PSD) of additive white Gaussian
noise (AWGN), and IRk

is the interference term at Rk written
as follows [9]:
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, (2)

where PRk
is the number of interferers at Rk, Ep is the

transmitted energy per symbol of p-th interferer, and gp,Rk
is

the channel coefficient between p-th interferer and relay Rk.
We derive the statistics of an upper bound of SINR:
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For Nakagami fading channels, Uk � ES|hSRk
|2 follows a

gamma distribution G(α1,k, β1,k) defined as

fUk
(x) �

xα1,k e− x/β1,k( )

Γ α1,k βα1,k

1,k

, (4)

where α1,k > 0.5 is them-fading figure of S − Rk link (α1,k � 1
corresponds to Rayleigh channels),
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'e interference term is expressed as
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� 

PRk

p�1
Ip,k, (6)

where Ip,k � Ep|gp,Rk
|2.

It is assumed that IRk
is the sum of independent and

identically distributed (i.i.d) gamma random variables (r.v)
Ip,k that follows a G(ak, bk) where ak > 0.5 and

bk �
E Ip,k 

ak

. (7)

'e sum of PRk
i.i.d gamma r.v. Ip,k is a gamma r.v.

G(PRk
ak, bk). 'erefore, ΓupSRk

in (3) is the quotient of two
gamma r.v. that follows a general prime distribution with
PDF [20]:

fΓup
SRk
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xα1,k− 1

w
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, (8)

where

B α1,k, Ak  �
Γ α1,k Γ Ak( 

Γ α1,k + Ak 
, (9)

Ak � PRk
ak, (10)

Bk � Ak + α1,k, (11)

wk �
β1,k

bk

. (12)

'e CDF of SINR ΓSRk
is obtained by a simple primitive

of PDF. We use the following result [21]:

2F1(a, b; c; z) �
1

B(b, c − b)

1

0
x

b− 1
(1 − x)

c− b− 1
(1 − zx)

− a
dx,

(13)

where b> 0, c> 0, and 2F1(a, b; c; z) is the hypergeometric
function.

We use (13) to express the CDF of SINR as

FΓup

SRk
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(14)

Using (8), the asymptotic PDF is expressed as

fΓup
SRk

(x) ≈
xα1,k− 1

B α1,k, Ak w
α1,k

k

. (15)
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Figure 1: Network model.
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By a primitive, we deduce the asymptotic CDF expressed
as

FΓup
SRk

(x) ≈
xα1,k

α1,kB α1,k, Ak w
α1,k

k

. (16)

'ese asymptotic expressions will be used to derive the
optimal power allocation (OPA) strategy for cooperative
mmWave communications.

It is assumed that the interference term atD is the sum of
PD i.i.d gamma r.v. with distribution G(c, d). 'e CDF of
SINR of the second hop between Rk and D is written
similarly to (8)

fΓup
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where α2,k > 0.5 is the m-fading figure of Rk − D link,

E � PDc, (18)

Dk � E + α2,k, (19)
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d
, (20)
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3. Performance Analysis of Relay
Selection Techniques

In this section, we assume that a single relay is selected.
'ere is no interference between the signals transmitted by
different relays as a single relay is selected to amplify or
decode the source packet. 'erefore, our analysis is valid for
any number of relays.

3.1. Opportunistic AF Relaying. For AF relaying, the SINR
between the source S, relay Rk, and destination D is
expressed as [22]

ΓSRkD �
ΓSRk
ΓRkD

ΓSRk
+ ΓRkD + 1

. (22)

'e SINR can be tightly upper bounded by [22]

ΓSRkD<Γ
up
SRkD � min ΓSRk

, ΓRkD . (23)

'e CDF of SINR is expressed as

FΓSRkD
(x)>FΓup

SRkD
(x), (24)

where

FΓup
SRkD

(x) � 1 − P min ΓSRk
, ΓRkD >x . (25)

Assuming that ΓSRk
and ΓRkD are independent, we have

FΓup
SRkD

(x) � 1 − 1 − FΓSRk

(x)  1 − FΓRkD
(x) . (26)

