
Research Article
Detecting Cross-Site Scripting in Web Applications Using
Fuzzy Inference System

Bakare K. Ayeni , Junaidu B. Sahalu, and Kolawole R. Adeyanju

Department of Computer Science, Faculty of Sciences, Ahmadu Bello University, Zaria, Nigeria

Correspondence should be addressed to Bakare K. Ayeni; bakarre@gmail.com

Received 18 December 2017; Revised 28 May 2018; Accepted 14 June 2018; Published 1 August 2018

Academic Editor: Youyun Xu

Copyright © 2018 Bakare K. Ayeni et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With improvement in computing and technological advancements, web-based applications are now ubiquitous on the Internet.
However, these web applications are becoming prone to vulnerabilities which have led to theft of confidential information, data
loss, and denial of data access in the course of information transmission. Cross-site scripting (XSS) is a form of web security attack
which involves the injection of malicious codes into web applications from untrusted sources. Interestingly, recent research
studies on the web application security centre focus on attack prevention and mechanisms for secure coding; recent methods for
those attacks do not only generate high false positives but also have little considerations for the users who oftentimes are the
victims of malicious attacks. Motivated by this problem, this paper describes an “intelligent” tool for detecting cross-site scripting
flaws in web applications.+is paper describes the method implemented based on fuzzy logic to detect classic XSS weaknesses and
to provide some results on experimentations. Our detection framework recorded 15% improvement in accuracy and 0.01%
reduction in the false-positive rate which is considerably lower than that found in the existing work by Koli et al. Our approach
also serves as a decision-making tool for the users.

1. Introduction

Over the past decade, the Internet has witnessed tremendous
growth in the volume, nature, and channel of information
exchange across several media irrespective of distance or
location. In particular, the Internet has become the major
channel through which global businesses conduct marketing
businesses and have become extremely successful over
traditional marketing strategies.

Almost every business today is tending towards growth
beyond borders; hence, the worldwide web plays a critical role
in almost all human endeavours and overall development.
One of the best ways to have this critical online presence is
through web applications. Web applications are computer
programs that utilise web technology to perform tasks on the
Internet. It is therefore not surprising that the advent of web
applications and other smart devices like smartphones, tab-
lets, and other mobile phones has changed the medium of
communication and information exchange across platforms.

With the substantial proliferation and ubiquitous nature of
these applications on the Internet, application developers are
forced to rethink their development strategies andmodel their
security concerns in a way not to fall prey of target to hackers
and web attackers who are daily on the Internet seeking for
improper coding practices they can capitalise on to steal
sensitive information and perpetrate their evil plots. Also, as
the number of web applications grows, so also do vulnera-
bilities and have become a major talking point in various web
applications development and security fora.

Typically, web applications allow the capture, processing,
storage, and transmission of sensitive customer data (such as
personal details, credit card numbers, and social security
information) for immediate and recurrent use [1].+erefore,
web applications have become major targets of hackers who
take advantage of web developers’ poor coding practices,
weaknesses in the application code, inappropriate user input
authorization, or nonadherence to security standards by the
software developers.+ese vulnerabilities could be either on the

Hindawi
Journal of Computer Networks and Communications
Volume 2018, Article ID 8159548, 10 pages
https://doi.org/10.1155/2018/8159548

mailto:bakarre@gmail.com
http://orcid.org/0000-0002-3556-3976
https://doi.org/10.1155/2018/8159548

server side or more dangerously on the client side.
e vul-
nerabilities include SQL injection, cross-site request forgery,
information leakage, session hijacking, and cross-site scripting.

is paper focuses on cross-site scripting attack detection.

Malicious injection of the code within vulnerable web
applications to trick users and redirect them to untrusted
websites is called cross-site scripting (XSS). XSS may occur
even when the servers and database engine contain no
vulnerability themselves, and it is arguably one of the most
predominant web application exposures today (Figure 1).

A web application could be exposed to XSS vulnerability
if input data are not properly sanitized.
is could occur
with the use of special characters to cause web browser
interpreters to switch from data context to code context. It is
exhibited through �aws in the application code, in-
appropriate user input authorization, or nonadherence to
security standards by software developers.

e input sources manipulated by attackers include
HTML forms, cookies, hidden �elds, and get and post pa-
rameters.
e usual process involves three parties—the at-
tacker, a client, and the website. XSS breaches could lead to
fraud and identity theft, regulatory �nes, loss of goodwill,
litigations, and loss of customers.

According to the OpenWebApplication Security Project
(OWASP) 2015 Report, the two most common web appli-
cation vulnerabilities threatening the privacy and security of
clients and web applications nowadays are Structured Query
Language (SQL) injection and cross-site scripting (XSS).

Many research studies have been directed at addressing
problems related to XSS vulnerabilities. Most of the ap-
proaches focused on preventing XSS attacks in web appli-
cations during software security testing [2–4]. Few research
activities have addressed their detection [5–7].

Several circumvention mechanisms have been imple-
mented, but none of them are complete or accurate enough
to guarantee an absolute level of security on web application
due to lack of common and complete methodology for
evaluation in terms of performance [8]. Fonseca et al. [9]
proposed a method to evaluate and benchmark automatic
web vulnerability scanners; using software fault injection
techniques, they found out the scanners’ coverage is low and
the percentage of false positives is very high. Without a clear
idea of the coverage and false positive rate of web scanning
tools, it is di�cult to judge the relevance of the results the
scanners provide and comparing them may be di�cult [10].

Not only is inadequate attention given to detection
frameworks, recent research e�orts come with high false
rates, and these existing approaches do not have consid-
eration for measuring the level of threats being exposed to
and the degree of severity of XSS present in web applications.

