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(e estimation of signal-to-noise ratio (SNR) is a major issue in wireless orthogonal frequency-division multiplexing (OFDM)
system. In OFDM system, each frame starts with a preamble symbol that facilitates the SNR estimation. However, the performance
of preamble-based SNR estimation schemes worsens in the fast-changing environment where channel changes symbol to symbol.
Accordingly, in this paper, we propose a novel pilot-based SNR estimation scheme that optimally exploits the pilot subcarriers that
are inserted in each data symbol of the OFDM frame. (e proposed scheme computes the circular correlation between the
received signal and the comb-type pilot sequence to obtain the SNR. (e simulation results are compared with the conventional
preamble-based Zadoff-Chu sequence SNR estimator. (e results indicate that the proposed scheme generates near-ideal ac-
curacy; especially in low SNR regimes, in terms of the normalized mean square error (NMSE). Moreover, this scheme offers
a significant saving of computation over a conventional time domain SNR estimator.

1. Introduction

Noise variance and signal-to-noise ratio are the two impor-
tant measures of channel quality in a wireless OFDM system,
and their estimation helps in adaptive power control and
adaptive modulation, thus optimizing the performance of the
wireless communication system. Similarly, turbo coding, as
well as hands-off algorithms, depends on the variation of the
SNR in the time-varying channel. (erefore, the performance
and capacity of OFDM systems are directly influenced by the
precision and complexity of noise and SNR estimation.

In general, SNR estimation algorithms can be divided
into two classes. In the first one, data-aided (DA) class,
a known training sequence or pilot is transmitted to estimate
the SNR at the receiver [1], and in the second, nondata-aided
(NDA) class, the SNR is estimated blindly (without knowing
anything a priori about the transmitted information). Both
classes have their advantages and disadvantages with respect
to their estimation accuracy and computational complexity.

In DA estimators, a considerable amount of literature has
been published on the utilization of preamble-based esti-
mation for equalization, carrier offset synchronization, and
channel estimation [2–4]. Similarly, there is also abundant
literature on SNR estimation based on the preamble [5]. For
a packed OFDM system, preamble-based strategies are useful
owing to the slow nature of the time-varying channel. In
broadcasting OFDM systems, one uses the pilot-based strat-
egies where channel variations are tracked symbol-by-symbol.
However, for noise power estimation, the existingOFDMsystem
utilizes the improved preamble-based noise estimation schemes
rather than pilot-based schemes for frequency-selective fading
channels [6, 7].

In OFDM receivers, two distinct domains are used for SNR
estimation, namely post-FFT (frequency domain) and pre-FFT
(time domain). Literature reveals that several studies have been
conducted on the use of pilot-based channel estimation in the
frequency domain. (ese studies show the performance of
the channel estimation is directly affected by the placement
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of the pilot tones in each OFDM symbol. �erefore, previous
studies [8–13] utilized the optimized pilot placement by using
the arti�cial techniques, such as Particle SwarmOptimization,
Arti�cial Bee Colony, Fire�y Algorithm, GreyWolf Optimizer,
and Di�erential Evolution.

On the other hand, the estimation in the time domain is not
a�ected by the loss of orthogonality that can occur due to carrier
o�set [14]. Moreover, the number of channel taps required for
estimation in the time domain is signi�cantly fewer than the
number of FFT points where the channel frequency response
needs to be estimated [15].�ese features provide a robust basis
for focusing on the time domain estimation schemes. �us,
a considerable amount of literature has been published on time
domain estimation schemes that include the work of [16–19]. In
[16, 17], Manzoor and Kim presented a correlation-based time
domain SNR estimation scheme using preamble for AWGN
channel. Similarly, Gafer et al. [18] introduced an SNR esti-
mation scheme for �at fading channel in the time domain.
Another SNR estimation algorithm for slow �at fading channel
is proposed in [19], where maximum likelihood (ML) and data
statistics approaches are utilized. In the frequency selective
scenario, aforementioned schemes [17–19] are prone to per-
formance degradation caused by variation of noise on each
subcarrier. �us, an SNR estimation per subcarrier is needed
[20, 21]. �ese techniques can be extended to average SNR
estimation schemes. Another way to overcome the limitation,
due to frequency-selective channel, is to improve the structure
and design of the preamble symbol, as shown in [22–25]. In [22],
the whole band (total number of subcarriers) is divided into
subbands (set of subcarriers).�en, time and frequency domain
averaging is applied to estimate the variation of noise within the
transmission bandwidth. In [23], it has been shown that by
exploiting comb-type preamble, a low-complexity frequency
domain SNR estimation method is achieved for the frequency-
selective fading channels. In this method, the loaded preambles
are arrangedwith a certain number of null subcarriers, which are
used to estimate the noise power. However, the loaded pre-
ambles are utilized to obtain the total signal plus noise power.
Similarly, Ijaz et al. [24] presented the time domain SNR es-
timation for the frequency-selective fading channel. It uses the
correlation of the received preambles to estimate signal power
while noise power is estimated by subtracting the estimated
signal power from the total received symbol power. Yet another
time domain preamble-based approach is presented in [25],
where the comb-type pilot structure is designed by using the
Zado�-Chu (ZC) sequence, which outperforms the conven-
tional time domain SNR estimators in terms of computational
complexity due to perfect autocorrelation of the ZC sequence.