In OAF, the chosen relay Rsel offers the best end-to-end
SINR

ΓSRselD
� max

k∈ 1,...,M{ }
ΓSRkD<Γ

up
SRselD

� max
k∈ 1,...,M{ }

ΓupSRkD. (27)

Using (27) and assuming that the SINRs for different
relays are independent, the CDF of SINR is expressed as
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(28)

3.2. Partial Relay Selection. In PRS, the selected relay offers
the best SINR of the first hop. Let pk be the probability
that relay Rk is selected and Γk the corresponding SINR is
expressed as

Γk �
ΓmaxΓRkD

Γmax + ΓRkD + 1
, (29)

where Γmax is the SINR at relay Rk which is the highest SINR
between S and relays,

Γmax
� max

j∈ 1,...,M{ }
ΓSRj

. (30)

'e SINR Γk can be tightly upper bounded by [22]

Γk < Γ
up
k � min Γmax

, ΓRkD . (31)

If Γmax and ΓRkD are independent, we have

FΓk(x)>FΓup

k
(x) � 1 − P ΓRkD> x P Γmax >x( . (32)

We have

P Γmax >x(  � 1 − P Γmax ≤ x(  � 1 − 
M

j�1
FΓSRj

(x). (33)

Using (32) and (33), we have

FΓk(x)>FΓup
k

(x) � 1 − 1 − 
M

j�1
FΓSRj

(x)⎤⎥⎥⎦ 1 − FΓRkD
(x) .⎡⎢⎢⎣

(34)

'e CDF of SINR is expressed as

FΓSRselD
(x) � 

M

k�1
pkFΓk(x). (35)

'e probability to select relay Rk is expressed as follows:

pk � P ΓSRk
> max

j≠k
ΓSRj

 . (36)

Let X � maxj≠k ΓSRj
, we can write
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pk � 
+∞

0
fX(x)P ΓSRk

>x dx � 
+∞

0
fX(x) 1 − FΓSRk

(x) dx,

(37)

where fX(x) is the PDF of X.

Assuming that the SINRs of the first hop are in-
dependent, the CDF of X is written as

FX(x) � 
M

q�1,q≠k
FΓSRq

(x). (38)

We have

fX(x) � 
M

q�1,q≠k
fΓSRq

(x) 
M

m�1,m≠k,m≠q
FΓSRm

(x). (39)

For PRS, the CDF of SINR at D is written as (35) with pk

given in (37).

3.3. Reactive Relay Selection. In RRS, the chosen relay offers
the best SINR between relays and destination. Let rk be the
probability that relay Rk is selected and Γk the corresponding
SINR is expressed as

Γk �
ΓSRk
Γmax

Γmax + ΓSRk
+ 1

, (40)

where Γmax is the highest SINR of the second hop

Γmax
� max

j∈ 1,...,M{ }
ΓRjD. (41)

'e SINR Γk can be tightly upper bounded by [22]

Γk < Γ
up
k � min Γmax

, ΓSRk
 . (42)

If Γmax and ΓSRk
are independent, we have
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k
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>x P Γmax > x( . (43)

We have
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M
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(x). (44)

Using (43) and (44), we have
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(45)

'e CDF of SINR is expressed as

FΓSRselD
(x) � 

M

k�1
rkFΓk(x). (46)

'e probability to select relay Rk is expressed as follows:

rk � P ΓRkD> max
j≠k
ΓRjD . (47)

Let Y � maxj≠k ΓRjD, we can write

rk � 
+∞

0
fY(y)P ΓRkD>y dy � 

+∞

0
fY(y) 1 − FΓRkD

(y) dy,

(48)

where fY(y) is the PDF of Y.

Assuming that the SINRs of the second hop are in-
dependent, the CDF of Y is written as

FY(y) � 
M

q�1,q≠k
FΓRqD

(y). (49)

We have

fY(y) � 
M

q�1,q≠k
fΓRqD

(y) 
M

m�1,m≠k,m≠q
FΓRmD

(y). (50)

For RRS, the CDF of SINR at D is written as (46) with rk

given in (48).