Methods of preventing and detecting vulnerabilities in
web applications can be broadly divided into two: (i) static
analysis which is a review of the source code prior to
program execution.
is approach guards against the oc-
currence of certain types of vulnerabilities and does not give
room for unspeci�ed vulnerability at the time of coding. (ii)
Dynamic analysis which is the speci�cation of what the
program does during execution mostly through the interface
with the interpreter by analyzing the syntactic structure.

An emerging soft computing technique applicable to
web security is fuzzy logic.
e studies [11–14] successfully
applied the fuzzy rule-based approach to web vulnerability
and intrusion detection with encouraging results.
e ad-
vantages that fuzzy logic brings to web security are (i) the
development of linguistic variables as classi�ers to predict
whether or not a script is malicious; (ii) the provision of
classi�ers with predictive capability to detect new malicious
scripts; and (iii) by identifying and extracting DOM-based
features, interpretability is guaranteed which helps with
realistic feedback to users.

In addition, fuzzy logic is capable of making real-time
decisions even with incomplete information [15]. Since fuzzy
logic systems can manipulate linguistic rules in a natural way,
they are particularly suitable in combining the various DOM
parameters and rules to provide optimal results.

In this paper, we propose a fuzzy-based approach for the
detection of DOM-based XSS vulnerabilities in web appli-
cations.
e contributions of this work are as follows:

(i) Selection and implementation of DOM-based fea-
tures for XSS detection using the OWASP web
application security guideline

(ii) Application of the fuzzy logic inference system to
web application vulnerability detection

(iii) Implementation of the user interface for users to
have a verdict on their level of exposure to cross-site
scripting attack while visiting a website.

is paper is organized as follows: Section 2 gives a back-
ground of XSS and fuzzy logic. Section 3 reviews related re-
search conducted on detection ofXSS vulnerabilities. In Section 4,
we describe our proposed approach and experimental results. In
Section 5, we discussed the proposed implementation and results,
while Section 6 concludes the paper.

25%

23%

15%

13%

7%

6%

11%

XSS
Information leakage
Authentication and
authorization

Session
management
SQL injection

CSRF
Others

Figure 1: Cenzic Application Vulnerability Trends Report (2013).
Source: http://info.cenzic.com/rs/cenzic/images/Cenzic-Application-
Vulnerability-Trends-Report-2013.pdf.

2 Journal of Computer Networks and Communications

http://info.cenzic.com/rs/cenzic/images/Cenzic-Application-Vulnerability-Trends-Report-2013.pdf
http://info.cenzic.com/rs/cenzic/images/Cenzic-Application-Vulnerability-Trends-Report-2013.pdf

2. Background

XSS is a type of computer security vulnerability typically
found in web applications which enables malicious code to
be injected into the client-side script of webpages viewed by
other users. It is a threat which occurs when a web application
gathers malicious data from users. Cross-site scripting vul-
nerabilities are security problems that occur in web appli-
cations. According to Isatou et al. [5], XSS attacks are of three
types, namely, re�ected, stored, and document object model-
(DOM-) based.

2.1. Stored (Persistent) XSS Attacks. Stored XSS attacks save
malicious scripts in databases, message forums, and com-
ment �elds of the attacked server.
e malicious script is
executed by visiting users, thereby passing their privileges to
the attacker. Stored attacks are those where the injected code
is permanently stored on the target servers.
e victim then
retrieves the malicious script from the server when it re-
quests the stored information.

e persistent or stored XSS attack occurs when the
malicious code submitted by the attacker is saved by the server
in the database and then permanently runs in the normal
page. Many websites host a support forum where registered
users can make contributions by posting messages, which are
stored in the database. An attacker could post a message
containing the malicious JavaScript code instead. If the server
fails to sanitize the input provided, it results in execution of
the injected script.
e code will be executed whenever a user
tries to read the post.

2.2. Re
ected (Nonpersistent) XSS Attacks. Re�ected attacks
are executed by the victim’s browser and occur when the
victim provides input to the website. Re�ected attacks are
those where the injected code is re�ected o� the web server
such as in an error message, search result, or any other re-
sponses that include some or all of the inputs sent to the server
as part of the request. When a user is tricked into clicking on
a malicious link or submitting a specially crafted form, the
injected code travels to the vulnerable web server, which
re�ects the attack back to the user’s browser.
e browser then
executes the code because it came from a “trusted” server.

2.3. DOM-Based Attacks. DOM-based XSS attacks are found
on the client side. Attackers are able to collect sensitive in-
formation from the user’s computer. For instance, an attacker
might place a malicious �ash �le on a site that clients visit.
When the client’s browser downloads the video, the �le
triggers a script in the browser and the attacker can take
control of elements of the pages inside the client’s browser.
DOM-based XSS represents a new threat dimension to web
applications, with di�erent prerequisites as compared to the
standard XSS.
erefore, there exist some web applications on
the Internet that are vulnerable to DOM-based XSS without
showing features of the standard XSS [5].

DOM-based XSS attacks accounted for 60% of cross-site
scripting attacks in the last couple of years.
e reason could
be justi�ably agreed to because attackers now target the

underlying sensitive documents and information databases
in case of SQL injection attacks.

According to the Cenzic Application Vulnerability
Trends Report (2013) [16], XSS represents 25% of the total
attack statistics and is considered as the topmost web ap-
plication attack.

2.4. Concept of Fuzzy Logic. Zadeh [17] introduced “fuzzy
sets” and laid out the mathematics of fuzzy logic. Fuzzy logic
recognizes not only clear-cut alternatives but also the in�nite
gradations in between.
ese numeric values are then used
to derive exact solutions to problems.

According to Cordon [18], the fuzzy inference system
(FIS) consists of three components: (i) a rule base which
contains a selection of fuzzy rules similar to collection or
rules in an expert system [19], (ii) a database which de�nes
the membership functions used in the rules, and (iii) a
reasoning mechanism to carry out the inference procedure
on the rules [20].

