Hindawi

Journal of Computer Networks and Communications
Volume 2018, Article ID 6873807, 6 pages
https://doi.org/10.1155/2018/6873807

Research Article

Hindawi

Hybrid Obfuscation Using Signals and Encryption

Bahare Hashemzade and Ali Maroosi

Department of Electrical and Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran

Correspondence should be addressed to Ali Maroosi; ali.maroosi@torbath.ac.ir

Received 24 December 2017; Accepted 3 April 2018; Published 30 April 2018

Academic Editor: Zhiyong Xu

Copyright © 2018 Bahare Hashemzade and Ali Maroosi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Obfuscation of software and data is one of the subcategories of software security. Hence, the outlines of the obfuscation problem
and its various methods have been studied in this article. This paper proposes a hybrid of two signals and encryption obfuscation
to hide the behaviour program and prevent reconstruction of the normal code by hackers. The usual signal method is strong
enough for obfuscation, but its problem is the high complexity because of a lot of call and return instructions. In this study, a new
dispatcher was added to the source code to reconstruct the original control flow graph from the hidden one to solve the problem of
the signal method. This dispatcher code is encrypted to preclude access by the hacker. In this paper, the potency that makes the
obfuscation strong has been increased and the resilience that makes the obfuscation poor has been decreased. The results of
a comparison of the similarity among the ambiguous data with its original code and with available efficient methods present

a performance advantage of the proposed hybrid obfuscation algorithm.

1. Introduction

With the rapid expansion of the Internet and its influence on
all aspects of social, cultural, scientific, economic, and political
exchanges, the most important challenge facing cyberspace is
the security threats to these exchanges therein. Anything that
can lead to a dangerous event has become a security threat in
cyberspace. The origin of security threats falls into two cat-
egories: people (human factors) and software. Each one of
these has its subcategories. In the field of threats posed by
human factors, we face five factors, including Red/Black Hat
hackers, dissatisfied employees, domestic competitors, foreign
competitors, and foreign states, while threats based on soft-
ware factor, which are applied applications, can be risk factors
in two ways and endanger the security of information: vul-
nerable applications and malwares.

Based on the performance and behaviour of malwares,
these can be divided into four groups: virus, worm, Trojan
horse, and botnets. Obfuscation is an invasive technique that
a malware writer considers to apparently hide his malware.
This means that it is done by changing the appearance of the
malware source code and maintaining the functional nature
of malware. It attempts to be secured by antivirus detection
and continues its destructive activities. Obfuscation as an

invasive technique can also be used as a defence solution in
the field of software and vital information protection against
security threats. Malware obfuscation is studied in this re-
search since the access to obfuscation information and
software for research is difficult or even impossible because
of its confidentiality [1].

Different obfuscation methods have been presented
(Figure 1). One of the obfuscation methods is adding the
dead code that alters the look of the program code. The
implementation of this method is easy, but the disadvantage
of this approach is that it is recognized by eliminating ad-
ditional commands [2-5].

Another obfuscation method is changing the names of the
registers so that these will change from one generation to the
next one but can be recognized by renaming the registers
[6, 7]. Replacement command, which generates the separation
code, is a type of obfuscation method [1, 6]. Another form of
obfuscation is the shuffle code. In this method, the initial
order of commands downs and the cost of detection goes up.
But the implementation has problems: it can be recognized by
eliminating the nonconditional commands [6, 7]. Code in-
tegrating is also an approach for obfuscation, but its disad-
vantage is that it is difficult to implement. The advantages of
this method are the crucial diagnosis and recovery [4, 5].

mailto:ali.maroosi@torbath.ac.ir
http://orcid.org/0000-0001-6078-655X
https://doi.org/10.1155/2018/6873807

Journal of Computer Networks and Communications

Obfuscation techniques

Add Rename
code registers

Replace
command code

Shuffle Code
integration

Flow
control

Handling

. Encryption
subroutine

Signal

Figure 1: Different approaches for obfuscation.