By reviewing these studies, it is found that themajority of the
schemes utilize the preamble-based structure for the frequency-
selective fading channel [22–25]. In the fast-changing envi-
ronment, the variation of noise is not same in allOFDMsymbols
of the frame. �us, the performance of these schemes degrades,
and the noise at each symbol needs to be tracked. Furthermore, if
man-made noise is considered, these schemes can not work.
Consequently, it is more desirable to develop a SNR estimation
scheme in which the noise variation is tracked symbol-by-
symbol instead of at the beginning of frame using a preamble
symbol. According to the best knowledge of the author, none of

the time domain SNR estimators utilize the pilot subcarriers
inserted in data symbol for SNR estimation.Moreover, the peak-
to-average power ratio (PAPR) of OFDM symbol remains same
as no extra preamble is utilized for estimation.

�e remainder of this paper is organized as follows: In
the next section, the conventional preamble-based estimator
utilizing Zado�-Chu sequence is presented. In Section 3, the
system model used for pilot-based SNR estimation is de-
scribed. In Section 4, a detailed description of the proposed
pilot-based time domain SNR estimator is presented. Section
5 explains the complexity analysis. Simulation parameters
are explained in Section 6. Results and analysis are given in
Section 7. Section 8 concludes the paper.

2. Conventional Preamble-Based Time Domain
Zadoff-Chu Sequence SNR Estimator

In a conventional preamble-based ZC sequence SNR estimator,
comb-type pilot subcarriers are loaded with a ZC sequence. It
utilizes Q identical parts in each preamble symbol, which
contains NP � NFFT/Q number of loaded pilot subcarriers, as
depicted in Figure 1. Starting from the 0th, eachQth, subcarrier
is modulated with a ZC sequence symbol Cλ(mQ) with
|Cλ(mQ)| � 1, for m � 0, . . . , NP − 1. �e remainder ofNZ �
NFFT −NP � (Q− 1)NFFT/Q subcarriers are not used (nulled).
According to [25], the nth received time sample can bewritten as

r(n) � r(mQ + q) �
rP(m) q � 0

rZ(mQ + q) q � 1, . . . , Q− 1,
{

(1)

where

rP(m) � s(mQ)e
2πεmQ/NFFT + w(mQ) (2)

represents the received time domain signal containing the
phase shifted signal and additional noise component and

rZ(mQ + q) � w(mQ + q) (3)

shows the time domain noise signal. �us, the time domain
received signal that contains the signal plus noise is given by

S[k]

Pilot
subcarriers

k

Q

|Cλ(mQ)| = 1 |Cλ(mQ)| = 1

Q

Figure 1: Conventional preamble symbol with comb-type ar-
rangement for SNR estimation.
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P̂S+N �
1
NP

∑
Np−1

m�0
rP(m)
∣∣∣∣

∣∣∣∣2. (4)

Similarly, the received samples containing only the noise
component can be obtained as

P̂N �
1

NP(Q− 1)
∑
Np−1

m�0
∑
Q−1

q�0
rZ(mQ + q)
∣∣∣∣

∣∣∣∣2. (5)

Finally, the estimated SN̂R can be expressed as

SN̂R �
1
Q

P̂S+N − P̂N

P̂N
( ). (6)

3. System Model for Pilot-Based Time Domain
SNR Estimator

In this section, the system model used for pilot-based time
domain SNR is discussed. Consider a baseband model for
a typical OFDM transceiver where binary data is �rst
mapped by utilizing the 16-quadrature amplitude modu-
lation (16-QAM). �e frequency domain data signal can be
expressed as [26]

D[k] � ∑
NFFT−1

n�0
d(n)e−j2πkn/NFFT , k � n � 0, 1, . . . , NFFT − 1,

(7)

where n is the time domain indexed and d(n) denotes the data
sequence.�en, the modulated data symbols are inserted with
pilot subcarriers in such a way that they are zeros except at
their corresponding subcarriers. �us, the frequency domain
discrete transmitted signal S[k] is given as

S[k] � D[k] + P[k]. (8)

Figure 2 depicts the conventional OFDM data symbol,
where pilot subcarriers are periodic and comb-type in
nature.