Figure 2 gives a standard representation of the fuzzy
logic procedure.

Fuzzy logic is concerned with imprecision and ap-
proximate reasoning. According to Mankad [21], fuzzy logic
may be viewed as an extension to the classical logic system
which provides the conceptual framework for handling
problems of knowledge representation in an uncertain and
imprecise environment. Also, Alberto et al. [22] a�rmed
that fuzzy logic is suitable for ambiguous scenarios where
there is no certainty about making decisions.

Among the several types of fuzzy inference systems, the
Mamdani fuzzy inference system is the most popular,
powerful, and widely used methodology in developing fuzzy
models and analyzing data [15].

3. Survey on Web Application Vulnerabilities

ere are basically three kinds of security vulnerabilities.
e
categorisation is primarily a function of the possible existence
of �aws at each application level. A study by Vandana et al.
[23] categorised web application vulnerabilities as follows:

(i) Input validation vulnerability (client-side request
level)

(ii) Session management vulnerability (session level)
(iii) Application logic vulnerability (whole application).

Knowledge base

Database

Real
input x

Real
output x

Fuzzification
interface

Defuzzification
interface

Inference
system

Rule base

Figure 2: Mamdani fuzzy inference system [18].

Journal of Computer Networks and Communications 3

3.1. Input Validation Vulnerabilities. An application is ex-
posed to input validation vulnerabilities if an attacker finds
that the application makes untested assumptions about the
type, duration, format, or scope of input data. When inputs
are not properly sanitised, attackers are ready to introduce
maliciously crafted inputs, which might alter program
performances or allow unauthorized access to resources.
Improper input validation may invite a range of attacks, like
buffer overflow attacks, SQL injection attacks, cross-site
scripting, and other code injection attacks [23].

SQL injection attack is the insertion of the SQL query
through the input data from a client to the application. A
successful SQL injection exploit can read and modify sen-
sitive data from the database, implement administrative
privileges on the database, and in some cases issue com-
mands to the operating system [24]. SQL injection attacks
are a type of injection attack, in which SQL commands are
injected into the data-plane input in order to affect the
execution of predefined SQL commands [11].

Cross-site scripting (XSS) vulnerabilities occur when
data get into web application through an untrusted source,
mainly a web request, and the data are included in dynamic
content that is sent to a web user as the HTTP response
without being validated for the malicious script. Cross-site
scripting attacks and their various forms have been exten-
sively discussed in Section 2.

3.2. Session Management Vulnerabilities. Session manage-
ment enables a web application to keep track of user inputs
and maintain application states. In web application devel-
opment, session management is accomplished through the
cooperation between the client and the server. Since session
ID is the only proof of the client’s identity, its confidentiality,
integrity, and authenticity need to be ensured to avoid
session hijacking [15]. Vulnerabilities that are specific to
session management are great threats to any web application
and are also among themost challenging ones to find and fix.
Sessions are targets for attackers because they can be used to
gain access to a system without having to authenticate.

Broken authentication, session management, cross-site
request forgery (CSRF), and insufficient transport layer
protection are some of the session management vulnera-
bilities within the OWASP top ten security risks.

3.3. Application Logic Vulnerabilities. Application logic at-
tack aims to bypass or evade the expected order with which
application features are set up. Generally, such attacks are
aimed at a website, but they can also be targeted at a site’s
visitors and their private customer data.

Unlike common application attacks, such as SQL in-
jection, each application logic attack is usually unique, since
it has to exploit a function or a feature that is specific to the
application. +is makes it more difficult for automated
vulnerability testing tools to detect such attacks because they
are caused by flaws in the logic. When application logic
attacks are successful, it is often because developers do not
build sufficient process validation and control into the

application. +is lack of flow control allows attackers to
perform certain steps incorrectly or out of order.

+e decentralized structure of web applications poses
significant challenges to the implementation of business
logic. First, since web application modules can be accessed
directly through their URLs, the interface hiding mechanism
has been commonly used as a measure for access control in
web applications. However, this mechanism alone, which
follows the principle of “security by obscurity,” is not suf-
ficient to enforce the control flow of a web application.
Application logic vulnerabilities are highly dependent on the
intended functionality of a web application.

4. Related Works

Current research works try to add intelligence to increase the
quality of detection. It can be knowledge on current flaws in
browsers/applications (using, e.g., vulnerability bases). It can
also be machine learning on the application to find how
outputs depend on inputs. A few of these approaches are
detailed below.

A novel system for detecting XSS vulnerability was
designed based on model inference and evolutionary fuzzing
[25]. +is approach simply used a heuristic-driven
substring-matching algorithm to develop a crawler. +ey
proposed an approach for inferring models of web appli-
cations to form an attack grammar. +e attack grammar
used produces slices which narrow the search space. Genetic
algorithms are then used to schedule the malicious inputs
which are sent to the application. Lofty as the idea was, it
assumed the ability to reset the application to its initial node,
which might not always be practical. Also, the framework
hypothesized that an XSS is the result of only one fuzzed
value.

A solution that uses a genetic algorithm-based approach
in the detection and removal of XSS in web applications
using three components was designed by Isatou et al. [5].
+e first component involves converting the source codes of
the application to control flow graphs (CFGs). +e second
component focuses on detecting the XSS. +e third com-
ponent concentrates on its removal. +e approach failed to
detect XSS whose paths cannot be identified in the OWASP
Enterprise Security Application Programming Interfaces
(ESAPI) standards. +erefore, XSS vulnerabilities that are
not defined in the ESAPI are completely missed. +e work
proposed by Huang et al. [26] used a number of software
testing techniques such as black-box testing, fault injection,
and behavior monitoring of web application in order to
deduce the presence of vulnerabilities. +is approach
combines user experience modeling as black-box testing and
user behavior simulation. +e approach was unable to
provide instant web application protection, and they cannot
guarantee the detection of all flaws as well.