Displacement and handling of the subroutine is one
obfuscation method: its advantage is that it obfuscates the
source of the program code and downs the order of the
subroutine. The disadvantage of this method is that the code
is detected by changing the subroutine [1, 2].

Another type of the obfuscation method is encryption.
The advantage of this method is that the main pattern of the
program code is hidden. The disadvantage of this method is
that the malware could identify it using the code decoding.

The signal method is an obfuscation method in which
control flow graph opcodes (operation codes) are hidden
[8-10]. The advantage of this method is that it hides the
control flow graph of a program and makes the information
of the control flow graph of the program difficult [11-13].
The disadvantage of the signal method is the high cost of
operations due to the high number of call and return in-
structions [10, 14-16].

This study proposed a hybrid signal and encryption
(proposed S&E) method. In the usual signal method, the
control flow graph of the program is hidden. However, the
cost of the operation is increased in the usual signal method.

In the proposed method, first, the information of the
control flow graph is hidden by the signal method, and then,
the dispatcher of the signal, which reconstructs the original
control flow graph from the hidden one, is added as new
information to the file and encrypted to preclude access by
hackers. The hybrid method does not have the disadvantage
of the signal method, which has a high cost because of the
organization of signals by the operation system. In other
words, to preclude overloading of the operating system, it
has been suggested that the dispatcher be encoded in the
program. A further explanation has come up in the proposed
algorithm. In addition, since an elaborate formula to cal-
culate the complexity and resilience of obfuscation tech-
niques is not provided in previous studies, new and
transparent formulas are presented in this work.

In this article, the obfuscation outlines of the problem
are taken into consideration in Section 2. In Section 3,
a hybrid of the signal and encryption method is presented.
The results of the implementation of the algorithm are
described in Section 4, and finally, in the last section,
conclusions have been presented.

2. Description of the Problem

Obfuscation is a set of methods that can be used by malware
writers or software to turn one program with the same
behaviour but with a different appearance to another one [1].
It consists of three objective functions and six variables,
which are described in brief. Three objective functions

include (a) potency, (b) resilience, and (c) cost. The potency
can be considered a useful measure of the change that causes
the encryption purpose of the program to be hidden. Also,
the potency is considered an indicator of the obfuscation
productivity measure for people. Resilience can be consid-
ered an obfuscation productivity measure for machines
automatically (in opposition to potency). Cost measures the
time complexity.

Among the six variables affecting the objective functions,
we can point to y; (program time), the number of operators
and operands of the source code. The second variable u,
(complexity) specifies the number of conditional statements
of the source code and u; (complexity nesting) is the
maximum depth of nested statements in the source code. y,
(complexity of information) is the undefined variable of the
program. y5 (complexity fan-in/out) is the number of called
functions. The last variable y, (complexity data structure) is
the number of defined variables in the program [6].

The potency to change the behaviour of a program that is
represented as T’ (P) is the function that shows the lack of
change in the behaviour of the obfuscated program P’ to the
source program and is affected by the complexity measure
function E (P) [6].

3. The Proposed Algorithm

In this study, the goal is the implementation of obfuscation
in the signal method and encryption method in order to
increase the complexity level and reduce the detection po-
tency. At first, the signal obfuscation method is used so that
the tree- and graph-like structures of the program become
star structures. For example, in normal status, the appli-
cations have a graph-like structure; this graph is created on
the basis of the structure of function calls, but in the case of
using a signal obfuscation or socket, all requests and
communications among the functions are done by sending
signals. After a signal is created, the operating system or-
ganizes these signals. So, in any communication of func-
tions, first, a signal must be sent to the operating system, and
then, the operating system sends target signals into a func-
tion (or program). This structure causes the graph structure
of the program to turn into a star structure. Though this
structure makes the control graph of the program unclear
(advantage), it increases the cost of the program (disad-
vantage). So, it is recommended that the dispatcher of this
star structure be in its own program in order to avoid
overloading the operating system. In the next step, we en-
code this part that is there in the program to prevent its
hacking (we use obfuscation in the encryption method). The
first letter of the word “Signal” and the first letter of the word

Journal of Computer Networks and Communications

“Encrypt” were chosen to name the algorithm “S&E” be-
cause this algorithm is a combination of both. The S&E
procedure algorithm is in a way such that, in the first step,
functions in the source code are run line by line.

