
Research Article
A Persistent Structured Hierarchical Overlay Network to
Counter Intentional Churn Attack

Ramanpreet Kaur,1,2 Amrit Lal Sangal,1 and Krishan Kumar3

1Department of Computer Science and Engineering, National Institute of Technology, Jalandhar, Punjab, India
2Department of Information Technology, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
3Department of Computer Science and Engineering, Shaheed Bhagat Singh State Technical Campus, Ferozepur, Punjab, India

Correspondence should be addressed to Ramanpreet Kaur; ahluwalia.raman1@gmail.com

Received 23 February 2016; Revised 12 August 2016; Accepted 5 September 2016

Academic Editor: Rui Zhang

Copyright © 2016 Ramanpreet Kaur et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The increased use of structured overlay network for a variety of applications has attracted a lot of attention from both research
community and attackers. However, the structural constraints, open nature (anybody can join and anybody may leave), and
unreliability of its participant nodes significantly affect the performance of these applications and make it vulnerable to a variety of
attacks such as eclipse, Sybil, and churn. One attack to compromise the service availability in overlay network is intentional churn
(join/leave) attack, where a large number of malicious users will join and leave the overlay network so frequently that the entire
structure collapses and becomes unavailable. The focus of this paper is to provide a new robust, efficient, and scalable hierarchical
overlay architecture that will counter these attacks by providing a structure that can accommodate the fleeting behaviour of nodes
without causing much structural inconsistencies. The performance evaluation showed that the proposed architecture has more
failure resilience and self-organization as compared to chord based architecture. Experimental results have demonstrated that the
effect of failures on an overlay is proportional to the size of failure.

1. Introduction

In the past two decades, structured overlay networks have
emerged as a suitable architecture for implementation of
various content sharing and internet service support system
applications. An overlay network is defined as a layer of vir-
tual network topology on the top of physical network, where
a large number of users are pooled in order to share their
resources and to provide distributed points of service. The
significant scale, fault tolerance, and cost advantages of over-
lay networks make them very popular in the present internet
scenario. Although these structures are very efficient and
popular, they are not developed by keeping security in mind
and are susceptible to many attacks.They can serve as a vehi-
cle for attackers on the internet as they are vulnerable tomany
attacks because of the fleeting behaviour of nodes forming the
overlay network.

There are two types of overlay networks available: struc-
tured and unstructured overlay networks. The structured

overlay networks impose constraints on the structure of the
overlay. So, if a significant number of nodes join and leave
the network at an extremely rapid rate the overhead (mainte-
nance messages) associated with this dynamism can become
significant, thus degrading the performance of the system.
This requirement makes structured overlay network more
sensitive to the fleeting behaviour of nodes. The sensitivity
of participants serves as a weapon for attackers to launch
churn attack in order to bring the entire overlay structure
down. An ideal overlay network should be fault-tolerant
and self-organized against the dynamic behaviour of nodes
(also known as churn). However, the initial design of overlay
structures does not take into consideration the notorious
fleeting behaviour of their nodes and thus has the limited fault
tolerance and self-organization.

Security is an important issue that needs to be con-
sidered when choosing architecture to design an overlay
system. Since overlay nodes are potentially unreliable and
expected to behave in malicious ways, thus providing an

Hindawi Publishing Corporation
Journal of Computer Networks and Communications
Volume 2016, Article ID 5191405, 15 pages
http://dx.doi.org/10.1155/2016/5191405

2 Journal of Computer Networks and Communications

acceptable level of security in overlay based applications is
quite challenging. Till date, researchers [1–8] have uncovered
the various security issues in structured overlay networks.
The major security issues include eclipse attack (colluding
nodes attempt to partition the network) [9–12], Sybil attack
(where nodes forge identities) [13–15], and churn attack [6,
16–18]. Although a lot of research has been done on eclipse
and Sybil attacks, surprisingly churn induced attacks are
not widely studied. Most of the proposed structures [19–
24] guarantee the performance of structured overlays in
controlled environments only and do not consider induced
dynamics of malicious peers. Although some researchers
[25–29] have studied the criticality of peer dynamics and
churn induced attacks, none of the proposed work can cope
with these attacks without affecting the openness of overlay
networks. So, in this paper, we design a new robust struc-
tured hierarchical overlay architecture that will counter these
attacks by providing a structure that can accommodate the
fleeting behaviour of nodes without causing much structural
inconsistencies. In this architecture certain nodes (highly
stable nodes with always on characteristic) have assigned
special roles tomanage the arrangement of less stable andnew
nodes. The proposed architecture is a robust, self-modifying,
and scalable structure based on a hierarchical combination
of chord and robust m-child family tree with its nodes spread
over multiple peers. A peer can be mapped to a node based
on hash based uniform mapping.

From the above analysis, it is clear that, in a dynamic
large scale network, the problem of node dynamicity must
be addressed without causing routing inconsistency. In this
paper, we propose structured hierarchical overlay architec-
ture by using a super peer concept [30–35]. In the proposed
approach, we use a combination of ring and robust m-child
family tree and explore the dynamicity handling by localizing
the effect of churn attack in subtree and cause minimum
structural or routing inconsistencies. The use of robust m-
child family tree architecture is powerful not just because it
supports key based lookup, but because they work even when
the network is highly dynamic with nodes constantly joining
and leaving the network. That is, robust m-child family
tree structure can handle the churn attack scenario without
causing much structural inconsistencies as most updates and
structural transformations (new key is always inserted at
the leaf node) of robust m-child family trees are limited
to the leaves and lower levels of the tree. In the proposed
hierarchical design, super peer nodes are selected based on
some predefined performance criteria such as performance
and reliability. These super peer nodes will serve as a root
node for individual m-child family trees and will be arranged
in ring architecture according to their peer IDs.

As we explain in this paper, the proposed architecture has
the following advantages over basic chord architecture:

(i) The proposed architecture provides more stability, as
dynamic population changes in this architecture have
limited interference to a tree rather than to the whole
network. So, this architecture provides “isolation of
churn” as node join or leave within a tree will not
affect the top level chord overlay.

(ii) Most of the available tree structures suffer from lack of
redundancy and therefore their structure is sensitive
to single node and link failures. In the robust m-
child family tree this limitation is overcome by storing
additional pointers to parent and uncles along with
the child information to make it robust to node and
link failures.

(iii) The m-child family tree structure ensures that new
unreliable node will always join as the leaf node and
as we know in the tree topology the effect of failure
is much higher for nodes close to the root node. So,
our proposed tree structure is robust to churn attack
where an attacker will trigger a large number of new
nodes to join and leave the overlay in a short time
span, because all these nodes irrespective of their
node ID values will always join as leaf nodes and
minimize the topology changes resulting from the
new nodes joining and leaving the overlay.

(iv) In order to ensure fault tolerance, each super peer
node has a backup node, which periodically pings the
super peer and makes checkpoints on its status.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the basic concepts and the most important
contributions in this area. In Section 3, we provide abstract
system model and adversarial model. Section 4 introduces
our proposed structured hierarchical overlay networkmodel.
In Section 5, we discuss the basic algorithms for the proposed
overlay architecture. Section 6 outlines the design of our
experiments and covers the results and discussions.

2. Background and Related Work

In this section, we first introduce the basic concepts to aid the
better understanding of our research work. Then, we discuss
the important research contributions in the field of robust
structured overlay networks that canhandle a large fraction of
malicious peers that frequently join/leave the overlay network
to consume most of the network bandwidth for structure
management purposes and make the network unstable.

2.1. Basic Concepts. Before discussing the value of proposed
architecture, we first introduce the hierarchical overlay net-
works and then examine the churn, both as legitimate and
as malicious behavior. This section will highlight the need
of robust overlay architectures to maintain the health and
security of the overlay networks in the face of churn.