In a solution proposed by Saleh et al.[27], Boyer–Moore
string matching algorithm was used for the technique de-
veloped for detection method. It compares the characters of
the inputted pattern with the characters of the webpage from
the right to the left by using two heuristics called the bad-
character shift and the good-suffix shift. +e core idea of the

4 Journal of Computer Networks and Communications

module is to fulfill the desired criteria which are able to scan
from the right to the left and scan character by character for
the inputted pattern. However, when the length of URL is
long, the scanner takes a long time to complete its scanning.

+e work proposed by Abbass and Nasser [28] suggested
an algorithm named “NUIVT” (novel user input validation
test). +e algorithm includes three steps: the first step an-
alyzes the user input fields and detection in the input forms.
+e second step converts input types to regular phrases. +e
third step tests for invalid inputs in order to detect the
vulnerability, but results of each scanning are saved in order
to raise the intelligence of the system which leads to repe-
tition of the comparisons and is tedious and time-
consuming.

An SQL and XSS architecture was proposed by Koli et al.
[29]. +ey developed an SQL injection and XSS detection
method that looks for attack signatures by using filters for
the HTTP requests sent by users. A detection component is
used for determining whether the script tag is present or not.
+e result is stored in a database as a response to users. +ey
carried out a comparison of their work with well-known
vulnerability scanners to determine its efficiency. Major
drawback in their research was that if the attack pattern is
not stored in its database, then the tool cannot detect the
attack successfully.

It can be deduced from the literature that approaches to
detect XSS using genetic algorithms have not been too ef-
fective. +e approach using the Boyer–Moore algorithm was
not scalable. Another drawback of existing approaches is
considering all types of vulnerabilities equally and their
severity level equally. +erefore, this research intends to add
another dimension to the detection process with the hope of
improving efficiency and reliability.

We are motivated by the application of fuzzy logic for
detection of web security issues by Mankad [17] and
phishing website detection by Alberto et al. [22]. +ey ap-
plied the fuzzy inference system to assess risks due to code
injection vulnerabilities based on a set of linguistic terms for
vulnerability and severity levels.

+e work of Mankad [21] develops a rule-based security
assurance system. It relies on extracting the exploitation
paths of an application, and then, it represents the path as
a finite-state automata (FSA) that can be used as rule-based
signatures to detect exploitations. +e work of Abbass and
Nasser [28] proposes a fuzzy logic-based approach for
detecting buffer overflow vulnerability in C programs.

+e work done by Hossain and Hisham [11] was a fuzzy
logic-based system to assess risks due to different types of
code injection vulnerabilities. +ey proposed code-level
metrics that were used to establish the linguistic terms to
relate the subjective magnitude and the corresponding
impact due to the actual exploitation of the vulnerability.+e
fuzzy system developed obtained information about web-
pages using web services. +e information obtained is used
to determine the fuzzy input, for which they attached
a rating which has a value between one and three.

Also, to assess vulnerability risks in web applications,
Hossain andHisham [30] developed a fuzzy logic-based system
(FLS) framework to assess code injection vulnerabilities

present in an application. +ey also developed a set of rule
bases to assess the risk level. +e FLS could be a useful tool to
aid application developers and industry practitioners to assess
the risk and plan ahead by employing necessary mitigation
approaches. +e authors evaluated their proposed approach
using three real-world web applications implemented in PHP.
+e initial results indicate that the proposed FLS approach can
effectively discover vulnerabilities in high-risk applications.

In a paper presented by Alakeel [31], a novel software
testing metric technique for assertion-based software testing
based on fuzzy logic technology was discussed. +e main
goal of the proposed approach was to enhance the perfor-
mance of assertion-based software testing in the presence of
a large number of assertions. +e results of this experiment
are very encouraging, where applying the proposed ap-
proach has enhanced the performance of assertion-based
testing as shown by the increase in the number of assertions
violated in the programs considered in the experiment.

Kanchan and Harmanpreet [7] proposed a learning
algorithm that can select a set of attributes from a given data
set based on weight by the SVM technique and then classify
into fuzzy rules based on the processing of the Apriori al-
gorithm and application of the fuzzy inference engine to
detect the anomalies in the software development process. It
selects the relevant attributes by outlier analysis and com-
putes the association rules based on the Apriori algorithm.
+ereafter, it generates the fuzzy association rules based on
min-max derivation. +e inputs are analysed with the
Mamdani fuzzy inference system.

+is paper is motivated by the observation that XSS
vulnerability detection can be modeled in the form of the
fuzzy inference system. Also, other approaches in the lit-
erature do not have the capability to estimate the overall risk
due to diverse severity levels for a given vulnerability as also
corroborated by Mankad et al. [21, 32]. +us, a suitable
framework to detect XSS by introducing the decision-
making inference system is hereby introduced.

5. Proposed Approach

XSS is one of the most exploited weaknesses in web ap-
plication and one of the most studied ones. Full protection is
not possible, as any full protection against any programming
errors or bugs might be difficult to achieve. Good pro-
gramming practices, intelligence in libraries, and browsers
have been developed to protect against XSS. +ere are also
a lot of proposed tools to detect XSS risks.

Many approaches have been proposed as detailed in the
previous two sections (Introduction and Related Works). In
this section, we present our approach for detecting XSS in
web applications. We also present the fuzzy inference
procedure applied in the detection phase.