3.1. A New Approach to Calculate the Potency Function. The
complexity function is defined by affecting six parameters
that are not defined precisely in previous studies; therefore,
in this article, due to the effect level of each variable listed on
the complexity of the program, three complexity functions
have been proposed in this study. In that, one of them has
been chosen for implementation. According to the present
six variables in the previous section and given the lack of
a precise definition of the relationship between these vari-
ables in their functions, three proposals have been presented
in this article. Various methods have been studied, and the
following three functions which show better performance
compared to the others are selected:

E (P) =y + s+ s, (1)
E,(P) = py + 3py + 245, (2)
E; (P) = 64, + 545 + 445 + 34, + 2u, + Y. (3)

The variables are divided into two groups: important and
more important groups, due to the complexity effect of
making decision variables. The y,, p5, and ys variables are
placed in the more important group, and y,, 4, and 4 are
placed in the important variable group. We consider the
variables with the same weight in (1) and the sum of these
three variables to measure the complexity as E, (P). The sum
of weighted three more important factors to measure the
complexity is indicated as E, (P) in (2). For (3), we consider
a sum of important and more important variables as E; (P).
However, the effects of important factors in comparison with
the most important factors can be neglected. Thus, in this
study, we considered just most important factors for our
measurement. Therefore, the complexity can be measured as
follows:

_E(P)
TPot (P) = El (P) -1, (4)

where P' is the obfuscated program and P is the original
program. If T, (P) >0, obfuscation is strong and is dis-
turbing for people, while deobfuscation is very simple for the
device. The complexity of the application increases
according to some used metrics. Thus, the potency can be
considered a useful measure of obfuscation to people.

3.2. ANew Approach for Calculation of Resilience. To measure
the effectiveness of obfuscation to automatic deobfuscators,
resilience is introduced. Resilience takes two parameters into
account: programming attempt (the amount of time it takes to
build a program that can remove the program from being
obscured) (automatic deobfuscators) and attempt of the
deobfuscator (run time and memory space required to remove
the program from being obfuscated). The potency is in

contrast to resilience because the potency focuses on making
the application more complex or, in other words, increases the
potency, whereas in resilience, it is paid to decrease the
resilience because the later the program is identified, the better
it is. Resilience of the change of a program behaviour which is
displayed as T, (P) is a function that shows the lack of be-
haviour change of the obfuscated program P’ to the source
program P (Martinez [6]). Resilience function is defined by six
parameters that are not defined precisely in previous re-
sources. Therefore, in this article, according to the effect level
of each variable in the resilience program, two complexity
functions have been proposed for the implementation. T',., (P)
is affected in an automated manner by the measurement
function, execution time, required memory, and amount of
time it takes to build a deobfuscator. Two ways are suggested to
calculate it as follows.

According to the impact of making decision variables on
the measure of resilience, we chose two groups of variables
such that their impact causes reduction of resilience.
According to what has been said in this article, resilience can
be measured as follows:

Fy(P) =2y + py + iy +

Fy(P) = 3(py + phe) + 2y + iy + phy) + s,

(5)
F, (P")
Ty (P) = ———>— 1.
F,(P)
If T, (P)<0, the resilience is low and obfuscation is

strong. Note that when T, (P) <0, then F, (P') < F, (P). It
means that resilience of the obfuscated program is less than
that of the original program and obfuscation is strong.