Each OFDM symbol is passed through an inverse
Fourier transform (IFFT) block and converted to the time
domain, given as

s(n) �
1�����
NFFT
√ ∑

NFFT−1

k�0
S[k]ej2πkn/NFFT . (9)

Similarly, the corresponding time domain pilot sequence
can be expressed as

p(n) � p m + qNp( ) �
K �

1
Q

m � 0

0 m � 1, . . . , Np − 1,




(10)

whereK is the amplitude andNp represents is periodicity of
the pilot sequence p(n). In order to avoid intersymbol in-
terference (ISI) in the channel, a cyclic pre�x (CP) is at-
tached at the start of each OFDM symbol. CP is the replica of
the last part of any given OFDM symbol in the time domain.

�en, OFDM symbols are transmitted through a frequency-
selective channel in the presence of additive white Gaussian
noise, which can be expressed as

h(n) � ∑
L−1

i�0
hie

j 2π/NFFT( )fDiTnδ λ− τi( ), (11)

where hi is the ith complex path gain, fDi
is the ith path

Doppler frequency shift, τi is the corresponding normalized
path delay, λ is delay index, T is sample period, and L is the
total number of channel taps. At the receiver, without loss of
generality, it is possible to use the low-pass system model.
�us, after eliminating the CP from the symbol, the received
sequence r(n) can be written as

r(n) � s(n) ⊗ h(n) + w(n), (12)

where ⊗ represents the circular convolution and w(n) is ad-
ditive white Gaussian noise with zero mean and variance σ2.

4. Proposed Pilot-Based Time Domain (PTD)
SNR Estimation

In the proposed PTD SNR estimation scheme, a circular
cross-correlation approach is utilized to obtain the noise
power P̂N in the time domain. However, signal power P̂S is
obtained from the di�erence of total received symbol and
noise power, as depicted in Figure 3. For noise power es-
timation, the received sequence r(n) is circular correlatedⓃ
with the pilot sequence p(n) as shown in Figure 3, which
yields

Crp(n) � h(n)Ⓝ Cdp(n) + Cpp(n)[ ] + Cwp(n). (13)

In general, Cxy(n) is Ⓝ between the x(n) and y(n) se-
quences. In (13),Cdp(n) � 0, as presented inAppendixA of [27].

�us, (13) reduces to

Crp(n) � h(n)Ⓝ Cpp(n)[ ] + Cwp(n). (14)

Due to the periodicity of pilot sequence p(n) in (10), the
correlation terms Crp(n) and Cpp(n) are periodic with the
period of NP. �us,

S[k]

Data
subcarriers

Data
subcarriers

Pilot
subcarriers

k

Q Q

DC
subcarriers

Figure 2: Conventional OFDM data symbol that contains pilot
subcarriers.
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Crp(n) � Crp m + qNp( ), (15)

Cpp(n) � Cpp m + qNp( ) �
K �

1
Q

m � 0

0 m � 1, . . . , Np − 1.




(16)

Figures 4 and 5 depict the periodicity as Np. �erefore,
the estimated CIR can be obtained from (14) as

ĥ mL( ) �
Crp mL( )

K
− w̃ mL( ), mL � 0, 1, . . . , L− 1 L<Np( ),

(17)

where w̃(mL) � Cwp(mL)/K. Reference [28] is exploited to
extract the most signi�cant channel taps form (17), which is

independent to the knowledge of channel statistics. By
utilizing (10) and (16), (14) can be rewritten as

ŵ(m) � r(m)− ĥ (m)Ⓝ p(m), (18)

where ŵ(m) is the estimated noise. Hence, the estimated
noise power P̂N becomes

P̂N �
1
Np

∑
Np−1

m�0
|ŵ(m)|2 . (19)

Similarly, the total received symbol power is from (12) as

P̂S+N �
1
Np

∑
Np−1

m�0
|r(m)|2. (20)