3.4. Performance Analysis of Opportunistic DF. In ODF, we
activate the relay with largest SNR of the second hop. 'is
relay should correctly decode S packet. 'e PEP is written as

PEP � 
v∈ 1,...,M{ }

P(v)PEP(v), (51)

where

P(v) � 
n∈v

1 − PEPn(  
q∉v

PEPq, (52)

where PEPq is the PEP at relay Rq.
PEP(v) is the PEP when v is the set of relays having

correctly decoded expressed as [23]

PEP(v)<
k∈v

PΓRkD
T0( , (53)

where T0 is a waterfall threshold

T0 � 
+∞

0
t(x)dx, (54)

where t(x) is the PEP for SINR x. It is detailed in the next
section for different modulations.

4. Throughput of Cooperative
mmWave Communications

'e PEP is expressed as

Pbloc � 
+∞

0
fΓ(x)t(x)dx, (55)

where fΓ(x) is the PDF of SINR Γ and t(x) is the PEP for
SINR x.

For K-QAM, we have

t(x) � 1 − 1 − 2 1 −
1
��
K

√ erfc

����������

x
3 log2(K)

2(K − 1)



⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

N

,

(56)

where N is packet length in symbols and K is the constel-
lation size.
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For K-ASK, we have

t(x) � 1 − 1 − 1 −
1
K

 erfc

����������

x
3 log2(K)

K2 − 1( )
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N

. (57)

For K-PSK modulation, we have

t(x) � 1 − 1 − erfc
���������������

x log2(K)sin2
π
K

 



  

N

. (58)

'e PEP can be upper bounded by [23]

PEP≤ 
T0

0
fΓ(x)dx � FΓ T0( , (59)

where FΓ(x) is the CDF of SINR and T0 is a waterfall
threshold [23]:

T0 � 
+∞

0
t(x)dx. (60)

In order to compute the PEP, we have to only derive the
CDF of SINR and use (51). 'e throughput is written as

Thr �
log2(K)

2
(1 − PEP), (61)

where coefficient 0.5 is due to the fact that half the frame
duration is used for transmission by the source and the other
half by the selected relay.

'e throughput of OAF, PRS, and RRS are given in (61)
where the PEP is deduced from CDF of SINR as (59). 'e
CDF of SINR of OAF, PRS, and RRS are respectively given in
(28), (35), and (46). 'e throughput of ODF is given in (61)
with PEP expressed as (51).

5. Optimal Power Allocation

For each candidate relay, we suggest an optimal power al-
location that minimizes the asymptotic packet error prob-
ability expressed as

FΓup
SRkD

T0( ≃FΓSRk

T0(  + FΓRkD
T0( 

≈
T
α1,k

0

α1,kB α1,k, Ak w
α1,k

k

+
T
α2,k

0

α2,kB α2,k, E u
α2,k

k

.

(62)

Using the definitions of uk (20) and wk (12), we have

FΓup
SRkD

(x) ≈
T
α1,k

0 b
α1,k

k αα1,k

1,k

α1,kB α1,k, Ak Y
α1,k

k

+
T
α2,k

0 dα2,kαα2,k

2,k

α2,kB α2,k, E Z
α2,k

k

.

(63)

Let aS � (ES/Es) be the fraction of power allocated to
the source. ES is the transmitted energy per symbol of S and
Es � ES + ERk

is the transmitted energy per symbol. ERk
is

the transmitted energy per symbol of Rk. Similarly, aRk
�

(ERk
/Es) is the fraction of power allocated to Rk. We deduce

Yk � aSEsE hSRk




2

 ,

Zk � aRk
EsE hRkD




2

 .