3.3. Calculating the Cost Function. The program code may
require more storage space or more time to finish after
changing for obfuscation. This concept is introduced as the
cost of changes. The cost of changing the behaviour of an
application, which is displayed as T’ (P), is a function that
shows the lack of behaviour change of the obfuscated
program P’ to the source program P. T’ (P) is affected by
measurement function of complexity of run time O(P).
T st (P) can be compared in the following ways [6]:

(i) It is very high costly if the implementation of P’

requires an exponential amount more than P.

(ii) It is high costly if the implementation of P’ requires
an amount of O (n”) more than P where P> 1.

(iii) Tt is of low cost if the implementation of P’ requires
an amount of O (n) more than P.

(iv) It is of no cost if the implementation of P’ requires
an amount of O (1) more than P.

The quality of changes is a combination of the obfus-
cation quality of potency, resilience, and cost, which is
displayed as follows:

Tqual (P) = (Tpot (P)’ Tres (P)’ Tcost (P)) (6)

4. Simulation and Results

The proposed hybrid signal and encryption method was
tested on a computer with Intel core 2 Duo CPU and 1 GB
RAM. The code is written in C++, and standard data are used
for testing and comparing the proposed algorithm. It includes
30 viruses from the VX Heaven public dataset [17]. It consists
of 10 viruses from the Second Generation Virus Generator
(G2) (published in January 1993) and 20 viruses from the
Next Generation Virus Construction Kit (NGVCK).

4.1. How to Evaluate the Data. We use Mishra’s method [18]
to compare two pieces of code. Mishra proposed a method
that allows one to compare two assembly programs by
assigning a score to it. It represents that the two programs
are similar. The Mishra method involves the following steps:

(1) Two assembly programs X and Y are supposed, and
we derive strings of opcodes except description, the
empty line (distance), tags, and other orders. The
result is identifier sequence lengths n and m, where n
and m are the numbers of opcodes in the programs X
and Y. Opcodes, respectively, have their identifiers’
sequence in each phase.

(2) We compare two identifiers’ sequence by consid-
ering all sequences (subsequences) of three con-
secutive opcodes for each step. We count the match
of each case regardless of the sequences where all
three opcodes are similar and marked in a coordinate
graph (x, y).

(3) After comparing two sequences’ opcode and
marking all the matching coordinates, we gain
a plotted graph on a grid of size n * m. The numbers
of identifiers of the program X on the x-axis are
shown and those of the program Y are shown on the
y-axis. To reduce interference and random matching,
we keep only that part of the line (string) of the
length greater than a threshold value (in this study,
the threshold is considered to be 5).

(4) As we are doing a continuous correspondence be-
tween the two identifiers, the same section of the
section-by-line opcode to the core diameter will be
formed. If a segment is in the fall core diameter, it is
amatch. In fact, the places in two identified fields are
the same. A diagonal diameter line indicates that the

match of opcodes appears in different places in two
files.

(5) For each axis, we determine a fraction of opcodes
that are covered by one or more segments. A sim-
ilarity score for two programs is gained from these
parts. The similarity metric calculates the similarity
between the original program (P) and the obfuscated
program (P'). This metric is 1 when P and P’ are
similar, and this metric is 0 when there is no sim-
ilarity between P and P’. For example, the similarity
score equal to 0.01 shows low similarity and good
obfuscation and 0.85 shows high similarity and bad
obfuscation.

Journal of Computer Networks and Communications

TaBLE 1: Results of the proposed hybrid signal and encryption
obfuscation (S&E) for different virus groups with potency, resil-
ience, and cost metrics.