5.1. Detecting XSS Attacks. We prepare a background to
identify any XSS or redirection vulnerabilities that could be
initiated by using a maliciously crafted URL to introduce
mischievous data into the DOM of inputted webpages (both
statically and dynamically generated). If the data (or

Journal of Computer Networks and Communications 5

amanipulated form of them) are passed to one of the following
application programming interfaces (APIs), the application
may be vulnerable to XSS. We identify all uses of the APIs
which may be used to access DOM data that can be controlled
through crafted uniform resource locators (URLs). As enlisted
by Krishnaveni and Sathiyakumari [33], the seven sources
through which XSS vulnerabilities could be introduced to
web applications are the following: X1� document.location,
X2� document.referrer, X3� document.location.href, X4�

window.location, X5� document.cookie, X6� document.
URLUnencoded, and X7� location.header. +eir view was
supported by the OWASP 2012 Report, in which the lists of
locations where XSS are more prone are summarized.

We briefly discuss the attributes and the usage of these
DOM-based data and elements that make them a subtle
target of XSS attacks based on Web Applications Hacker’s
Handbook [34] and the tests conducted on them.

5.1.1. HTTP Referrer Head. +e HTTP referrer is a header
field that identifies the address of the webpage that is linked
to the resource being requested such that the new webpage
can see where the request originated. More generally, a re-
ferrer is the URL of a previous item which led to the present
request. As a result of the sensitive information the referrer
header carries, it can be easily used to violate privacy and
introduce vulnerabilities. We created module checks for
referrer header injection vulnerabilities by creating tags for
all referrer headers to check whether there are altered re-
quests. In this alteration, the module checks if the referrer is
subject to XSS payload injection.

5.1.2.Window Location Test. +is property returns a location
object with information about the current location of the
document. Although window location is a read-only object, it
can be assigned a DOM string. +is means that you can work
with location as if it were a string in most cases. +is in-
troduces some elements of possible manipulation which need
to be checked as it can be an entry point for possible malicious
code injection. We trace the relevant data through the code to
identify what actions are performed with it. If the data (or
a manipulated form of them) are passed to one of the window
location APIs, the application may be vulnerable to XSS.

5.1.3. 8e Document Referrer. +is is pointed to the page
which is linked to the current page inside the Iframe. If the
content contains links, which allow users to navigate through
a few pages, then only the first page loaded inside the Iframe
will have a parent frame URI as document.referrer. However,
many developers do not pay adequate attention to this re-
striction. Each page loaded by clicking a link inside the Iframe
will have the URI of the page containing the link in the
document referrer.+e fact that the user controls every aspect
of every request, including the HTTP headers, means this
control can be easily circumvented by using an intercepting
proxy to change the value of the document referrer to the
value that the application requires. A part of the DOM testing
module is to check the URL of the webpage being visited to

return a value of true or false if there is a disabled document
referrer object.

5.1.4. 8e Document Location. +is read-only property
returns a location object which contains information about
the URL of the document and provides methods for
changing that URL and loading another URL. Releasing
information about sensitive documents that may be con-
tained on a webpage is a good spot for attackers to ma-
nipulate unguarded web applications.

5.1.5. Document URL Unencoded. +is returns the URL of
the current document, but with any URL-encoded charac-
ters returned to their plain-language version (e.g., %20 is
converted to a space character). Applications frequently
transmit data via the client using preset URL parameters.
When URL-containing parameters are displayed in the
browser’s location bar, any parameters can be modified
easily by any user without the use of tools.

5.1.6. Cookies. Cookies are often used in web applications to
identify users and their authenticated session. Stealing
a cookie from a web application will lead to hijacking the
authenticated user’s session. +e cookie value string ensures
that the strings do not contain any commas, semicolons, or
whitespace (which are disallowed in cookie values). Some
user agent implementations support cookie prefix signals to
the browser, and cookie request should be transmitted over
a secure channel. Cookies must be restricted and traced to
a secure origin. +is prevents the cookie from being sent to
other domains.

5.1.7. Headers. +ese are used to provide information about
the HTML document in a Meta tag or to gather information
about another document. +ey can be used to describe the
size of the data, to check another document that the server
should return (i.e., instead of returning a virtual document
created by the script itself), and to record HTTP status codes.
Headers could easily be redirected, and information they
contain could be easily made available to attackers. +e
headers are considered as possible entry points for input-
based attacks.

Many important categories of vulnerabilities are trig-
gered by unexpected user inputs and can appear anywhere
within the application. Any XSS or redirection vulnerabil-
ities are identified by the injection module and detected
where a crafted URL is to introduce malicious data into the
DOM of the relevant page. In Algorithm 1, each of the
webpages on a URL is inspected for either an un-
conventional or unsafe use of the APIs in Figure 3. +is is
achieved by visiting every node in the webpage. Each node is
subjected to the various DOM tests as outlined in the al-
gorithm. +e algorithm returns a vulnerability summary of
the content of each node visited. +is summary gives an
indication of the possibility of XSS in web application.

+e developed system scans websites recursively, building
an internal representation of the site in a tree-like data

6 Journal of Computer Networks and Communications

structure called path state nodes.
ese path state nodes can
be directories, �les, or �les with POST or GET parameters.

is is because in addition to analyzing the page content, the
crawling engine does several tests on each potential path,
trying to determine whether it is a �le or a directory.

5.2. System Architecture.
e input to the detection system
shall be obtained by extracting suspected malicious features
from web application pages.
en, we develop a script code
which will connect to the URL entered and output the at-
tributes associatedwith the elements which are then forwarded
to the fuzzy inference system to identify possible vulnerability
occurrence. Figure 4 presents the system architecture.

5.3. �e Fuzzy Logic Component.
is component describes
the design strategy for generation of the fuzzy inference
procedure.
e fuzzy inference system employs the Fuzzy IF-
THEN rules which can model the qualitative aspect of human
knowledge without employing precise qualitative analysis
[17]. Due to their concise form, Fuzzy IF-THEN rules are
often employed to capture the imprecise modes of reasoning
that play an essential role in the human ability to make
decisions in an environment of uncertainty and imprecision.

