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*e quest for faster data transport to improve web user experience is ongoing and attempts are conducted from various fronts to
realize it. On top of improving user experience, the implications of improving web data transport are also on the energy efficiency
of wireless devices as well as user retention rates of service providers. HTTP/1.x allow the opening of multiple TCP connections
per server and then using those connections for fetching multiple web objects through the use of HTTP pipelining. With the
advent of HTTP/2.0, multiplexing is done inside a single connection to fetch multiple objects. In this paper, we analyze the TCP
connections between the browser and the servers and examine their characteristics. We describe how an enhanced TCP variant
can take advantage of data transport connection patterns. We show the benefits that enhanced TCP system can bring with the
understanding of connection usage patterns. We find that such transport protocol can have effect in the page idle times as well as
the connection concurrency during web page transfer. *e results show significant improvement of page load times for both
encryption heavy and unencrypted pages. We discuss the effect of the transport protocol on object transfer, connection duration,
idle times during the page load, connections, and concurrency of flows that cumulate into page load times.

1. Introduction

Data transfer mechanism in the World Wide Web has not
evolved at the same pace as the services it contains. In-
formation in various formats is generated in web servers,
and a browser fetches them through the network and
renders them for the users’ viewing. On the other hand, the
diversity in the types and amounts of such objects has grown
significantly, and many mechanisms have been developed in
order to transfer and render them faster andmore efficiently.

Hypertext Transfer Protocol (HTTP) [1] enables the
client-server model through which information is transferred
in the web between browsers and servers.*e commonly used
transport protocol by HTTP is the Transmission Control
Protocol (TCP). *us, a browser and a server first establish
a TCP connection over which the HTTP messages are
communicated in order to fetch the various objects required
to display a web page.

Setting up a TCP connection entails a handshake
mechanism that requires 3 trips of message transfer between

the browser and the server. *is overhead is becoming
inefficient considering that a browser generates about 100
requests, on average, to fetch a web page [2]. *us, to im-
prove efficiency, modern browsers allow reusing the same
TCP connection for fetching multiple web objects through
the use of HTTP pipelining [3]. HTTP/1.0 uses keep-alive
headers for it, andHTTP/1.1 considers connection persistence
unless declared otherwise. With the advent of HTTP/2.0,
multiplexing is done inside a single connection to a server
to fetch multiple objects.

Since the users’ machines process information faster
than the rate of fetching files from the network, parallel TCP
connections enable faster web page loading. HTTP/1.x al-
lows such mechanism, and all major browsers nowadays
establish up to 6–8 connections per server. HTTP/2.0 has
built-in multiplexing to fetch multiple objects in parallel.

Yet, in the ongoing quest for faster web data transport to
improve user experience, attempts are made on various
fronts to realize it. Compression, Caching [4], TCP tuning
[5], and so on are implemented at the servers as well as
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middle-boxes. Domain sharding (overcoming the browser’s
limit of maximum simultaneous connections per domain by
downloading resources from multiple domains), DNS
prefetching [6], content inlining [7], prioritizing, and so on
are some other techniques.

*e focus of this paper is to investigate the characteristics
of data transport connections in the web and analyze the effect
of using an enhanced transport protocol to capitalize on the
connection usage characteristics. We study the amount and
types of files fetched through established connections.We also
analyze the connection usage and reusage patterns for web
content download in the web using the home pages of the
Alexa top 100 sites [8]. We validate our sample against the
whole list maintained at httparchive [2].

We implement an enhanced TCP, FLD_TCP, which
pushes short flows (flow length smaller than 2MB) faster
through the network as compared to traditional TCPs. In
order to measure the benefits on the downloads of Alexa top
sites to a user’s browser, we implement the transport pro-
tocol in a proxy server (to emulate the content servers) and
measure the performance in a Chrome browser. We show
the benefits such a system can bring as compared to the
standard TCP with the understanding of connection-level
patterns. We find that this novel transport protocol can have
positive effect in the connection idle times as well as the
object fetching times. *e results show significant im-
provement of page load times through the use of FLD_TCP
in both HTTP/1.x and HTTP/2.0 cases. We discuss the
different application scenarios and the implications of
deploying such a system for accelerating web transfer.