NGVCK G2
Potency Resilience Cost Potency Resilience Cost
0 1.34356 —0.01490 O (n) 2.01490 0.84299 O (1)
1 1.62907 -0.18108 O (1) 1.20018 0.63845 O (1)
2 1.45980 -0.07641 O (1) 1.11746 0.83201 O (n)
3 1.34376 —0.20001 O (1) 1.21230 0.64845 O (1)
4 1.92907 -0.10091 O (1) 2.41011 0.02845 O (1)
5 0.60631 -0.11593 O (1) 130506 0.83222 O (1)
6 210008 -0.20016 O (n) 2.21018 0.65845 O (1)
7 2.14311 -0.18845 O (n) 2.10018 0.84799 O (n)
8 1.12212 -0.15203 O (1) 1.34356 0.66845 O (1)
9 1.10001 -0.14015 O (1) 1.62907 0.84830 O (1)
10 2.15593 -0.10013 O (n) —
11 112311 -0.14231 O (n) —
12 2.02011 -0.20018 O (1) —
13 213456 -0.02011 O (1) —
14 1.18314 -0.13456 O (1) —
15 2.04231 -0.18314 O (1) —
16 1.20016 -0.11301 O (n) —
17 1.11231 -0.01008 O (1) —
18 1.18108 -0.04311 O (1) —
19 135213 -0.03212 O (1) —

TaBLE 2: Results of the proposed hybrid signal and encryption
obfuscation (S&E) for different virus groups with the Mishra
criteria.

NGVCK G2
0 0.01490 0.02845
1 0.18108 0.63845
2 0.07641 0.83201
3 0.20001 0.64845
4 0.10091 0.02732
5 0.11593 0.83222
6 0.20016 0.65845
7 0.18845 0.84799
8 0.15203 0.66845
9 0.14015 0.84830
10 0.10013 —
11 0.14231 —
12 0.20018 —
13 0.02011 —
14 0.13456 —
15 0.18314 —
16 0.11301 —
17 0.01008 —
18 0.04311 —
19 0.03212 _

4.2. Results and Discussions. The results of the comparison of
the obfuscation viruses in two groups NGVCK and G2 with
their original code, based on the potency, resilience, and cost
metrics, are presented in Table 1. The comparison results for
original and obfuscated codes with the Mishra criteria are
also shown in Table 2. The results of presented metrics in
Tables 1 and 2 show consistency of the presented metric with
the Mishra metric.

Journal of Computer Networks and Communications

TaBLE 3: Comparing the results of the proposed hybrid signal and
encryption obfuscation (S&E) with the other algorithms.

NGVCK G2

Min 0.01490 0.02845
Proposed S&E Max 0.20018 0.43211
Ave. 0.11746 0.32753
Min 0.21230 0.62845
SWOD-CFW (Alam et al. [19]) Max 0.41011 0.84864
Ave. 0.30506 0.74491
Min 0.03452 0.40286
ACFG (Alam et al. [20]) Max 021017 0.73210
Ave. 0.12101 0.65210
. Min 0.34356 0.12349

CSD estimator
(Toderici and Stamp [21]) Max 0.62907 0.73210
Ave. 0.45980 0.53931
Min 0.34376 0.44964
HMM (Austin et al. [22]) Max 0.92907 0.96568
Ave. 0.60631 0.62704
Min 0.10008 0.18108
SD (Shanmugam et al. [23]) Max 0.14311 0.01490
Ave. 0.12212 0.10011
Min 0.10001 0.10013
Graph (Runwal et al. [24]) Max 0.15593 0.40151
Ave. 0.12311 0.25655
Min 0.02011 0.01491
Histogram (Rad et al. [25]) Max 0.18314 0.15341
Ave. 0.13456 0.11230
Min 0.04231 0.03456
Sequences (Santos et al. [26]) Max 0.20016 0.18314
Ave. 0.11231 0.11301
Min 0.18108 0.01301
Patterns (Shabtai et al. [27]) Max 0.35213 0.21630
Ave. 0.27234 0.15654

To compare the obfuscation algorithm level proposed
in this paper (S&E) with some of the available efficient
methods, the minimum, maximum, and average of the
similarity level of obfuscated viruses with the initial code for
the proposed S&E and other algorithms are shown in Table 3.
Obviously, the minimization of the similarity of obfuscated
viruses by the proposed S&E is less than that in other algo-
rithms. However, the proposed S&E has not been successful in
reducing the average rate of similarity for viruses of NGVCK
and G2 in some cases.