Here, each input fuzzy set de�ned in the fuzzy system
includes three membership functions and an output fuzzy
set which also contains three membership functions. Each
membership function used triangular function for the
fuzzi�cation strategy.

5.4. De�ning Linguistic Variables and Terms. We consider
each of the parameters de�ned in Figure 3 as crisp inputs for
the fuzzy inference system. Each of the crisp inputs is
mapped to three di�erent linguistic terms (fuzzy variables):
Low, Medium, and High. Table 1 shows the crisp input
characteristics (X1–X7) and the corresponding linguistic
variables (Low, Medium, and High).

5.5. Assignment of Membership Functions. We de�ne
membership functions for each of the linguistic variables as
follows: amembership function converts a crisp input value to
another value that ranges between 0 and 1. Fuzzy sets can have
a variety of shapes. However, a triangle-shaped or a trapezoid-
shaped membership representation often provides a suitable
representation. To de�nemembership function for each of the
linguistic variables, we apply triangular membership function

User

Fuzzy inference module

Activate linguistic rules

Detection module

Browser

Database

Feature extraction

Parameter checker
Extracted crisp input

Defuzzified output

Web application

Figure 4: System architecture.

X1

DOM-based XSS

X2

X3

X4

X5

X6

X7

Figure 3: Locations vulnerable to DOM-based XSS attacks.

(1) Input: web application
(2) Output: XSS vulnerabilities// “(DOM testing module),”
(3) dom DOM� parse (web application)
(4) node� [];
(5) for (var i� 0; i< arguments.length; i++) {
(6) element.push (doc.getElementById (arguments[i]));
(7) return node element;
(8) doc� new HTML Document (testDom);
(9) jQuery.setDocument (doc);// (“Running DOM Test”);
(10) var all� jQuery(“∗”), good� true;
(11) for (var i� 0; i< all.length; i++);
(12) for (all [i].nodetype) {
(13) run() {
(14) basic_tests();
(15) id_test();
(16) class_tests();
(17) name_tests();
(18) window_location_tests();
(19) header_tests();
(20) referer_attributes_tests();
(21) location_header_tests();
(22) url_encoded_tests();
(23) document_location_tests();
(24) pseudo_form_tests();
(25) }
(26) return vulns summary();

ALGORITHM 1: Algorithm for detecting DOM-based XSS.

Journal of Computer Networks and Communications 7

(TMF) for easy and clear representation. +e membership
function was obtained by dividing the input space into equal
partitions in a triangular format as in Table 2, with three rules
each (High, Low, and Medium).

5.6.Design of the Rule Engine. A fuzzy rule has two parts: the
antecedent and the precedent parts. +e antecedents are
joined together by logical operators. +e AND logical op-
erator, being themore popular and frequently used operator,
combines the predicate parameters based on the number of
rules for design of the fuzzy system and generates the
consequence which is used to determine the output.

We created twenty-one rules for our fuzzy inference
usingWang andMendel’s technique. Using this method, the
AND operator results in the maximum of truth (member-
ship) values. It was proposed by Wang and Mendel [35]
using the Mamdani model.

5.7. Aggregation of Rules and Defuzzification. +e results
from all crisp inputs are combined and defuzzified to obtain
a fuzzy output value. Defuzzification is the process of con-
verting the degree of membership of output linguistic variables
into crisp or fuzzy values. +ere are various defuzzification
strategies. +e centre of area method considers the full area
under the scaled membership function even if this area extends
beyond the range of the output variables. Due to its extended
range coverage, we apply the centre of area approach in our
defuzzification process. Other possibilities include the centre of
gravity approach and the maximum or minimum values.

5.8. Programming Implementation. +e development was
implemented with the Eclipse IDE using the Java Pro-
gramming Language. JQuery web interaction interface was
integrated into the Eclipse IDE as a library for easy usage.
Java programming language was used to develop the fuzzy
inference system and integrated with the Eclipse IDE for
optimised performance. +e entire Vega application was
built in Java with the crawling component written in Java-
Script. Vega XSS detection module was written in JQuery

scripting language. +e screenshot of scanner progress is
shown in Figure 5.

6. Performance Analysis

In the course of implementation, the following performance
metrics were studied:

(i) Capability to detect vulnerabilities
(ii) Accuracy
(iii) False-positive rate.

Comparison with the work by Koli et al. [29] was done
using the measures (i), (ii), and (iii) based on the number of
webpages to be used for evaluation.

6.1. Accuracy. +is is a measure of the degree to which the
results of the test scanning conducted on the developed
framework conform to the correct values or the standard
data set. Accuracy is calculated using the following formula:

A(M) �
TNC + TPC

TNC + FPC + FNC + TPC
, (1)

where TNC� the number of true-negative cases, FPC� the
number of false-positive cases, FNC� the number of false-
negative cases, and TPC� the number of true-positive cases.

6.2. False-PositiveRate. In performingmultiple comparisons,
the false-positive ratio is calculated as the ratio between the
number of negative events wrongly categorized as positive
and the total number of actual negative events. We chose
http://yahoomail.com as the test website for this experiment
due to its popularity which also makes it a popular target for
XSS attacks as well. +e false-positive rate is given by

FPR �
FP

(FP + TN)
n, (2)

where FP is the number of false positives and TN is the
number of true negatives.

6.3. Number of Vulnerabilities Detected. +is is a minimum
standard for checking the developed application’s capabilities

Figure 5: Scanner progress.

Table 1: Crisp input and linguistic variables.

Crisp input Linguistic variables
document.location (X1)

Low, Medium, and High

document.referrer (X2)
document.location.href (X3)
window.location (X4)
document.cookie (X5)
document.URLUnencoded (X6)
location.header (X7)

Table 2: Linguistic variables and membership function.