Finally, the proposed SN̂R estimator is de�ned as

p(t) pilot subcarriers

r(t)
received signal

PN noise
power

ĥ(t) CIR

h(t) multipath
channel

Circular
correlator

w(t)
AWGN

p(t) comb-type
pilot sequence

s(t) = p(t) + d(t)

d(t) data subcarriers

t

t

t

t

SNR =
PS+N – PN

PN

PS+N total
symbol power

Figure 3: Block diagram for proposed PTD SNR estimation scheme.
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Figure 4: Circular correlation between received and comb-type
pilot sequence.
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Figure 5: Circular autocorrelation of comb-type pilot sequence.
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S􏽢NR � 􏽐

Np−1

m�0

|r(m)|2 −|􏽢w(m)|2

|􏽢w(m)|2
. (21)

In (18), it is assumed that the average transmitted signal
is equal to one. (erefore,

S􏽢NR � 􏽐

Np−1

m�0

|􏽢h(m)|2

|􏽢w(m)|2
. (22)

5. Complexity Analysis

In this section, the computational complexity of the PTD scheme
is evaluated and compared with the conventional Zadoff-Chu
preamble-based time domain method [25], considering the
floating point operations per second (FLOPs) as a complexity
metric. In general, FLOPs means the number of complex addi-
tions and multiplications required to perform one SNR estimate.

It can be observed from (21) that the computational
complexity of the SNR estimator is generated from two
parts: noise power 􏽢PN and total received symbol power 􏽢PS+N.
For noise power estimation, the PTD stipulates the (13), (17),
and (19). (e circular correlation in (13) can be computed
more efficiently by using periodicity of comb-type sequence
p(n). (us, it requires Np(Q− 1) number of complex ad-
ditions and Np(Q) multiplications. Similarly, (17) involves L

number of multiplications. (en, (19) requires NP − 1 and
NP + 1 number of additions and multiplications, re-
spectively. However, the computational load due to total
received symbol power is same as (19). Consequently, the
overall number of FLOPs required for the PTD SNR
technique is 2NP(Q) + 3NP + L.

On the other hand, the Zadoff-Chu sequence SNR esti-
mator involves 4NFFT + 2 number of FLOPs, as given in Table 1
of [25]. Hence, the PTD SNR estimator provides the com-
putational saving of approximately 45% (forQ � 16) compared
to the conventional Zadoff-Chu sequence estimator. Further-
more, complexity depends on the number of pilot subcarriers
Np and channel taps L. A complexity comparison of two
different SNR estimators is given in Table 1.

6. Performance Evaluation over Typical Urban
(TU6) Channel Model

(e performance of the PTD scheme is analyzed over TU6
channel model in terms of normalized mean squared error
(NMSE), given as

NMSE �
1

10000
􏽘

10000

i�1

S􏽢NRi − SNRi􏼐 􏼑
2

SNR2
i

. (23)

(e TU6 channel profile has been adopted because it
reproduces the terrestrial propagation for mobile reception.
It consists of 6 paths having wide dispersion in delay and
relatively strong power, reproducing an urban environment
with NLOS, and consequently, following a Rayleigh model.
In the simulation, a perfect synchronization between trans-
mitter and receiver is assumed because the estimates in the
time domain are robust to carrier frequency offset [25]. (e
OFDM simulation parameters for DVB-Mobile transmission
are shown in Table 2.

7. Results and Analysis

(is section presents the results and analysis for the pro-
posed PTD estimator. It is observed from the description of
the PTD that it solely depends upon the estimated CIR.(us,
an important feature of the PTD is shown in Figure 6 where
CIR is obtained from (16) for TU6 channel model at 10 dB
SNR. In the simulation, after utilization of the time reso-
lution 1/FS, the number of significant channel taps that can
be resolved are L � 6. (e amplitude of Crp(n) at the n � 45
can be seen in Figure 6. It is further seen that the amplitudes
of nonsignificant channel taps are much lower than the
significant ones; this is due to the zero correlation of data to
pilot sequence, as discussed for (13). It shows that the es-
timation of channel impulse response is independent of the
transmitted data constellation. Figure 7 depicts the MSE
comparison of the estimated CIR with the existing time
domain channel estimator [30]. In the comparison of MSE,
the legend Chu.Seq. represents the conventional time do-
main channel estimator, where pilot subcarriers are gen-
erated by utilizing the Chu. Sequence (magnitude� 1).
However, CRB represents the Cramer-Rao Bound as shown
in Equation (24) of [30]. It can be clearly seen that in the fast
fading scenario (v � 50m/h), the performance of the PTD
channel estimator is similar to the existing Chu. Seq. esti-
mator. (is is due to the utilization of similar magnitudes of
pilot subcarriers. (e investigation suggests that the error
component exists in the PTD channel estimation is only
AWGN. Consequently, it reduces the MSE and presents
near-ideal estimation CRB, as shown in Figure 7. It is also
investigated that the PTD scheme is independent of
time/frequency interpolation; hence, it offers accuracy even
in the low density of pilot subcarriers.