The comparison between the proposed algorithm (S&E)
and other algorithms includes sliding window of difference and
control flow weight (SWOD-CFW) [19], annotated control
flow graph (ACFQG) [20], chi-squared distance (CSD) estimator
[21], hidden Markov model (HMM) [22], substitution distance
(SD) [23], opcode graph similarity [24], opcode histogram
[25], opcode sequences [26], and opcode patterns [27]. In
general, Table 2 shows the excellence of the proposed S&E, in
comparison with the other obfuscated methods.

5. Conclusion

In this study, a hybrid signal and encryption obfuscation
method was presented. The proposed algorithm used a signal
method to change the tree- and graph-like structure of the
program into the star structure and hide the control flow

graph of the problem. The problem of the signal method is
high number of call and return instructions. This study
suggested adding a dispatcher to the program that converts
the signal program to the original control flow graph. In this
way, the problem of the signal method was solved. This
dispatcher was encrypted to keep it secure from hackers.
Furthermore, a new approach has been suggested to measure
complexity and resilience. Five functions were offered in
order to calculate the values of complexity and resilience.
The results of the comparison of obfuscated data similarities
with the initial codes, based on Mishra’s method, represent
a performance advantage of the proposed and hybrid al-
gorithm obfuscation.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] 1. You and K. Yim, “Malware obfuscation techniques: a brief
survey,” in Proceedings of the 2010 International Conference on
Broadband, Wireless Computing, Communication and Ap-
plications, pp. 297-300, Fukuoka, Japan, November 2010.

[2] C. Barrya, D. Cordero, C. Cubillos, and M. Palma, “Proposed
classification of malware, based on obfuscation,” in Pro-
ceedings of the 6th IEEE International Conference on Com-
puters Communications and Control (ICCCC), pp. 37-44,
Biile Felix-Oradea, Romania, May 2016.

[3] C. K. Behera and D. L. Bhaskari, “Different obfuscation
techniques for code protection,” Procedia Computer Science,
vol. 70, pp. 757-763, 2015.

[4] G. Canfora, A. N. Iannaccone, and C. A. Visaggio, “Static
analysis for the detection of metamorphic computer viruses
using repeated-instructions counting heuristics,” Journal of
Computer Virology and Hacking Techniques, vol. 10, no. 1,
pp. 11-27, 2014

[5] Y. Gao, Z. Lu, and Y. Luo, “Survey on malware anti-analysis,”

in Proceedings of the Fifth IEEE International Conference on

Intelligent Control and Information Processing (ICICIP),

pp- 270-275, Dalian, China, August 2014.

S. Martinez, Source Code Obfuscation by Mean of Evolutionary

Algorithms, MSc thesis, University of Luxembourg, Lux-

embourg, EuropeUniversity of Luxembourg, 2011.

[7] A.J. Smith, R. F. Mills, A. R. Bryant, G. L. Peterson, and

M. R. Grimaila, “REDIR: automated static detection of ob-

fuscated anti-debugging techniques,” in Proceedings of the IEEE

International Conference on Collaboration Technologies and

Systems (CTS), pp. 173-180, Minneapolis, MN, USA, May 2014.

V. Balachandran, N. W. Keong, and S. Emmanuel, “Function

level control flow obfuscation for software security,” in

Proceedings of the Eighth IEEE International Conference on

Complex, Intelligent and Software Intensive Systems (CISIS),

pp. 133-140, Birmingham, UK, July 2014.

V. Balachandran, D. J. Tan, and V. L. Thing, “Control flow

obfuscation for android applications,” Computers and Secu-

rity, vol. 61, pp. 72-93, 2016.

[10] C. K. Behera and D. L. Bhaskari, “Code obfuscation by using
floating points and conditional statements,” in Proceedings of
the 4th International Conference on Frontiers in Intelligent
Computing: Theory and Applications (FICTA), pp. 569-578,
Bhubaneswar, India, September 2016.