Linguistic term Triangular fuzzy number
High (0.00, 0.25, 0.50)
Medium (0.25, 0.50, 0.75)
Low (0.50, 0.75, 1.00)

8 Journal of Computer Networks and Communications

http://yahoomail.com

to discover XSS vulnerabilities in applications that are known
to be vulnerable.

Table 3 shows the results for the number of vulnera-
bilities detected.

e results show that CrawlerXSS was able to detect XSS
vulnerabilities in all the websites visited with the results
being the same with Koli et al. [29].

Figure 6 shows the number of sequences observed per
website over a period of 100 visits.

6.4. Computational Performance. We measured the perfor-
mance of the XSS unit testing using experiments performed on
a desktop machine with a Hewlett–Packard (HP) laptop with
the (TM) i5-6200U Processor running at 2.40GHz, 8.00GB of
RAM, and 500GB of hard disk. Our test website was subjected
to the number of sequences observed per website over a period
of 100 visits. It takes an average of 240 seconds to evaluate and
crawl a complete website. Somewebsitesmay contain �les with
multiple paths which make some websites scan faster than
others. We believe the approach described in this paper will
scale well for large applications.

7. Discussion

CrawlerXSS detected XSS vulnerabilities with 100% capa-
bility in all the websites used as data sets. It can be seen that
CrawlerXSS matched the architecture proposed by Koli et al.
[29] in terms of ability to detect vulnerabilities.
is implies
that CrawlerXSS and the architecture proposed by Koli et al.
[29] performed better than other web vulnerability scanners.

From the results of the accuracy test, the implementation of
the fuzzy inference system for the detection of XSS resulted in

a noticeable increase in accuracy.
e accuracy rate of 95% was
higher than the 80% accuracy rate obtained by Koli et al. [29]
and considerably higher than other web vulnerability scanners.

e false-positive rate of 0.99% was recorded by Craw-
lerXSS.
is is a marginal reduction in the false-positive rate
compared with that in the study [29]. It is also the least false
rate recorded by all the web scanners considered.

8. Conclusion

From the result of all the comparisons, it is clear that
CrawlerXSS performed better than other web vulnerability
scanners in terms of accuracy and false-positive rate. It was
also as fully e�ective as the architecture proposed by Koli
et al. [29] in terms of the number of vulnerabilities detected.

e better performance indices could be attributed to the
introduction of the fuzzy inference system.

9. Future Work

Future research work on this topic will involve the de�nition
of more DOM-based features that could lead to detection of
other code and server-side injection vulnerabilities like SQL
and cross-site request forgery attacks. Also, the method
could be implemented using other soft computing ap-
proaches like genetic algorithm and neural networks.

Conflicts of Interest

e authors declare that they have no con�icts of interest.

References

[1] H. Hibshi, Composite Security Requirements in the Presence of
Uncertainty. Societal Computing Institute for Software Research,
Carnegie Mellon University, Pittsburgh, PA, USA, 2016.

[2] P. Sharma, R. Johari, and S. S. Sarma, “Integrated approach to
prevent SQL injection attack and re�ected cross site scripting
attack,” International Journal of System Assurance Engineering
and Management, vol. 3, no. 4, pp. 343–351, 2012.

[3] Y. Sun and D. He, “Model checking for the defence against
cross-site scripting attacks,” in Proceedings of the 2012 In-
ternational Conference on Computer Science and Service
System, pp. 2161–2164, Maui, Hawaii, January 2012.

[4] M. Van Gundy and H. Chen, “Noncespaces: using randomi-
zation to defeat cross-site scripting attacks,” International
Journal of Computer Security, vol. 31, no. 4, pp. 612–628, 2012.

[5] H. Isatou, S. Abubakr, Z. Hazura, and A. Novia, “An approach
for cross site scripting detection and removal based on genetic
algorithms,” in Proceedings of the Ninth International Con-
ference on Software Engineering Advances: France, pp. 227–232,
Nice, France, October 2014.

[6] P. Bathia, B. R. Beerelli, and M. Laverdière, “Assisting pro-
grammers resolving vulnerabilities in Java web applications in

16

55

3

18

60

1215

40

2

21

80

1

21

95

0.99
0

10
20
30
40
50
60
70
80
90

100

Vulnerability
detection

Accuracy False positive

Netsparker
Acunetix
WebCruiser

Koli et al. [25]
CrawlerXSS

Figure 6: Graphical summary of performance metrics.

Table 3: Summary of performance metrics.

Parameter Netsparker Acunetix WebCruiser Koli et al. [29] CrawlerXSS
Vulnerability detection 16 18 15 21 21
Accuracy 55 60 40 80 95
False positive 3 12 2 1 0.99

Journal of Computer Networks and Communications 9

CCIST,” Communications in Computer and Information Sci-
ence, vol. 133, no. 1, pp. 268–279, 2011.

[7] A. Kanchan and S. Harmanpreet, “Anomaly detection system in
SDLC using data mining and fuzzy logic,” International Journal
of Scientific and Engineering Research, vol. 5, no. 12, 2014.

[8] V. Nithya, P. Lakshmana, and C. Malarvizhi, “A survey on
detection and prevention of cross-site scripting attack,” In-
ternational Journal of Security and its Applications, vol. 9,
no. 3, pp. 139–152, 2015.

[9] J. Fonseca, M. Vieira, andM. S. Madeira, “Vulnerability attack
and injection for web applications,” in Proceedings of the
IEEE/IFP International Conference on Dependable Systems
and Networks, pp. 93–102, Lisbon, Portugal, June 2009.

[10] V. Antunes and H. Madeira, “Using web security scanners to
detect vulnerabilities in web services,” in Proceedings of the
IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2009, Lisbon, Portugal, June 2009.

[11] S. Hossain and H. Hisham, “Fuzzy rule-based vulnerability as-
sessment framework for web applications,” International Journal
of Secure Software Engineering, vol. 7, no. 2, pp. 145–160, 2016.