2.1.1. Structured Hierarchical Overlay Networks. Structured
overlay networks are a self-organized, distributed architec-
ture of a large number of heterogeneous and unreliable
machines arranged in a specialized structure to share a
set of resources with reasonable performance guarantees.
In traditional structured overlay networks all the partici-
pants are considered equal in the sense that they share the
same set of responsibilities and use the same set of rules
for determining the lookup routes for the messages [38].
Searching is one of the most important services provided

Journal of Computer Networks and Communications 3

by the structured overlay networks. The desired features of
searching are high quality query results, minimum query
overhead, high routing efficiency, and resilience to node
failures. Structured overlay networks have poor searching
performance in dynamic environments, where nodes join
and leave the overlay network frequently. To capture the
heterogeneity of overlay participants and to improve the
performance and scalability, overlay networks utilize the
multiple levels of hierarchy in the form of hierarchical
overlay networks. In these architectures, different overlay
participants are given different roles (super peers and regular
nodes) based on their reliability and capability. Structured
hierarchical overlay networks use only structured topology
at each level. The main aim behind the use of hierarchical
overlay networks is to group the overlay nodes logically and
each group then utilizes its intragroup overlay protocol for
maintenance and lookup operation. This logical grouping of
nodes is done in the top layer overlay network, where one
or more nodes have been assigned the responsibility of super
nodes and act as the gateway to the next level of nodes.

2.1.2. Churn. The correctness and the performance of struc-
tured overlay networks mainly depend on its up to date
routing table entries that together form an overlay topology
with specific structural constraints (e.g., ring structure in the
chord overlay network). But, due to their open nature in the
real world, where nodesmay join or leave the overlay network
at any time, this continuous dynamism of peer participants
in the form of continuous joining, leaving, and failure from
the overlay network is known as churn. Churn has significant
impact on the performance of structured overlay networks
as it may generate a considerable traffic to accommodate the
rebalancing of data among overlay participants and to update
the routing table entries accordingly. Thus, significant churn
may result in blocking of the normal search operation and
result in lookup failures or inconsistent lookups. The most
common causes of node’s unavailability are network failures,
mobility, overload, crashes, or a nightly-shutoff schedule.

2.1.3. Churn: Inherent Weakness to Intentional Attack. Churn
is studied as a dynamic legitimate behaviour of overlay
participants that degrade the overlay network performance;
until 2004, it has been regarded as a potential security threat
by Linga et al. [39] to attack the availability of the overlay
network. Due to the open nature of overlay networks, it is
very difficult to avoid the participation of malicious nodes.
Thus, researchers should concentrate on the development of
robust overlay networks that can tolerate churn attack while
still providing the services to the overlay users.

(1) Different Models of Churn Attack: Random and Strategic.
Churn can be exploited as a tool to attack the availability
of overlay network by generating peers, joining and leaving
the network quickly in order to corrupt the functionality of
the overlay network. Churn attack is a peer to peer version
of Denial of services (DoS) attacks in which malicious peers
frequently join and leave the overlay network to induce a
large amount of communication and processing overhead to
make it incapable of serving legitimate overlay participants.

These efforts of malicious attackers can be categorized into
two main categories based on attacker’s capability: random
churn attack and strategic churn attack.

Random Intentional Churn Attack. An attacker can exploit
the churn effect by triggering the fast join/leave of a number
of slave nodes to destabilize the routing infrastructure. This
attack is a type of DDoS attack on overlay networks and its
impact can be amplified by Sybil nodes.

Strategic Churn Attack. An intelligent adversary can plan
a strategic attack against structured overlay network by
continuously attacking its weakest part or pinpointing the
attack to specified targets only. Such an attacker learns the
topology of the overlay by inserting a crawler and then plans
its attack accordingly to partition the overlay network.

Churn attacks are an artificially induced churn with
potentially high rates to cause bandwidth consumption due to
overlay maintenance. This leads to the worst case of denial of
service or service degradation. Cooperative web caching [39]
is an attractive application of structured overlay networks to
eliminate the use of proxy servers by storingmetainformation
in the overlay nodes. However, this application is vulnerable
to churn attack as an attacker can easily mount a distributed
denial of service attack by crippling the sharing mechanism.
For this, attackers can pose extreme stress in the form
of maintenance overhead generated by a large number of
concurrent nodes join/leave procedures, which otherwise are
considered nonmalicious. In this paper, we have proposed an
efficient structured hierarchical overlay network to survive
churn attack.

2.2. RelatedWork. Churn is an attractive tool for an adversary
to destabilize the structured overlay network [39]. In this
attack, a large number of malicious users will join and leave
the network frequently in order to increase the bandwidth
consumption due to overlay maintenance. The state-of-the-
art structured overlay network architecture [20, 24, 40–43]
considers churn as a legitimate node behaviour and provides
simple maintenance mechanisms with significant recovery
time to handle a set of node failures [44–46]. Researchers
have been aware of this attack for quite a while [2, 6–8, 17] and
various solutions have been presented to thwart this attack
[25, 27, 47–49] but until recently no solution can provably
cope with this attack without compromising the openness
of the overlay network. Moreover, most of the proposed
solutions [27, 48] are static as they can handle only bounded
number of node failures. Kuhn et al. [27] have proposed an
efficient but a complex architecture to counter an intelligent
adversary by continuously shifting newly joined nodes to
less sparse areas. In contrast, our proposed technique is
simpler and addresses more realistic random intentional
churn attack by allowing the new nodes to join as a leaf
node thereby isolating the effect of leave of malicious nodes
without affecting the rest of the overlay. A large number of
researchers are currently working on structuring the overlay
networks in a hierarchical manner [31, 33–35, 37, 50–54] in
order to achieve better efficiency, performance, maintenance
cost, and load balancing. In [53], Rocamora and Pedrasa have

4 Journal of Computer Networks and Communications

Table 1: Comparison of performance of different overlay architectures.

Technique Topology Join Leave Hops
CHORD [24] Flat 𝑂(log2𝑛) 𝑂(log2𝑛) 𝑂(log 𝑛)
Pastry [20] Flat 𝑂(log2𝑛) 𝑂(log2𝑛) 𝑂(𝑛 log 𝑛)
TLS [36] Flat 𝑂(log 𝑛) 𝑂(log 𝑛) 𝑂(log 𝑛)
BATON [19] Flat 𝑂(6 log 𝑛) 𝑂(log 𝑛) 𝑂(log 𝑛)

Chordella [37] Hierarchical 𝑂(log2𝑁) 𝑂(log2𝑁)
𝑂(log 𝑛)

In case of super peer failure, where𝑁 is the number of super peers
This paper Hierarchical 𝑂(𝑚2 − 𝑚 + 1) 𝑂 (2) + 2𝑂 (𝑚(𝑚 − 1)) 𝑂(log 𝑛)

evaluated the hierarchical DHTs in the churn scenario of
mobile nodes and clearly state the effectiveness of hierarchical
DHTs as compared to flat DHTs. However, they have not
considered the effect of malicious adversary, whomaliciously
triggers a large number of join requests for limited lifetime to
bring the entire system down.

Table 1 summarizes the comparison of performance of
different overlay networks and our proposed architecture. In
this table, we have compared the performance of different
state-of-the-art flat and hierarchical structured overlay net-
works in terms of lookup hop count and cost of join and leave
in the form of messages sent per join/leave event. The major
advantage of our proposed work is that the cost of insertion
anddeletionwill not increasewith the increase in the network
size as the nodes do not need to make its place in the overlay
structure; rather they will always join as leaf nodes. The cost
of node join or leave will depend on the degree of m-child
family tree as it will define the number of redundant pointers
to the target node.