2. Background and Related Works

As a part of an ongoing effort to improve the page load speed
on the web, many methods have been proposed. Also several
studies are done on the interactions during a page load
among the browser, the servers, proxymiddle-boxes, and the
network. A web page can be made to load faster either by
bringing the content closer to the browser or by reducing the
number of fetches required to load the page. Moreover, it
can also be achieved by optimizing the underlying transport
mechanism.

Content caching [4] has been used primarily to reduce
the number of requests for the web pages. Depending upon
its implementation at different nodes of the web page load
interaction, it brings the content closer to the browser. Use
of cloudlets [9] to bring the content closer to the users is also
gaining momentum. *is has been driven by the advent of
5G, Software Defined Networking (SDN), and advancing
Content Distribution Networks (CDN) technologies. Web-
page bundling has also been purposed to offload much of the
computation task into the cloud. WebPro [10], Cumulus
(MahiMahi) [11] and PARCEL [12] are some examples where
page content is fetched and bundled in the cloud and the
browser only need to render the received bundle.

Techniques such as content inlining [7] and CSS spriting
[13] are used in the design of today’s web pages. *ese
techniques reduce the number of object fetches the browser
has to do for loading the web pages. Compression is applied

to objects to reduce the number of bytes through the net-
work. Google Flywheel [14] and Opera Turbo [15] are ex-
amples of proxies that compress content and apply other
latency reducing techniques to improve the web page load
performance. DNS prefetching [16] allows eliminating the
DNS resolution time for previously accessed domains.

Optimizing the order in which the objects are loaded in
the browser also brings benefits. Polaris [17] loads web pages
according to the dependency tracking done by the depen-
dency graph generator, SCOUT, in the offline mode. Klotski
[18] also capitalizes on the dependency graph to evaluate the
optimal prioritization of resources of the page. WebGage
[19] prioritizes the loading of webpage sections that catch
user’s attention more. Prophesy [20] uses SCOUT to
recompute the JavaScript heap and DOM tree for web pages
so that browsers can render the page faster.

Optimizing the transport mechanism itself also con-
tributes to faster loading of web page. Enabling multiple
HTTP requests to utilize the same transport connection has
reduced the delay caused by TCP connection establishment
overhead. Also, with HTTP/2, multiplexing of requests
inside a single TCP connection has allowed better utilization
of the connection. HTTP/2 also allows Server Push mech-
anism where the server can preemptively send objects that
are needed to fulfill the page load to the browser in response
to the requests, thus saving network transfer time. *e
servers can also apply TCP tuning techniques [5] to better
adapt to various network conditions. TCP WISE [21]
demonstrates that with relaxing the constant initial window
size, HTTP latency can be significantly improved.

Analysis of interactions among the browser, the servers,
proxy middle-boxes, and the network during the page load
has been done from different perspectives. Mahimahi [11]
conducted the performance comparison between different
application level protocols in different emulated network
conditions. Gangadhara Rao et al. [22] provide the analysis
of web server load by TCP connection establishment phase.
Qian et al. [23] provide interesting insights on the in-
teractions of caching, content type, timing characteristics,
and connection management. Konorski and Lis [24] analyze
through simulation the effect of aggressive TCP configu-
ration in networks. Similar work using game theoretic tools
are done by Zhang et al. [25].

To supplement the research in this field, our work
quantitatively provides the real measurement analysis of the
interactions of TCP connections during web download. We
also analyze the interaction when the transport protocol of
the connections is enhanced to be more aggressive for short
flows which most web resources create. We begin by de-
scribing the functionality of the enhanced transport pro-
tocol, FLD_TCP.