(64)

'erefore, the outage probability (63) to be minimized is
expressed as

FΓup
SRkD

(x) ≈
λk

a
α1,k

S

+
μk

a
α2,k

Rk

, (65)

under the constraint that aS + aRk
� 1 and where
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λk �
T
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0 b
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s E hRkD



  
α2,k
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(66)

'e Lagrangian of the problem is expressed as

J �
λk

a
α1,k

S

+
μk

a
α2,k

Rk

+ ρ aS + aRk
− 1 . (67)

'e derivative of J is expressed as

zJ

zaS

�
− λk

a
α1,k+1
S

+ ρ � 0, (68)

zJ

zaRk

�
− μk

a
α2,k+1
Rk

+ ρ � 0. (69)

When the fading figure of S − Rk link is the same as
that of Rk − D, i.e., α1,k � α2,k � αk, we obtain the OPA
strategy
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aS �
λ 1/αk+1( )

k

μ 1/αk+1( )
k + λ 1/αk+1( )

k

,

aRk
�

μ 1/αk+1( )
k

μ 1/αk+1( )
k + λ 1/αk+1( )

k

.

(70)

If α1,k ≠ α2,k, we deduce from (68) and (69) that we have
to solve with the Newton algorithm the following equation:

aS + a
α1,k+1( )/ α2,k+1( )( )

S

μkα2,k

λkα1,k

 

1/ α2,k+1( )( )

� 1. (71)

We deduce the fraction of power allocated to relay
aRk

� 1 − aS.

6. Theoretical and Simulation Results

We plot theoretical curves with MATLAB and made some
simulations for 64-QAM modulation. We have varied the
number of relays M � 2, 3, 4.'e path loss exponent is equal
to 3. 'e results are valid for Nakagami channels with α1,k �

2 and α2,k � 2. 'e fading figure of interference terms is
ak � 2.

Figures 2 and 3 show the PEP and throughput of OAF for
different number of relays M. 'ere are two interferers. 'e
distance between S and Rk is dSRk

� 0.3. 'e distance be-
tween Rk and D is dRkD � 1 − dSRk

� 0.7. We notice that the
throughput improves as M increases due to cooperative
diversity. A good accordance between theoretical and
simulation results is observed.

Figure 4 shows the throughput of ODF in the same
context as Figures 2 and 3. We notice a good accordance
between theoretical and simulation results. Also, the
throughput improves as the number of relays is increased.

Figure 5 compares the throughput of OAF, PRS, and
RRS for dRkD � 1 − dSRk

� 0.7. 'ere are three relays and
two interferers. We observe that OAF offers the highest
throughput. RRS offers better performance than PRS be-
cause the relays are close to S. Figure 6 shows that PRS
offers a higher throughput than RRS when relays are close
to D, dRkD � 1 − dSRk

� 0.2. OAF offers the highest
throughput since it selects the relay with the largest end-
end SINR.

Figures 7–10 show the throughput of OAF, PRS, RRS,
and ODF for optimal or uniform power allocation (OPA or
UPA) with two interferers and three relays. Figures 7–10
show that the proposed OPA allows up to 2 dB gain with
respect to UPA.
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Figure 8: 'roughput of PRS with UPA and OPA for Nakagami
fading channels.
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Figure 9: 'roughput of RRS with UPA and OPA for Nakagami
fading channels.
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Figure 10: UPA and OPA for ODF: Nakagami fading channels.
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7. Conclusion

In this paper, we have optimized the throughput of milli-
meter wave communications using OAF, ODF, PRS, and
RRS. Our analysis is valid for interference-limited millimeter
wave communications with any number of relays with ar-
bitrary positions. 'e proposed optimal power allocation
(OPA) strategy offers up to 2 dB gain with respect to uniform
power allocation (UPA). Our analysis was confirmed with
extensive simulation results in the presence of Rayleigh
fading channels. 'e main contribution of our paper is to
suggest an optimal power allocation to enhance the
throughput at the packet level, while previous studies
perform the optimization to minimize bit or symbol error
probabilities [19]. Besides, our results showed that OAF
offers higher throughput than PRS and RRS as it selects the
relay with highest SINR at destination, while PRS and RRS
use only the SINR of the first and second hops.
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