3. Model

3.1. System Model. A dynamic structured overlay network
is composed, at any time, of a finite set 𝑛 of nodes due to
continuous arrival and departure of overlay nodes. These
nodes have assigned a unique identifier derived by using
the standard SHA [55] on the IP address of a node from
a k-bit identifier space. Each node of the tree will store a
range of values by splitting this range into four equal parts
and maintain m-child pointers to store the address of the
subtree responsible for storage of these ranges. The nodes
are organized into trees, and each tree has its autonomous
overlay network with a reliable root node.The overall overlay
tree organization is provided by top level chord [24] based
overlay network. Each tree has its root node (super peer)
in the top level overlay network. Super peer nodes act
as a gateway between different trees to provide intertree
communication. The top layer overlay (chord) is responsible
for overall connectivity of different peers. So, chord ring
is formed with more stable and powerful nodes. The tree
nodes will communicate with each other through message
passing using the hierarchical overlay network. This message
passing is possible by maintaining a neighbourhood table
at each node and this table will define the topology of the
lower tier overlay network. The neighbourhood table of each

node will store the address of its immediate descendants, its
parent, and its uncles (siblings of its parent). The top level
overlay will determine the tree responsible for the key and
then the responsible tree will use its overlay to determine
the specific node responsible for the desired key. The routing
mechanism of our tree structure is similar to searching
in a tree. The dynamicity of envisioned system will cause
topological inconsistencies and communication failure due to
invalid entries in the neighbourhood table. Our envisioned
system is robust to the joining of a new node as the new
node will always join as the leaf node of the appropriate
subtree based on its node ID. So, the joining of a new node
and its unreliable behaviour will not affect the rest of the
structure of the tree. But, the uninformed leave of a tree node
causes disconnection of its descendants from the rest of the
tree. So, an efficient recovery mechanism should be in place
to fix the network. That is why dynamicity can be used by
an attacker as a weapon to collapse the entire structure of
overlay networks.The communication failure caused by these
topological inconsistencies is the focus of this paper.

3.2. Adversary Model. A fundamental issue faced with an
open system is that any new node can join the network at
any time and existing nodes can leave the network without
informing. The attacker can exploit this dynamic behaviour
of nodes, to launch an availability attack against structured
overlay networks. In our work, we consider an adversary𝐴adv
that can launch a churn attack against the overlay network by
performing frequent join and leave of a number of nodes per
unit time and results in a drastic change in the population
of an overlay. Here, node population 𝑛 comprises nodes
currently participating in overlay 𝑛 = (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
). In this

model, we assume that nodes will depart or crash without
notice, hence causing communication failure due to invalid
neighbourhood table entries. In the intentional churn attack
model the attacker will generate a polynomial number of join
requests from a large number of nodes with randomnode IDs
and enforce a limited lifetime of each node. The main aim
of joining attacker is to ruin the whole system. In our model
external adversary controls the churn, but not the behaviour
of internal nodes. In traditional DHTs, these newly joined
nodes will take their place in the DHT and after an enforced
time they all will leave the overlay to break the entire structure
and make the overlay network unable to serve queries.

Journal of Computer Networks and Communications 5

S1

S200

S70

S40

S120

S160

Finger table

Start Successor

 Keys

Neighbourhood table
Node Pointer

bound
Upper
bound

Parent
Child 1
Child 2
Child 3
Child 4
Uncle 1
Uncle 2

Lower

Figure 1: Proposed hierarchical overlay network.

4. Proposed Robust m-Child Family Tree
Based Structured Hierarchical Overlay
Network Architecture

In a structured overlay system, finding an efficient and scal-
able solution for content discovery in the presence of massive
churn is a challenging problem. In this section, we present
a robust and fault-tolerant structured hierarchical overlay
structure to counter churn attack. The basic mechanism
behind our approach is to give a noncritical role to newly
joined nodes so that their failure will have no or short
range effect. Figure 1 represents the structure of the proposed
overlay network.

The proposed architecture is built on a two-tier hierar-
chical architecture, where the higher tier consists of super
peer nodes representing ring nodes and forming the root of
the family tree and lower tier represent the remaining family
tree. The key idea behind using family tree structure is to
create a scalable and robust overlay network, where each node

can store at the max 𝑁 files. Every family tree has a super
peer as its root node. Local peers in the same family tree are
connected to other family trees through their root node and
are arranged. In case of a query message, the local node will
calculate the given key using uniform mapping rule. If a key
lies in its own jurisdiction, it will find the node responsible;
otherwise query will be moved upward until it finds the node
responsible or it reaches the root node. At the root node,
it will check whether required key lies in the local m-child
family tree or not. If it lies there, then request will be sent
to local m-child family subtree; otherwise root will find the
super peer responsible for holding the key and forward the
query to appropriate super peer in the ring topology.

Definition 1. Each regular peer 𝑝 will be a member of local
m-child family tree with root node 𝑆

𝑛
(member of the layer 1

chord ring), if 𝑆
𝑛
is the first node whose ID is followed by the

ID of the peer 𝑝.
To provide a better understanding of the proposed hier-

archical model, we first provide an overview of working of

6 Journal of Computer Networks and Communications

Node id = 132

Node id = 211

Node id = 121

Node id = 185

Node id = 166

1 100 200 300 400

2 99

151 173
127 149

175 198

101 126 150 174 199

102 125

301 399

201 299

Node id = 400

2 · · · 99 C1

C1

C1

C1

C2

C2

C2

C2

C3

C3

C3

C3

C1

C1

C1

C1

C1

C2

C2

C2

C2

C3

C3

C4

C4

C3

C3

C4

C4

C2
C3 C4

C4

C4

C4

C4

101 · · · 199 201 · · · 299 301 · · · 399

Node id = 111

Figure 2: Anatomy of robust m-child family tree.

robust m-child family tree and how overlay peers will be
organized into robust m-child family tree topology.

4.1. Basic m-Child Family Tree. We consider trees that store
a finite set 𝐾 of keys in the range (𝐾

𝑖
, 𝐾
𝑖+1
, . . . , 𝐾

𝑛
), where

𝐾
𝑖
is the node ID of the root node (super peer) and 𝐾

𝑛+1
is

the node ID of immediate successor of the root node in the
top layer chord ring as shown in Figure 2. Each node𝑁 of the
tree contains a sequence of keys𝐾

𝑖
split into four equal ranges

separated by pointers 𝑐[𝑥] referring to its child node. For the
leaf nodes all the child pointers are null.

Initially, all the keys are stored by the root node. As a new
node joins the tree, it will be added as a leaf node of a subtree
based on its node ID value. The child pointer of the parent
node will be updated accordingly and the parent will delegate
the key storage responsibility of appropriate range (the range
in which joining node’s ID is falling) to its child node. The
values of keys of separate ranges are stored in each subtree.

4.2. Anatomy of Robust m-Child Family Tree. The creation
andmaintenance of family tree structure is quite simple.This
tree structure fulfils the property that insertions are restricted
to be as leaf nodes. So, new nodes can join or leave the data
structure without causing much inconsistency and make this
system suitable for dynamic environments by decreasing the
cost of insertion and deletion. In the proposed architecture,
family tree with the fixed root and additional robust pointer
structure and robust representation of stored keys is used. An
m-child family tree is the one in which a tree can have 𝑚
children.

Definition 2 (proposed m-child family tree). This is a
self-modifying, multiway structure of order 𝑚, where
each node 𝑁 is defined as a tuple of [(Range

1
, 𝐶
1
),

(Range
2
, 𝐶
2
), (Range

3
, 𝐶
3
), . . . , (Range

𝑚
, 𝐶
𝑚
), bool, 𝑈[𝑥], 𝑝],

where Range
𝑖
is the set of key values stored by the specific

subtree in the ascending order (1 ≤ 𝑖 ≤ 𝑚), 𝐶
𝑖
is the pointer

from node 𝑁 to its child (1 ≤ 𝑖 ≤ 𝑚), bool is a Boolean
variable, which will be true if 𝑁 is a leaf node and false
otherwise, and 𝑝 and𝑈[𝑥] are the pointers from the node 𝑡 to
its parent and uncle (parent’s sibling), respectively.The values
of keys separate the ranges stored in each subtree.