2.1. FLD_TCP: An Enhanced TCP Variant. Flow-Length
Dependent TCP (FLD_TCP) is an experimental modifica-
tion to the Transmission Control Protocol that prioritizes
the short flows to finish faster as compared to long flows. It
tries to attain a higher share of the network bandwidth than
other TCP flows as long as the flows are short and becomes
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TCP-friendly once the amount of transmitted data exceed
a threshold value.

With the objective of enabling short flows to finish faster,
it also starts with a higher congestion window of 10 segments
as done in the newer Linux TCPs. In the Slow-start phase,
FLD_TCP is more aggressive than traditional TCP. While
traditional TCP doubles its congestion window every round
trip in the Slow-start phase, FLD_TCP triples its congestion
window.

Figure 1 demonstrates how the modification of con-
gestion window growth factor in the Slow-start phase saves
round trips required to finish flows. We compare the cu-
mulative amount of bytes transferred over each round trip
Time (RTT) between traditional (RENO) Slow-start and
FLD_TCP’s Slow-start. We assume flows in both starts with
initial congestion window of 10 segments and each segment
holds 1500 bytes for simplicity, and they do not hit the
bottleneck so that congestion avoidance mode does not kick
in. We see that after the 1st RTT, both transfer 15 kB, and by
the 2nd RTT, FLD_TCP transfers 60 kBwhile RENO transfers
just 45 kB. *is difference increases as RTT progresses. Note
that the Y-axis is in logarithmic scale, so the difference be-
tween the two mechanisms is quite significant. If we consider
a flow of size 500 kB, we see that FLD_TCP would finish the
flow in 4 RTTwhile RENO’s Slow-start would require 6 RTT.

Also in the congestion avoidance phase, as long as the
amount of transmitted data is within the specified threshold
value, FLD_TCP functions in Relentless TCP [26] mode.
Instead of multiplicative decrease upon packet loss, this TCP
reduces the congestion window by the amount of lost
segments only. An advantage to this approach is that this
abides by the Van Jacobsons packet conservation principle
while being aggressive at the same time.

And after the TCP flow exceeds the threshold value,
FLD_TCP functions in traditional RENO behavior thus
acting in a TCP-friendly manner. *e threshold value is
selected to be 2MB which is enough to accommodate small
objects from most connections as shown in Figure 3. *us,
for flows less than 2MB, FLD_TCP provides an aggressive
transport enabling them to gain a bigger share of network
bandwidth in the presence of cross traffic at the bottlenecks
allowing them to finish faster.

*us, this enhanced TCP with its aggressive components
in the Slow-start, as well as the congestion avoidance phase

allows short flows to gain a bigger share of network
bandwidth and hence finish the flows faster.*e workings of
the protocol and its performance evaluation in bulk file
transfers are described in papers [27, 28]. In the following
sections, we describe the implications of using such trans-
port protocol for web data transport.

3. Measurement and Analysis Setup

*e measurements are done on Google Chrome browser.
*rough the Chrome remote debugging protocol, various
statistics are collected during the loading of the target web
pages including connection characteristics. *e setup for the
experiments run in this paper is laid out in Figure 2.

Since we compare the performance of an enhanced TCP
(the enhancement is only sender side modification), against
the commonly used Cubic TCP, squid proxies are placed on
the path between browser and servers to emulate the servers.
*is implementation enables us to examine the effect of
using a different transport protocol for sending web data
through the network. Also, we use a WAN emulator in the
path and create background traffic as required using IPerf
[29] to study the performance under realistic network
conditions.

*e WAN network emulator is set up to control the
bandwidth and delay parameters of the link between the
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proxy and the browser. We use the LTE and the 3G network
settings for our measurements. *e maximum bandwidth is
set at 100Mbps for LTE and 21Mbps for 3G. To obtain
realistic values of delay and bandwidth for the wireless links,
we analyzed the data obtained from the measurement
platform Netradar [30]. We observed that for LTE, the ef-
fective average bandwidth is 25Mbps and delay is 13ms. For
3G, it was 7Mbps and 25ms, respectively. *us, we in-
troduce background traffic flows using IPerf to bring down
the effective bandwith so that it is similar to the real world
values. For the test measurement runs, each web page is
downloaded 11 times, and the aggregate measures are an-
alyzed to mitigate the effect of network variance.