[6

[8

[9

[11] M. S. Islam, M. R. Islam, A. S. Kayes, C. Liu, and I. Altas, “A
survey on mining program-graph features for malware
analysis,” in Proceedings of the International Conference on
Security and Privacy in Communication Systems, vol. 24,
pp. 220-236, Beijing, China, September 2014.

[12] H. Ma, X. Ma, W. Liu, Z. Huang, D. Gao, and C. Jia, “Control
flow obfuscation using neural network to fight concolic
testing,” in Proceedings of the International Conference on
Security and Privacy in Communication Systems, vol. 24,
pp. 287-304, Beijing, China, September 2014.

[13] A. Pawlowski, M. Contag, and T. Holz, “Probfuscation: an
obfuscation approach using probabilistic control flows,”
Detection of Intrusions and Malware, and Vulnerability As-
sessment, vol. 7, pp. 165-185, 2016.

[14] V. Balachandran, S. Emmanuel, and N. W. Keong, “Obfus-
cation by code fragmentation to evade reverse engineering,”
in Proceedings of the 2014 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), vol. 5, pp. 463-469, San
Diego, CA, USA, October 2014.

[15] S. S. Das, Code Obfuscation Using Code Splitting with Self-
Modifying Code, Ph.D. disseration, National Institute of
Technology Rourkela, Odisha, India, 2014.

[16] J. Schneider and T. Locher, “Obfuscation using encryption,”
pp. 1-11, 2016, http://arxiv.org/abs/1612.03345.

[17] W. Wong and M. Stamp, “Hunting for metamorphic engines,”
Journal in Computer Virology, vol. 2, no. 3, pp. 211-229, 2006.

[18] P. OKane, S. Sezer, and K. McLaughlin, “Obfuscation: the
hidden malware,” IEEE Security and Privacy Magazine, vol. 9,
no. 5, pp. 41-47, 2011.

[19] S. Alam, L. Sogukpinar, I. Traore, and R. N. Horspool, “Sliding
window and control flow weight for metamorphic malware
detection,” Journal of Computer Virology and Hacking
Techniques, vol. 11, no. 2, pp. 75-88, 2015.

[20] S. Alam, R. N. Horspool, I. Traore, and I. Sogukpinar, “A
framework for metamorphic malware analysis and real-time
detection,” Computers and Security, vol. 48, pp. 212-233, 2015.

[21] A. H. Toderici and M. Stamp, “Chi-squared distance and
metamorphic virus detection,” Journal of Computer Virology
and Hacking Techniques, vol. 9, pp. 1-14, 2013.

[22] T. H. Austin, E. Filiol, S. Josse, and M. Stamp, “Exploring

hidden Markov models for virus analysis: a semantic ap-

proach,” in Proceedings of the 46th Hawaii International

Conference on System Sciences (HICSS), pp. 5039-5048, Maui,

HI, USA, January 2013.

G. Shanmugam, R. M. Low, and M. Stamp, “Simple sub-

stitution distance and metamorphic detection,” Journal of

Computer Virology and Hacking Techniques, vol. 9, no. 3,

pp. 159-170, 2013.

N. Runwal, R. M. Low, and M. Stamp, “Opcode graph sim-

ilarity and metamorphic detection,” Journal in Computer

Virology, vol. 8, no. 1-2, pp. 37-52, 2012.

[25] B. B. Rad, M. Masrom, and S. Ibrahim, “Opcodes histogram

for classifying metamorphic portable executables malware,” in

Proceedings of the International Conference on E-Learning and

E-Technologies in Education, pp. 209-213, Lodz, Poland,

September 2012.

I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas,

“Opcode sequences as representation of executables for data-

mining-based unknown malware detection,” Information

Sciences, vol. 231, pp. 64-82, 2013.

A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici,

“Detecting unknown malicious code by applying classification

techniques on opcode patterns,” Security Informatics, vol. 1,

no. 1, pp. 1-22, 2012.

[23

[24

[26

[27

Journal of Computer Networks and Communications

http://arxiv.org/abs/1612.03345

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