The robust pointer structure and new insertion as leaf
node make this structure suitable for implementation of
overlay network in which new nodes are usually unreliable.
In robust m-child family tree structure nodes promptly react
to node failure to maintain connectivity.

The structured hierarchical overlay network implements
the network as a combination of chord and robust m-child
family tree. The information sharing between different peers
will be implemented using this combination, where chord
network will identify the m-child family tree responsible for
storage of a particular range of data and this m-child family
tree will then find the particular node responsible for it. This
m-child family tree is the basic data structure for a structured
hierarchical overlay network with a hash table distributed on
it. There is a node in an m-child family tree for each peer in
the system. An m-child family tree has spread its nodes over
different peers and these values are mapped to hash of an IP
address of these peers.

Journal of Computer Networks and Communications 7

5. Proposed Structured Hierarchical Overlay
Network Algorithms

In this section, we introduce different algorithms for cre-
ating, maintaining, and querying an m-child family tree
based hierarchical structured overlay network that derives its
characteristics from the working of general real time family
tree structure. Our goal is to create an m-child family tree
rooted on super node to store a range of values on different
nodes in an effective, fault-tolerant, and efficient manner. In
this architecture, top level chord architecture is formed by
most reliable (high expected life time) nodes and reduces the
expected number of hops and failures.

5.1. Super Peer Selection. In order to create the hierarchical
overlay, first, we need to select top layer overlay nodes. More
stable nodes will be selected as super peers to minimize the
churn effects in the top layer overlay. Various researchers [33–
35, 56] have proposed different techniques to select stable
peers and designate them as super peers of hierarchical
overlays.

In our architecture, we have used a gradient search
algorithm [35] to discover highly stable peers for the top
layer chord overlay network. In this algorithm peer’s uptime
is used as a metric to compute the stability of the peer to
check whether the node is the suitable candidate to take the
responsibility of a super peer. Each super peer node will
maintain two tables: finger table for top layer chord overlay
and routing table for local m-child family tree. The routing
table at each node of m-child family tree will store entries for
its immediate descendants and its parent and uncles (siblings
of the parent node).

5.2. Tree Creation. The initialization of m-child family tree
involves the steps mentioned in algorithm explained in
Algorithm 1.

In our algorithm; we first designate the top layer chord
overlay node (super peer) as the root node of the m-child
family tree. As we know, every chord node with ID m is
responsible for the storage of a range of keys between 𝑚
and 𝑀, where 𝑀 + 1 is the ID of its immediate successor
in the chord overlay. So, we divide this range into separate
chunks, so that layer 2 overlay nodes that have to join
the overlay network will choose their subtree according
to their ID in the appropriate chunk. As already specified
in Section 4, every m-child family tree node is a tuple of
[(Range

1
, 𝐶
1
), (Range

2
, 𝐶
2
), (Range

3
, 𝐶
3
), . . . , (Range

𝑚
, 𝐶
𝑚
),

bool, 𝑈[𝑥], 𝑝], so we have to set the pointers for the child,
parent, and uncle nodes of the root nodes. Initially they all
are NULL pointers and their corresponding entry will be
made in the neighbourhood table of the node.These pointers
and neighbourhood table will be updated as the new nodes
will join the overlay network.

5.3. Peer Join. In order to join an overlay, a requesting node
must know at least one peer, who is already registered in the
overlay network. That registered peer can be a super peer or

Create Tree(T) {
(1) 𝑥 = allocate node()
(2) Parent = NULL
(3) 𝑥[𝑛] = Range(𝑚,𝑀)
(4) Set Root(𝑇) = 𝑥
(5) Divide in chunk(𝑥[𝑛], 𝑡, ch[𝑝])
(6) Repeat for 𝑖 = 1 to 𝑡
(7) 𝑐[𝑖] = Null
(8) Uncle[𝑖] = Null
(9) End for
(10) Return
}

Divide in chunk(x[n], t, ch[p]) {
(1) ch.size = roundoff(𝑛/𝑡)
(2) Repeat for 𝑖 = 1 to 𝑡
(3) size =𝑚 + ch.size
(4) ch[𝑖] = Range(𝑚 ⋅ ⋅ ⋅ size)
(5)𝑚 = size
(6) end for
}

Algorithm 1: M-child family tree creation.

a lower tier peer. The steps of joining process are explained
with the help of an algorithm in Algorithms 2 and 3.

5.3.1. Impact of Node Join. The impact of joining of a node
on the performance of the proposed architecture is negligible.
Because, regardless of the ID of joining node, it will always be
inserted as a leaf node and its parent will delegate its load to
this newly joined node and set its pointer accordingly. So, all
the routing table entries will be correct and thus queries can
be routed to appropriate nodes without disruption.

Theorem 3. In a proposed network of 𝑁 nodes, the expected
number of hops for a join operation is 𝑂(log 𝑛), where n is the
total number of nodes in the overlay and (𝑂(1) + 𝑂(𝑚(𝑚 −
1))) neighbourhood tables get updated after this join operation,
where m is the degree of m-child family tree.

5.4. Maintenance of Failure of Peers and Super Peers. Main-
tenance of the proposed approach is mainly of two types:
intratree and intertree maintenance. Intratree maintenance
handles the impact of normal (informed leave) or abnormal
failure on the structure of B-tree. Intertree maintenance aims
to preserve super peer’s chord structure in the event of super
peer failure or informed leave.

5.4.1. Intertree Maintenance (Top Layer Maintenance). In
order towithstand churn attack, top layer overlay architecture
is made up of highly stable super peer. In order to provide
reliability, each super peer is associated with a backup node.
In case of informed leave, super peer will inform the backup
node about its status and delegate the responsibility.Whereas,
in order to handle failure of super peer, a backgroundperiodic
stabilization process is used. In this stabilization process,

8 Journal of Computer Networks and Communications

Join (n1, n2) {
// node 𝑛

1
wants to join the overlay network and knows a node 𝑛

2
that is currently a member of overlay network.

(1) If 𝑛
2
is a super node(top layer node), then

(2) If host tree is responsible for 𝑛
1
, then

(3) Go to step (6).
(4) Else
(5) 𝑇 = Find Tree(𝑛

1
)

// joining node perform a tree lookup, which is routed in the top level overlay to the super node responsible for the key.
(6) 𝑛

1
.Join Tree(𝑇)

(7) else // if 𝑛
2
is not a super node

(8) 𝑛
2
.Forward Request(root) // node 𝑛

2
will forward the 𝑛

1
’s join request to its root

(9) if root node(host tree) is the super node responsible for the key, then
(10) 𝑛

1
.Join Tree(𝑇)

(11) else //if root node(host tree) is not responsible for the key
(12) 𝑇 = Find Tree(𝑛

1
)

(13) 𝑛
1
.Join Tree(𝑇)

(14) Return.
}

n2.Find Tree (n1) {
// node 𝑛

2
will find the super node responsible for node 𝑛

1

(1) 𝑇 = (𝑛
2
, successor)

(2) if 𝑛
1
∈ 𝑇

// super node responsible for the key is found
(3) return 𝑇
(4) else

// forward the query to next node of the ring
(5) 𝑇.Find Tree (𝑛

1
)

}
n2.Forward Request (n1, Root) {
// Forward the join request from node 𝑛

2
to the root of the tree

(1) If (𝑛
2
is not a root node), then

(2) 𝑛
2
= parent(𝑛

2
)

(3) 𝑛
2
.Forward Request(𝑘

1
, Root)

(4) else
(5) Root = 𝑛

2

(6) return
}

Algorithm 2: Peer join operation in proposed architecture.

backup node will ping the corresponding node after regular
interval and take its responsibility in case of failure detection.