3.1. Connection Characteristics on the World Wide Web.
In order to characterize the TCP connections in web data
transport, we conducted measurements with 100 sites from
the Alexa top sites list. *e home pages of the sites were
loaded on the browser, and the statistics were collected.

To validate our sample dataset, we contrasted the dis-
tribution of the volume of data transferred through TCP
connections across the web pages in our list against all sites

maintained at httparchive.org. *e httparchive dataset was
obtained from Google BigQuery. Figure 3 shows similar
distributions for the two datasets. We see that the data
transferred through each connection have a long tail dis-
tribution. Almost 85% of connections transport less than
50 kB of data and 99% of connections transport less than
500 kB of data.

TCP connections are increasingly becoming encrypted
on the web, and the proxies are typically unable to cache the
web objects served from such encrypted TCP connections.
For our measurements where we emulate the end server with
a proxy, we want to know howmuch of the web page data are
being served from proxy cache and how much are encrypted
or served from elsewhere.

Since we install the two different TCPs on the squid
proxies to compare them, we need to be aware of the effect of
sending rates of the servers into our measurements. *e
objects that are cached at the proxies have their sending rate
fully controlled by the transport protocol of the proxy. But
for objects that cannot be cached, the sending rate of the
actual content servers and the link condition between the
proxy and the content servers can also have effect, although
minimal. Figure 4 shows our observation on how many data
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Figure 3: Comparison of connection sizes distributions in homepage of Alexa 100 sites with the larger dataset of http://httparchive.org.
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objects are served from different caches as well as how many
connections terminate at the proxy.

We see that 59.42% of the web objects are served from
TCP connections terminating at the squid proxy (where
50.42% return with cache HIT while 9% object return with
cache miss). And 40.58% of objects are served from TCP
connections terminating elsewhere (11.27% have different
X-Cache header value (which indicates if the HTTP response
was served from the proxy or not) from our squid proxy and
29.31% do not have X-Cache header).

We also classified the page types based on whether the
connections are encrypted or not. As illustrated in Figure 5,
we observed that 37.561% of web pages have more than 90%
of the TCP connections encrypted while 33.358% of web
pages had more than 90% unencrypted connections serving
the pages. 29.081% pages however were served by both
encrypted and unencrypted TCP connections. We later
compare our analysis on these page types.

Based on these information, we now proceed to measure
the effect of the enhanced transport protocol to the page load
time of the web pages in our sample list.

4. Results and Analysis

In this section, we present the results of using the enhanced
transport protocol FLD_TCP as compared to Cubic TCP for
downloading web pages.

Page load duration is obtained from the Chrome
browser’s loadEventFired event. *ere are idle times during
the page load, during which there is no ongoing data transfer

from the network to the browser.*us, we calculate the page
net transfer time as the difference between the page load
duration and the idle duration during the page load.

Figure 6 shows the effect on page net transfer time of
the three different page types on different network char-
acteristics upon using the two different transport protocols,
Cubic and FLD_TCP. We see that FLD_TCP reduces the
page net transfer time for all pages types (encrypted,
nonencrypted, and mixed). *e reduction in page load time
is more in 3G network setup than LTE. For the rest of the
analysis, we will look into the LTE network setup only for
the sake of conciseness.

Now we look deeper into the page load process and
analyze the distribution of idle time (mentioned above)
during page load. *e idle time constitutes of the duration
where the page is not receiving any objects since we are
concerned about network-level downstream activity. Figure 7
shows the CDF and histogram of the idle time duration
during the page load indexed against the total page load
duration. In general, there is significant idle time during
a page load with median number of pages having around
50% of page load time as idle from network data reception
perspective. Comparing the FLD_TCP and Cubic graph in
the figure, we observe that FLD_TCP increases the idle time
proportion in receiving objects for the page. Since
FLD_TCP finished object transfers faster than Cubic, an
increase in the proportion of idle time during page load
occurs for FLD_TCP.