Table 1: Complexity comparison of PTD and conventional time
domain SNR estimators (NFFT � 2048, L � 6, NP � 128, and
Q � 16).

Estimator FLOPs
PTD 2Np(Q) + 3NP + L

Conventional ZC [25] 4NFFT + 2

Table 2: OFDM simulation parameters [29].

Parameter Value
FFT points (NFFT) 2048 (2K-Mode)
Carrier spacing 4.46 kHz
Cyclic prefix 1/16
Pilots spacing (Q) 16
Number of pilots (NP) 128
Pilot constellation P[k] Unipolar BPSK
Sampling frequency (FS) 9.14MHz
Bandwidth 8MHz
Pilot pattern (Dx × Dy) (16× 4)
Velocity 50 km/h
Doppler shift 28.98Hz
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�e performance of the PTD noise power estimator is
compared with preamble-based ZC noise power estimator in
Figure 8. Here, ZC SNR estimator is chosen because it out-
performs the conventional estimators without high computa-
tional complexity [25].�e comparison shows that the estimation
of noise power in the PTD scheme is far better than the ZC-based
scheme.�eestimation in thePTD scheme is also seen to be close
to true noise power at various values of SNR. �is is due to the
utilization of pilot subcarriers available in each data symbol that
facilitates to track the noise variation symbol-by-symbol.

Figure 9 compares the NMSE performance of the PTD
SNR estimator with the conventional ZC preamble-based
time domain estimator. Moreover, the NMSE of the PTD
estimator is compared with the minimum unbiased variance

estimator Normalized Cramer-Rao Bound (NCRB) as
shown in Equation (24) of [31]. It is seen that both estimators
perform well in a low SNR regime. However, at a high SNR,
the NMSE is larger than the NCRB.�is can be explained by
the following observation. In the PTD SNR estimator, the
SNR is obtained primarily from noise power estimation, as
shown in (21). It can be observed that the signal power is
obtained from the di�erence of total received symbol power
and the noise power.�erefore, at a high SNR, when the total
received symbol power and noise power are nearly of the
same order, the SNR estimation error increases.

M
SE

10–4

10–3

10–2

SNR (dB)
0 5 10 15 20 25

PTD CE est.
CRB

Chu. seq. CE est.

Figure 7: Comparison of the estimated channel impulse response
in terms of MSE.
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Figure 8: Comparison of the noise power estimator with true noise
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Figure 9: Comparison of the PTD SNR estimator in terms of NMSE.
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It can be seen in Figure 9 that at 13 dB of SNR, the
NMSE of the PTD estimator improves approximately by
50.24%(0.006387− 0.003178/0.006387) × 100 with respect to
ZC estimator and 3.01E−3 away from NCRB. In Figure 10, the
estimated SNR is plotted against the actual SNR. It can be seen
that the estimated SNRhas less bias and is close to the actual SNR.
Hence, it is veri�ed that the PTDSNRestimator achieves a similar
performance to the actual SNR at a much lower computational
complexity, whilst its implementation ismore feasible. Moreover,
it utilizes the time domain estimation; therefore, it is robust
enough for carrier frequency o�set (CFO) [25].

8. Conclusion

In this study, a novel pilot-based SNR estimation algorithm is
presented for broadcasting OFDM systems. At the receiver,
pilot subcarriers of data symbol are used for SNR estimation.
�e simulation shows that the NMSE of the proposed al-
gorithm is better than the other conventional scheme. �e
advantages of the proposed estimation scheme are that (a) it is
less sensitive to tracking errors as compared to preamble-
based estimation methods for highly time-varying frequency-
selective channels, (b) the number of �oating point operations
per second involved is also fewer than the conventional
preamble-based scheme, and (c) it is capable of providing
high accuracy even at a low density of pilots subcarriers
because it is independent of time/frequency interpolation.
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