5.4.2. Intratree Maintenance (Tier 2 Maintenance). Intratree
maintenance mechanism is responsible for maintaining the
structure of robust m-child family tree in case of node failure
or informed leave. In a general tree structure with the loss of
the parent node the descendants will be disconnected from
the tree. But, in case of an m-child family tree structure
after parent loss, they will connect to their grandparents
through their uncle (each node will store its parent’s address)
and grandparent will delegate the parent’s responsibility to
the appropriate grandchild. In case of failure of nodes, the
periodic stabilization mechanism will detect the node failure
and take the following corrective measures:

(1) Every child will perform a periodic check to find
whether its parent is alive or not. So, child node will
identify the node failure.

(2) After failure identification, the child will contact its
uncle to inform the grandparent about the failure of
their parent node 𝑥.

(3) After receiving intimation about failure, a grand-
parent will apply the informed leave mechanism to
arrange the graceful leave of its failed child.

The informed leave mechanism is explained as shown in
Algorithm 4.

5.4.3. Impact of Node Failure. The impact of failure of nodes
lying on m-child family tree is very little in the local subtree
only. When a lower tier node fails either its parent or child
nodes will trigger a recovery mechanism similar to informed
leave mechanism to restore their network connectivity with
the rest of the overlay. Each node will also maintain pointers
to their uncles, so that in case of cascade failures in a single
subtree they can restore the connectivity by contacting their
common alive parent with other subtrees (rooted at the same
super peer) by contacting their uncle. The additional sets

Journal of Computer Networks and Communications 9

n1.Join Tree (T) {
Input: Tree 𝑇 has a root 𝑅(Super peer),
: 𝑅 is responsible for a range of keys (𝑚 to𝑀), where𝑚 is the minimum key value and𝑀
is the maximum key value
: Range is divided into 4 almost equal chunks: (ch[1], ch[2], ch[3] and ch[4])

(1) Repeat for 𝑖 = 1 to 4
(2) If 𝑛

1
∈ ch[𝑖], then

(3) If 𝑐[𝑖] == NuLL, then
(4) Set 𝑐[𝑖] = 𝑛

1

(5) Delegate ch[𝑖] values to node 𝑛
1
.

(6) parent = 𝑇
(7) 𝐿 = parent(𝑇) // 𝐿 is the grandparent of newly joined node
(8) Initialize fingers (𝑛

1
, 𝐿) // initialize all the child, parent and uncle’s pointer values

(9) break
(10) Else
(11) Set 𝑇 = 𝑐[𝑖]
(12) break.
(13) End For.
(14) 𝑛

1
.Join Tree(𝑇)

(15) Return
}
Initialize fingers (n1, L) {

(1) Divide in chunk(𝑥[𝑛], 4, ch[4])
(2) Repeat for 𝑖 = 1 to 4
(3) 𝑐[𝑖] = Null
(4) 𝑈[𝑖] = 𝐿(𝑐[𝑖])
(5) End for
}

Algorithm 3: Peer join operation in the responsible tree of the proposed architecture.

Leave(n1) {
// node 𝑛

1
wants to leave the overlay network.

(1) If 𝑛
1
is a leaf node, then

(2) 𝑛
1
delegates its range to its parent and inform its leaving to all neighbours.

(3) Else // 𝑛
1
is not a leaf node

(4) PR = Predecessor(𝑛
1
) // predecessor of the node in its local subtree

(5) PTR = Parent(PR)
(6) PT = Parent(𝑛

1
)

(7) PR delegates its load to PTR
(8) 𝑁

1
delegates its load to PR.

(9) PT now points to PR and node 𝑛
1
can leave now.

(10) Return
}

Algorithm 4: Peer leave mechanism of proposed architecture.

of links maintained in neighbourhood table apart from the
standard links of overlay aid robustness of the proposed
architecture.

Theorem 4. The maintenance operation for failed node 𝑛
1

will affect 𝑂(log 𝑡) nodes with (𝑂(2) + 2𝑂(𝑚(𝑚 − 1)))
neighbourhood tables updates, where 𝑡 is the number of nodes
in a subtree rooted on parent of failed node and m is the degree
of m-child family tree.

5.5. Lookup Algorithm. Any node from top tier or lower
tier can issue a lookup request. In the second case, query
should first be forwarded to the connected super peer in order
to process it. Super peer will find the tree responsible for
answering it, by routing the lookup request in the top tier
chord overlay. After successfully finding the tree responsible,
the root node will search for the node actually responsible for
storing the key as shown in Algorithms 5 and 6.

10 Journal of Computer Networks and Communications

Key Lookup (n1, k1) {
// lookup algorithm for key 𝑘

1
issued by node 𝑛

1

(1) If 𝑛
1
is a super node of tree 𝑇, then

(2) If (𝑛
1
can answer query) then

// if issued query lies in local tree
(3) Node = 𝑘

1
.Search Tree(𝑇)

(4) Else // if 𝑛
1
cannot answer the query

(5) 𝑇 = 𝑛
1
.Find Tree(𝑘

1
)

// query is routed in the top layer overlay to find the super node responsible for the key
(6) Node = 𝑘

1
.Search Tree(𝑇)

// find the node responsible for the storage of key 𝑘
1
in tree 𝑇

(7) Else
// 𝑛
1
is not a super node

(8) If (𝑛
1
can answer query) then

// if issued query lies in local sub tree range
(9) 𝑇 = 𝑛

1

(10) Node = 𝑘
1
.Search Tree(𝑇)

(11) Else // if query is not in local subtree
(12) 𝑛

1
.Forward Request(𝑘

1
, root)

// node 𝑛
1
will forward the key lookup request to its root

(13) Go to step (2).
(14) Return }

n1.Find Tree (k1) {
// node 𝑛

1
will find the super node responsible for node 𝑘

1

(1) 𝑇 = (𝑘
1
, successor)

(2) if (𝑘
1
∈ 𝑇)

// super node responsible for the key is found
(3) return 𝑇
(4) else
// forward the query to next node of the ring
(5) 𝑇.Find Tree (𝑘

1
) }

n1.Forward Request (k1, Root) {
// Forward the request from node 𝑛

1
to the root of the tree

(1) If (𝑛
1
is not a root node), then

(2) 𝑛
1
= parent(𝑛

1
)

(3) 𝑛
1
.Forward Request(𝑘

1
, Root)

(4) else
(5) Root = 𝑛

1

Return }

Algorithm 5: Key lookup operation in proposed architecture.

k1.Search Tree (T) {
//After finding the responsible tree, query will be forwarded towards the appropriate child of tree
(1) If 𝑘

1
lies on the root node, then

(2) Return 𝑘
1

(3) Else // if key lies on one of its child
(4) Repeat for 𝑖 = 1 to 4
(5) if (𝑘

1
∈ ch[𝑖]), then

(6) 𝑇 = 𝑐[𝑖]
(7) Break
(8) End for
(9) 𝑘

1
.Search Tree(𝑇)

(10) Return.
}

Algorithm 6: Key lookup operation in the responsible tree of the proposed architecture.

Journal of Computer Networks and Communications 11

Table 2: Simulation parameters.

Type Parameters Values

Simulation
parameters

Network Size Max 10000

Churn generator Multiple churn generators (no churn initially, Pareto churn for normal failure,
and lifetime churn for intentional attack)

Mean node lifetime
For lifetime churn
(churn attack) 1600 s 1300 s 1000 s 700 s 400 s

For Pareto churn 2,000 s

Common
architecture
parameters

Fix finger delay 120 s
Stabilization delay 60 s
Successor list size 4

Node
distribution

Percentage of super peers 5
Percentage of regular peers 95
Percentage of malicious
peers in regular peers for
churn attack scenario only

10 20 30 40 50

Degree of
m-child family
tree

For basic proposed
architecture 2 4 6

Theorem 5. In a proposed network of𝑁 nodes, the search for
key 𝑘
1
is carried out in 𝑂(log𝑁) steps.