Next, we look into the concurrency of data transfer
between the browser and the servers during a page load. We
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create a page level effective concurrency metric for each page
load. By tracking the number of active connections (objects
being received through them) and their cumulative dura-
tion, we obtain a weighted value for a page that denotes the
effective number of connections seen throughout the page
load duration. A concurrency level of 1.5 would imply that
without any idle time, the page could be served the same
amount of data through 1.5 connections. Figure 8 shows that
effectively most pages seem to get a concurrency level less
than 2. And it also shows that FLD_TCP decreases the ef-
fective concurrency of the page, implying that it would
require fewer TCP connections to serve a page, leading to
improved connection efficiency.

Next, we conduct a connection-level analysis of the two
transport protocols. As established earlier, connections are
either encrypted or unencrypted. We measure the effects in
the duration of both connection types upon using the two
protocols. From Figure 9, we observe that FLD_TCP reduces
connection duration for both encrypted and unencrypted
connections. Since HTTP/2 protocol is gaining momentum,
we also analyzed the effect of FLD_TCP on the HTTP/2
connections. Figure 10 shows that the connection durations
for HTTP/2 connections are also reduced by FLD_TCP.

For the objects-level analysis, Figure 11 shows the
amount of data transferred in each round trip time.*e one-
way delay for 13ms was used in our LTE setup that makes
the RTTat least 26ms. *us, the figure shows the maximum
size of objects transferred in each RTT bin. In this analysis,
we only consider the first object in the connection that allows
us to see the window increase function in action.

We see that in the first RTT of the connection, the
maximum data size is 14KB for both FLD_TCP and Cubic in
accordance to the 10 segments initial window size. In the
second RTT, Cubic’s window size doubles while FLD_TCP’s
window size triples which allows bigger-sized web objects
transfer to also finish within the second RTT. Similarly, in
each of the succeeding RTTs, FLD_TCP is able to finish the
transfer of larger web objects than Cubic.

*us, the effects of using FLD_TCP at the sender side of
TCP connections are viewed at three levels of granularity.
On the objects level, RTTs are saved, that is, web objects are
fetched faster. On connection level, the connection dura-
tions of the TCP connections become shorter for both
encrypted (including HTTP/2) and unencrypted connec-
tions. *ese accumulate at the page level, making the web
pages load faster thus improving user experience on the web.
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Figure 6: Page net transfer time (LTE upper figure and 3G lower figure) (seconds) obtained for different page types for Cubic and
FLD_TCP.
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For service providers, even a marginal improvement of
web latency translates to significant increase of user retention
rates.*us, using these methods to improve their services can
have high economic impact. For modern wireless devices, the
energy cost per bit for wireless transmission is 1000 times
more than the energy cost for single computation of that bit
[31]. By reducing the data transmission duration, there lies
a huge energy saving potential as well.

5. Conclusion

In this paper, we analyzed the connection characteristics of
web data transport. We also analyzed the effect of using an
aggressive transport protocol for web data transfer. We used
the transport protocol at a proxy but it can also be used at the
content servers to boost the data transport for short flows.
We found that the an aggressive transport protocol such as
FLD_TCP reduces the load time of web pages by saving RTT
while fetching web objects and reducing the connection
duration as compared to Cubic TCP. It also decreases the
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ferent page types.
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concurrency of flows, thereby creating fewer TCP connec-
tions which come with connection setup overheads required
to serve a page.

Improving web user experience requires optimization on
both browsers and the data transport. Networks are evolving
towards 5G, SDN, and cloudlet architectures. *ese mecha-
nisms of alternate transport protocols will help realize low
latency services for improved user experiences in general.
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