[12] P. S. Georgios and K. K. Sokratis, “Using fuzzy inference system
to reduce false positive in intrusion detection,” Elsevier Com-
puter and Security Conference, vol. 29, no. 1, pp. 35–44, 2009.

[13] H. Shahriar and H. Haddad, “Fuzzy rule-based vulnerability
assessment framework for web applications,” International
Journal of Secure Software Engineering, vol. 7, no. 2,
pp. 145–160, 2016.

[14] B. Prithvi and V. N. Venkatakrishna, “Precise dynamic pre-
vention of cross site scripting attacks,” in Proceedings of the
Fifth Detection of Intrusion and Malware Vulnerabilities As-
sessment (DIMVA) Conference, pp. 23–43, Paris, France, 2008.

[15] B. Animesh and M. Debasish, “Genetic algorithm based
hybrid fuzzy system for assessing morningness,” Advances in
Fuzzy Systems, vol. 2014, Article ID 732831, 9 pages, 2014.

[16] Infosecurity Europe,Applications Vulnerabilities Report, 2013,
http://info.cenzic.com/rs/cenzic/images/Cenzic-Application-
Vuln-Trends-Report2013.

[17] A. Zadeh, Fuzzy Sets, University of California, Berkeley, CA,
USA, 1965.

[18] O. Cordon, “Evolutional tuning and learning of fuzzy
knowledge base,” Advances in Fuzzy Systems–Application and
8eory, vol. 19, no. 2, pp. 978–981, 2001.

[19] J. Durkin, Expert System Design and Development, Prentice-
Hall, Upper Saddle River, NJ, USA, 1994.

[20] E. Mamdani, “Applications of fuzzy algorithm for control of
a simple dynamic plant,” Proceedings of the Institution of
Electrical Engineers, vol. 121, no. 12, pp. 1585–1588, 1974.

[21] A. Mankad, “Measuring human intelligence by applying soft
computing techniques genetic fuzzy approach,” International
Journal of Emerging Research in Management and Technology,
vol. 4, no. 2, pp. 33–40, 2014.

[22] P. Alberto, A. Sala, and M. Olivares, Fuzzy Logic Controllers.
Methodology, Advantages and Drawbacks, 2015, http://www.
softcomputing.es/.

[23] D. Vandana, Y. Himanshu, and J. Anurag, “A survey on web
application vulnerabilities,” International Journal of Com-
puter Applications, vol. 108, no. 1, pp. 25–31, 2014.

[24] S. Priti, T. Kirthika, S. Pooja, and S. Bushra, “Detection of SQL
injection and XSS vulnerability in web application,” In-
ternational Journal of Engineering and Applied Sciences
(IJEAS), vol. 2, no. 3, 2015.

[25] F. Duchene, R. Groz, and S. A. Rwat, “Vulnerability detection
using model inference assisted evolutionary fuzzing,” in

Proceedings of the IEEE Fifth International Conference on
Software Testing, pp. 815–817, Montreal, QC, Canada, 2012.

[26] Y. W. Huang, C. H. Tsai, and D. T. Lee, “Non detrimental web
application security scanning,” in Proceedings of the In-
ternational Symposium on Software Reliability Engineering
(ISSRE’04), pp. 219–230, Beijing, China, September 2008.

[27] A. Saleh, B. Rozalia, B. C. Bujaa, A. Kamarularifin, A. Mohd,
and A. Faradilla, “A method for web application vulnera-
bilities detection by using Boyer-Moore string matching al-
gorithm,” Information Systems International Conference,
vol. 72, no. 3, p. 112, 2015.

[28] A. N. Abbass and M. Nasser, “Presentation of a pattern to
counteract the attacks of XSS Malware,” International Journal
of Computer Applications, vol. 143, no. 2, pp. 78–88, 2016.

[29] M. Koli, S. Pooja, H. K. Pranali, and N. G. Prathmesh, “SQL
injection and XSS vulnerabilities countermeasures in web
applications,” International Journal on Recent and Innovation
Trends in Computing and Communication, vol. 4, no. 4,
pp. 692–695, 2016.

[30] S. Hossain and H. Hisham, “Risk assessment of code injection
vulnerabilities using fuzzy logic-based system,” in Proceedings
of the Security Assessment Conference, Pyeongyang, Demo-
cratic People’s Republic of Korea, 2014.

[31] A. M. Alakeel, “A new approach for assertions processing
during assertion-based software testing,” World Academy of
Science, Engineering and Technology International Journal of
Computer, Information, Systems and Control Engineering,
vol. 8, no. 12, 2014.

[32] L. K. Shar and H. B. Tan, “Automated removal of cross site
scripting vulnerabilities in web applications,” Journal of In-
formation Software Technology, vol. 54, no. 5, pp. 467–478,
2012.

[33] S. Krishnaveni and K. Sathiyakumari, “Multiclass classifica-
tion of XSS web page attack using machine learning tech-
niques,” International Journal of Computer Applications,
vol. 74, no. 12, pp. 36–40, 2013.

[34] D. Stuttard and M. Pinto, Web Applications Hacker’s
Handbook: Finding and Exploiting Security Flaws, Wiley
Publishing Co., Indianapolis, IN, USA, 2nd edition, 2011.

[35] L. X. Wang and J. M. Mendel, “Fuzzy rules by learning from
examples,” IEEE Transactions on Systems, Man and Cyber-
netics, vol. 22, no. 6, pp. 1414–1427, 1992.

10 Journal of Computer Networks and Communications

http://info.cenzic.com/rs/cenzic/images/Cenzic-Application-Vuln-Trends-Report2013
http://info.cenzic.com/rs/cenzic/images/Cenzic-Application-Vuln-Trends-Report2013
http://www.softcomputing.es/
http://www.softcomputing.es/

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