6. Experiments and Results

To prove and verify the proposed hierarchical structure, the
omnet++ based overlay simulation framework OverSim [57]
is used. The OverSim is an event based simulator with a
layered architecture to provide a commonAPI for application
development. Its simulation framework is suitable for the
design, evaluation, and comparison of different overlay net-
workmodels at a large scalewith support of different underlay
networks. The new overlay modules are declared using NED
language and their behaviour is customized using C++. The
OverSim architecture provides a variety of underlay networks
varying from simple underlay to more real IPV4 underlay.

6.1. Experimental Settings. The main parameters of our sim-
ulation are listed in Table 2. The simulations are performed
using and updating the existing chord architecture in the
OverSim simulator. All simulations are conducted on a
network of varying size from 500 to 10000 nodes; each node
assigned random 160-bit node ID. The network size defines
the total number of overlay nodes in the simulation. In
our proposed architecture, we have three types of nodes:
super peer nodes (stable nodes in chord ring), regular peers
(legitimate peers in tree topology), and malicious nodes
(nodes with a short life span). As most of the existing
analytical and numerical results indicate the presence of a
small number of stable nodes in an overlay network, thus, in
our proposed architecture, layer 1 overlay comprises about 5%
of the total overlay population [58] and the remaining 95% of
population comprises a mix of regular and malicious peers
for different churn attack scenarios as specified in Table 2.

The selection of churn generator is mainly based on the
type of churn behaviour simulation. For legitimate churn

behaviour, a Pareto churn model is used, which will generate
heavy tailed session times similar to real results from many
real time peer to peer systems. But, if an attacker wants to
insert many short lived peers in the overlay network, then the
lifetime churn generator is the most appropriate churn attack
generator as it is based on the Weibull distribution, which is
known to be best formodelling a variety of life behaviour.The
level of churn is simulated by varying the values ofmean node
lifetime between 400 seconds and 1,600 seconds. A shorter
lifetime means a higher level of churn [16].

The stabilization delay and the fix finger delay refer
to the duration between periodic ping to make sure that
the neighbour and the exponential neighbours (finger table
entries) are alive and successor table and finger table pointers
are up to date. Each node on the chord ring maintains a
successor list of size 4.The value of these parameters is chosen
based on themost recent studies for the performance of chord
based overlay networks.

The degree of m-child family tree describes the maximum
number of children for a node. The fixed value of degree of
proposedm-child family tree based overlay architecture used
in the experimental settings is emphasized in bold typeface.

6.2. Simulation Results. Two things are evaluated here: first
proving that the hierarchy introduced in the proposed archi-
tecture added value in terms of performance and scalability;
second, proving the robustness of the proposed architecture
to the intentional churn attack.

6.2.1. Performance of Proposed Hierarchical Architecture. To
evaluate the performance of proposed hierarchical overlay
architecture, we simulate it with nodes having legitimate
churn behaviour. The following parameters are used for
performance assessment of the proposed structure.

12 Journal of Computer Networks and Communications

2

4

6

8

10

0 2000 4000 6000 8000 10000

Av
er

ag
e l

oo
ku

p
ho

p

Number of nodes

Average message delivery hop with proposed architecture
Average message delivery hop chord
Average message delivery hop BATON
Average message delivery hop m-way tree

Figure 3: Comparison of different overlay network architectures
with varying population.

(i) Average Lookup Hop Count.The average search hop count
measures the performance of a system as the number of
average hops needed for search. Figure 3 represents the
performance of different overlay networks with respect to
different overlay network sizes. The results clearly show that
the proposed hierarchical architecture has better results as
compared to other architectures due to stable super peer
based top layer and the divide and conquer principle for
message forwarding in the appropriate subtree with the use
of tree based architecture in layer 2. From Figure 3, it is clear
that the tree based architectureswith fault tolerance capability
(redundant pointers) such as BATON [19] perform better
than chord architecture [24] due to underlying divide and
conquer approach, but lack of redundancy in multiway trees
[59] will make the situation worse by failure of the whole
subtree in case of the parent failure. We also measure the
average hop count by varying the degree of m-child family
tree with 𝑚 = 2, 4, 6, respectively, with respect to same set
of participants as shown in Figure 4. From Figure 4, it is
evident that the lookup hop count is reduced by increasing
the degree of m-child family tree. Because, by increasing the
degree of m-child family tree, the height of the tree will be
reduced and ultimately it will decrease the number of hops
to search a particular key. Thus, these results verify our first
claim that our proposed architecture is efficient as compared
to existing architectures in terms of minimum lookup delay.
However, with the increase in the degree of m-child family
tree, the number of pointers to be maintained at each node
will also increase. Thus, designers have to select the degree
of m-child family tree by taking this additional overhead in
consideration.

Number of nodes

Av
er

ag
e l

oo
ku

p
ho

p

10

8

6

4

2
1000080006000400020000

Average message delivery hop with 6-child family tree
Average message delivery hop with 4-child family tree
Average message delivery hop with 2-child family tree

Figure 4: Average lookup hop count with different degree of family
tree.

0

20

40

60

80

100

120

140

160

180

200

0 2000 4000 6000 8000 10000

Ro
ut

in
g

ta
bl

e u
pd

at
e m

es
sa

ge
s

Number of nodes

Stabilization messages for join in proposed architecture
Stabilization messages for join in m-way tree
Stabilization messages for join in BATON
Stabilization messages for join in chord
Stabilization messages for leave in proposed architecture

Figure 5: Average stabilization messages for single node join/leave.

(ii) Stabilization Messages for Single Node Join and Failure.
The purpose of this set of experiments is to measure the
overhead caused by the open and dynamic behaviour of
overlay network nodes. Figure 5 presents the average number
of stabilization messages required for a single join and
leave operation. Our experiment confirms that the overhead
associated with join operations in proposed architecture is
quite low as compared to other systems as a new node always

Journal of Computer Networks and Communications 13

70

75

80

85

90

95

100

0.1 0.2 0.3 0.4 0.5

Lo
ok

up
 su

cc
es

s r
at

io

Churn rate

Success ratio_chord
Success ratio_proposed architecture

Figure 6: Lookup success ratio with varying levels of churn attack.

has to join as a leaf node and needs to update the pointer of its
parent node and uncles (sibling of the parent node), whereas,
in case of BATON [19] andmultiway tree [59], a newnode can
join at any position based on its node ID and has to update
a large number of pointers to their parent node, siblings,
child nodes, and so forth. The join operation of BATON
[19] architecture is more costly as compared to multiway tree
[59] due to its need to store a large number of redundant
pointers for fault tolerance. Moreover, as compared to other
architectures, the proposed architecture partitions the overlay
into multiple suboverlays and in turn reduces the number of
routing table updates per node in case of join and failure.

6.2.2. Robustness of Proposed Hierarchical Architecture. In
order to evaluate the effect of the intentional churn attack,
we performed simulations starting with a number of honest
peers only. We implemented a simple churn attack, where a
significant number of nodes are added and removed from
the network in each round. In our simulation model first
intentional churn attack begins after the super peer topology
has been constructed and has stabilized with the tree nodes.
The performance of our proposed architecture is expected
to remain consistent under intentional churn attack where
a significant number of nodes are added and removed from
the system within short time duration. We also evaluate the
robustness of the proposed architecture under varying levels
(represents the percentage of nodes that join/leave the system
at each round) of churn attack.

(i) Lookup Success Ratio under Churn Attack. In this set of
experiments, we measure the ability of proposed approach
to achieve robust lookup operations despite the presence of
heavy intentional churn attack. The robust lookup is realized
by forcing the unreliable new nodes to get inserted at leaf
levels. Figure 6 clearly represents the robust behaviour of
proposed architecture: for 25% churn, lookup success ratio
is almost 98% and for 50% churn 88% of the queries are
correctly answered.

These results clearly indicate the robustness of the pro-
posed architecture under intentional churn attack as our

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5

N
um

be
r o

f d
isc

on
ne

ct
io

ns

Churn rate

Number of disconnections for chord
Number of disconnections for proposed architecture

Figure 7: Effects of varying levels of churn on overlay network
structure.

architecture can provide lookup performance guarantees
even when 50% of nodes are malicious.

(ii) Number of Disconnections under Churn Attack. It is the
number of peers that lose their connections to the rest of the
overlay due to churn attack. The experimental results show
that the proposed architecture remains well connected under
churn attack. Figure 7 shows that the proposed architecture
reduces the large number of disconnections as compared to
chord [24] overlay network under varying levels of churn
attack. The number of disconnections will be reduced due to
the isolation of the churn property of hierarchical network;
along with this, our attack model usually triggers the mali-
cious users to join the overlay network in rounds and all these
malicious users will join as leaf nodes of the suboverlay.Thus,
it will not impact the working of legitimate nodes and results
in less number of disconnections.

7. Conclusion

The overlay networks emerge as a popular platform for the
construction of large scale distributed systems; however the
attackers can unleash the various attacks against overlay net-
works by exploiting their open nature. We presented a robust
hierarchical overlay network to counter the intentional churn
attack by adding the newly joined nodes at the leaf levels
only with limited connectivity. The proposed architecture
offers more stability, lookup efficiency, and less maintenance
overhead by using more reliable peers at the top layer chord
ring and regular peers inside m-child family tree at layer 2.
The m-child family tree architecture reduces the lookup and
maintenance message overhead by using divide and conquer
principle for message forwarding in the appropriate subtree.
But, this efficiency comes at a cost of retaining redundant

14 Journal of Computer Networks and Communications

uncle pointers at each node and incorporation of some sort
of centrality in the distributed overlay architecture. Our sim-
ulation results demonstrate the effectiveness of the proposed
hierarchical architecture to counter different churn attack
levels without affecting the performance and connectivity of
live peers with minimummaintenance message overhead.

Competing Interests

The authors declare that they have no competing interests.

References

[1] J. Buford, H. Yu, and E. K. Lua, P2P Networking and Applica-
tions, USA Morgan Kuafmann, 2009.

[2] M. Srivatsa and L. Liu, “Vulnerabilities and security threats
in structured overlay networks: a quantitative analysis,” in
Proceedings of the 20th Annual Computer Security Applications
Conference (ACSAC ’04), pp. 252–261, December 2004.

[3] L. Ganesh and B. Y. Zhao, “Identity theft protection in struc-
tured overlays,” in Proceedings of the 1st International Conference
on Secure Network Protocols (NPSEC ’05), pp. 49–54, IEEE,
Washington, DC, USA, 2005.

[4] R. Kaur, A. L. Sangal, and K. Kumar, “Secure Overlay Services
(SOS): a critical analysis,” in Proceedings of the 2nd IEEE Inter-
national Conference onParallel, Distributed andGridComputing
(PDGC ’12), pp. 457–462, December 2012.

[5] E. K. Lua, J. Crowcroft,M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,”
IEEE Communications Surveys and Tutorials, vol. 7, no. 2, pp.
72–93, 2005.

[6] E. Sit and R. Morris, “Security considerations for peer-to-peer
distributed hash tables,” in Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS ’01), pp. 261–226,
London, UK, 2002.

[7] D. S. Wallach, “A survey of peer-to-peer security issues,” in
Proceedings of the International Conference on Software Security:
Theories and Systems, pp. 42–57, Berlin, Germany, 2002.

[8] B. Pretre, Attacks on peer-to-peer networks [Ph.D. thesis],
Department of Computer Science Swiss Federal Institute of
Technology (ETH), Zürich, Switzerland, 2005.

[9] A. Singh, T.-W. Johnny Ngan, P. Druschel, and D. S. Wallach,
“Eclipse attacks on overlay networks: threats and defenses,”
in Proceedings of the 25th IEEE International Conference on
Computer Communications (INFOCOM ’06), Barcelona, Spain,
April 2006.

[10] A. Singh, M. Castro, P. Druschel, and A. Rowstron, “Defending
against eclipse attacks on overlay networks,” in Proceedings of
the 11th Workshop on ACM SIGOPS European Workshop (EW
’11), Leuven, Belgium, September 2004.

[11] D. Germanus, S. Roos, T. Strufe, andN. Suri, “Mitigating eclipse
attacks in peer-to-peer networks,” in Proceedings of the IEEE
Conference on Communications and Network Security (CNS ’14),
pp. 400–408, San Francisco, Calif, USA, October 2014.

[12] F. D. López-Fuentes, I. Eugui-De-Alba, and O. M. Ort́ız-Ruiz,
“Evaluating P2P networks against eclipse attacks,” in Proceed-
ings of the Iberoamerican Conference on Electronics Engineering
and Computer Science, vol. 3, pp. 61–68, Guadalajara, Mexico,
May 2012.

[13] Z. Trifa and M. Khemakhem, “Mitigation of sybil attacks in
structured P2P overlay networks,” in Proceedings of the 8th

International Conference on Semantics, Knowledge and Grids
(SKG ’12), pp. 245–248, Beijing, China, 2012.

[14] K. Aberer, A. Datta, and M. Hauswirth, “Efficient, self-
contained handling of identity in peer-to-peer systems,” IEEE
Transactions on Knowledge and Data Engineering, vol. 16, no. 7,
pp. 858–869, 2004.

[15] H. Rowaihy, W. Enck, P. McDaniel, and T. La Porta, “Limiting
sybil attacks in structured P2P networks,” in Proceedings of the
26th IEEE International Conference on Computer Communica-
tions (INFOCOM ’07), pp. 2596–2600, May 2007.

[16] R. Kaur, A. L. Sangal, and K. Kumar, “Analysis of different churn
models in chord based overlay networks,” in Proceedings of
the Recent Advances in Engineering and Computational Sciences
(RAECS ’14), pp. 1–6, March 2014.

[17] Y.-K. Kwok, “Autonomic peer-to-peer systems: incentive and
security issues,” in Autonomic Computing and Networking, pp.
205–236, Springer, New York, NY, USA, 2009.

[18] B. Awerbuch and C. Scheideler, “Towards a scalable and robust
DHT,”Theory of Computing Systems, vol. 45, no. 2, pp. 244–260,
2009.

[19] H. V. Jagadish, B. C. Ooi, and Q. H. Vu, “BATON: a balanced
tree structure for peer-to-peer networks,” in Proceedings of the
31st International Conference on Very Large Data Bases (VLDB
’05), pp. 661–672, September 2005.

[20] A. Rowstron and P. Druschel, “Pastry: scalable, decentral-
ized object location and routing for large-scale peer-to-peer
systems,” in Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware ’01),
Heidelberg, Germany, 2001.

[21] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao, “Dis-
tributed object location in a dynamic network,” in Proceedings
of the 14th Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 41–52, Winnipeg, Canada, August 2002.

[22] C. Rhea, Open DHT: a public DHT service [Ph.D. thesis],
University of California, Berkeley, Calif, USA, 2005.

[23] M. Castro, M. Costa, and A. Rowstron, “Performance and
dependability of structured peer-to-peer overlays,” in Proceed-
ings of the International Conference on Dependable Systems and
Networks, pp. 9–18, July 2004.

[24] I. Stoica, R. Morris, D. Liben-Nowell et al., “Chord: a scal-
able peer-to-peer lookup protocol for Internet applications,”
IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 17–32,
2003.

[25] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling
churn in aDHT,” inProceedings of theUSENIXAnnual Technical
Conference, Boston, Mass, USA, June 2004.

[26] D. Stutzbach and R. Rejaie, “Understanding churn in peer-
to-peer networks,” in Proceedings of the 6th ACM SIGCOMM
on Internet Measurement Conference (IMC ’06), pp. 189–202,
October 2006.

[27] F. Kuhn, S. Schmid, and R. Wattenhofer, “Towards worst-case
churn resistant peer-to-peer systems,” Distributed Computing,
vol. 22, no. 4, pp. 249–267, 2010.

[28] Z. Liu, R. Yuan, Z. Li, H. Li, and G. Chen, “Survive under high
churn in structured P2P systems: evaluation and strategy,” in
Proceedings of the 6th International Conference on Computa-
tional Science, pp. 404–411, Reading, UK, May 2006.

[29] F. Kuhn, S. Schmid, and R. Wattenhofe, “A self-repairing peer-
to-peer system resilient to dynamic adversarial churn,” in
Proceedings of the 4th International Conference on Peer-to-Peer
Systems, pp. 13–23, Berlin, Germany, 2005.

Journal of Computer Networks and Communications 15

[30] J. Liang, R. Kumar, and K. W. Ross, “The kazaa overlay: a
measurement study,” Computer Networks Journal, Elsevier, vol.
49, no. 6, 2005.

[31] B. Yang and H. Garcia-Molina, “Designing a super-peer net-
work,” Tech. Rep., Stanford University, Stanford, Calif, USA,
2002, http://infolab.stanford.edu/∼byang/pubs/superpeer.pdf.

[32] S.-J. Zhou, Study on the distributed routing algorithm and its
security for Peer-to-Peer computing [Ph.D. thesis], University of
Electronic Science and Technology of China, Chengdu, China,
2004.

[33] L. Garces-Erice, E. Biersack, P. Felber, K. Ross, and G. Urvoy
Keller, “Hierarchical peer-to-peer systems,” in Euro-Par 2003
Parallel Processing: 9th International Euro-Par Conference Kla-
genfurt, Austria, August 26–29, 2003 Proceedings, vol. 2790 of
Lecture Notes in Computer Science, pp. 1230–1239, Springer,
Berlin, Germany, 2003.

[34] W. Nejdl, M. Wolpers, W. Siberski et al., “Super-peer-based
routing and clustering strategies for RDF-based peer-to-peer
networks,” in Proceedings of the 12th International Conference on
WorldWideWeb (WWW ’03), pp. 536–543, Budapest, Hungary,
May 2003.

[35] J. Sacha, J. Dowling, R. Cunningham, and R. Meier, “Discovery
of stable peers in a self organizing peer-to-peer gradient
topology,” in Proceedings of the 6th IFIP WG 6.1 International
Conference on Distributed Applications and Interoperable Sys-
tems (DAIS ’06), pp. 70–83, Athens, Greece, June 2006.

[36] F. Buccafurri and G. Lax, “TLS: a tree-based DHT lookup
service for highly dynamic networks,” inProceedings of theOTM
Confederated International Conferences, CoopIS, DOA, and
ODBASE, Agia Napa, Cyprus, October 2004.

[37] S. Zöls, Q.Hofstätter, Z.Despotovic, andW.Kellerer, “Achieving
and maintaining cost-optimal operation of a hierarchical DHT
system,” in Proceedings of the IEEE International Conference on
Communications (ICC ’09), pp. 1–6, June 2009.

[38] R. Kaur, A. L. Sangal, and K. Kumar, “Modelling and simulation
of adaptive neuro-fuzzy based intelligent system for predictive
stabilization in structured overlay networks,” Engineering Sci-
ence and Technology, an International Journal, 2016.

[39] P. Linga, I. Gupta, and K. Birman, “A churn-resistant peer-to-
peer web caching system,” in Proceedings of the 2nd Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS ’04), February
2004.

[40] M. Castro, M. Costa, and A. Rowstron, “Performance and
dependability of structured peer to-peer overlays,” Tech. Rep.,
Microsoft Research, 2003.

[41] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao, “Dis-
tributed object location in a dynamic network,” in Proceedings
of the 14th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA ’02), pp. 41–52, August 2002.

[42] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling
churn in a dht,” Tech. Rep. ucb/csd-3-1299, UC Berkeley,
Computer Science Division, Berkeley, Calif, USA, 2003.

[43] J. Saia, A. Fiat, S. Gribble, A. R. Karlin, and S. Saroiu, “Dynam-
ically fault-tolerant content addressable networks,” in Proceed-
ings of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS ’02), Cambridge, Mass, USA, March 2002.

[44] P. Brighten Godfrey, S. Shenker, and I. Stoica, “Minimizing
churn in distributed systems,” in Proceedings of the Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pp. 147–158, 2006.

[45] F. E. Bustamante and Y. Qiao, “Designing less-structured P2P
systems for the expected high churn,” IEEE/ACM Transactions
on Networking, vol. 16, no. 3, pp. 617–627, 2008.

[46] X. Meng, X. Chen, and Y. Ding, “Using the complementary
nature of node joining and leaving to handle churn problem
in P2P networks,” Computers and Electrical Engineering, vol. 39,
no. 2, pp. 326–337, 2013.

[47] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: an
infrastructure for Fault-tolerant wide-area location and rout-
ing,” Tech. Rep. UCB/CSD-01-1141, Computer Science Division,
UC Berkeley, Berkeley, Calif, USA, 2001.

[48] X. Li, J. Misra, and C. G. Plaxton, “Active and concurrent
topology maintenance,” in Proceedings of the 18th International
Conference on Distributed Computing (DISC ’04), pp. 320–334,
Amsterdam, Netherlands, 2004.

[49] M. El Dick, E. Pacitti, R. Akbarinia, and B. Kemme, “Building
a peer-to-peer content distribution network with high perfor-
mance, scalability and robustness,” Information Systems, vol. 36,
no. 2, pp. 222–247, 2011.

[50] Z. Trifa and M. Khemakhem, “A novel replication technique to
attenuate churn effects,” Peer-to-Peer Networking and Applica-
tions, vol. 9, no. 2, pp. 344–355, 2016.

[51] D. Korzun and A. Gurtov, “Hierarchical architectures in struc-
tured peer-to-peer overlay networks,” Peer-to-Peer Networking
and Applications, vol. 7, no. 4, pp. 359–395, 2014.

[52] T. Koskela, E. Harjula, O. Kassinen, and M. Ylianttila, “Robust-
ness of a P2P community management system based on two-
level hierarchical DHT overlays,” in Proceedings of the 16th IEEE
Symposium on Computers and Communications (ISCC ’11), pp.
881–886, July 2011.

[53] J. M. B. Rocamora and J. R. I. Pedrasa, “Evaluation of hier-
archical DHTs to mitigate churn effects in mobile networks,”
Computer Communications, vol. 85, pp. 41–57, 2016.

[54] P. Ganesan, K. Gummadi, and H. Garcia-Molina, “Canon
in G major: designing DHTs with hierarchical structure,” in
Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS ’04), pp. 263–272, March 2004.

[55] FIPS 180-1, Secure Hash Standard, US Department of Com-
merce/National Technical Information Service (NIST), Spring-
field, Va, USA, 1995.

[56] B. Yang and H. Garcia-Molina, “Designing a super-peer net-
work,” Tech. Rep., Designing a Super-Peer Network, 2002,
http://wwwdb.stanford.edu/∼byang/pubs/superpeer.pdf.

[57] I. Baumgart, B.Heep, and S. Krause, “OverSim: a flexible overlay
network simulation framework,” in Proceedings of the IEEE
Global Internet Symposium (GI ’07), pp. 79–84, Anchorage,
Alaska, USA, May 2007.

[58] B.Mitra, F. Peruani, S. Ghose, andN.Ganguly, “Brief announce-
ment: measuring robustness of superpeer topologies,” in Pro-
ceedings of the 26th Annual ACM Symposium on Principles of
Distributed Computing (PODC ’07), pp. 372–373, ACM, August
2007.

[59] H. V. Jagadish, B. C. Ooi, K.-L. Tan, Q. H. Vu, and R.
Zhang, “Speeding up search in peer-to-peer networks with a
multi-way tree structure,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 1–12,
ACM, June 2006.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

