Hindawi Publishing Corporation

Journal of Computer Networks and Communications
Volume 2016, Article ID 3292783, 17 pages
http://dx.doi.org/10.1155/2016/3292783

Research Article

Hindawi

Developing an On-Demand Cloud-Based Sensing-as-a-Service

System for Internet of Things

Mihui Kim,' Mihir Asthana,” Siddhartha Bhargava,2 Kartik Krishnan Iyyel',2

Rohan Tangadpalliwar,” and Jerry Gao™’

'Department of Computer Science ¢ Engineering, Computer System Institute, Hankyong National University,

327 Jungang-ro, Anseong-si, Gyeonggi-do 456-749, Republic of Korea

*Computer Engineering Department, San Jose State University, One Washington Square, San Jose, CA 95192, USA
*Taiyuan University of Science and Technology, Taiyuan 030024, China

Correspondence should be addressed to Jerry Gao; jerry.gao@sjsu.edu

Received 14 May 2016; Revised 21 July 2016; Accepted 28 July 2016

Academic Editor: Jemal H. Abawajy

Copyright © 2016 Mihui Kim et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The increasing number of Internet of Things (IoT) devices with various sensors has resulted in a focus on Cloud-based sensing-as-
a-service (CSaaS) as a new value-added service, for example, providing temperature-sensing data via a cloud computing system.
However, the industry encounters various challenges in the dynamic provisioning of on-demand CSaaS$ on diverse sensor networks.
We require a system that will provide users with standardized access to various sensor networks and a level of abstraction that hides
the underlying complexity. In this study, we aim to develop a cloud-based solution to address the challenges mentioned earlier.
Our solution, SenseCloud, includes a sensor virtualization mechanism that interfaces with diverse sensor networks, a multitenancy
mechanism that grants multiple users access to virtualized sensor networks while sharing the same underlying infrastructure, and a
dynamic provisioning mechanism to allow the users to leverage the vast pool of resources on demand and on a pay-per-use basis. We
implement a prototype of SenseCloud by using real sensors and verify the feasibility of our system and its performance. SenseCloud

bridges the gap between sensor providers and sensor data consumers who wish to utilize sensor data.

1. Introduction

As numerous devices and sensors get connected to the
Internet, Internet of Things (IoT) is becoming a key topic
of interest. Cisco predicts that 50 billion devices will be
connected to the Internet by 2020. These devices and sensors
will generate approximately 403 zetta bytes of data per year
by 2018. In this fast-paced environment, the management of
these devices, the networks, and the generated data is vital.
The management and provisioning of such sensor devices and
data opens doors to new business opportunities and poses
new challenges. Industry and academia must manage these
interconnected devices and exploit the opportunity presented
by the extremely large amount of data generated. However,
the huge investment and high maintenance cost of sensor
network infrastructure prevents users from building their
own IoT systems and web applications that utilize sensor data.

Thus, cloud-based sensing-as-a-service (CSaaS) appears
as a new service paradigm; its system architecture is shown
in Figure 1 [1, 2]. Sensor providers supply sensor data on
mobile devices or on sensor networks through operations
to subscribe to and publish sensing data. Big data are saved
and processed on the CSaaS infrastructure. Sensor consumers
utilize the sensing data from the cloud system on demand.
The following important and specific challenges must be
carefully addressed in the design and implementation of a
CSaa$ system [2]. First, the system must be generic and
must hide the underlying complexity such that it can support
various opportunistic and participatory sensing applications
(which may even involve a large variety of sensors) and incurs
very little overhead when launching a new sensing applica-
tion and service. Second, the system can provide efficiency
and sustainable scalability while using the same underly-
ing infrastructure and ensuring the lowest cost-of-service

.................. PN N

: : >y TN

Y CSaaS AN

PN infrastructure \
\

: : !]

N N ,l N

N N / L

: o Y
: Consumer: } !
N o
B R
- Reue)
- <4 Yy,
: q <<1 \"/’
‘sensing data:

Provider :

; 4 :
Service '35 Subscribe/ :
provisioning 77 blish
server & pu 1sd :
! :sensing data:
\ Portal Monitoring/ | : & :
¢ S server management®,
\ server ;7 &
R) g apd
N Data “ : BD
.................. _, Storage -

1,
~_
NN NP

FIGURE 1: Service architecture on CSaaS$ infrastructure.

delivery for each incremental consumer. Third, the system
can provide the service dynamically to allow consumers to
leverage the vast pool of resources on demand.

Several models have been proposed in order to address
some of these challenges in sensor networks. Service-oriented
architecture (SOA) approaches [3-5] integrate wireless sen-
sor networks (WSNs) and leverage the widespread use of
WSNs. Service-centric models [6-11] focus on the services
provided by a WSN as a service provider. Approaches
using crowd-sourced mobile devices as sensors have been
proposed [2, 12, 13]; they utilize the sensors of existing
mobile devices to fulfil user requests. Integrated approaches
to share the sensing data on existing sensor networks [14-
16] provide efficient sharing mechanisms among multiple
applications. However, these studies have not resolved the
challenges related to the engagement and connectivity for
diverse sensor networks, multitenancy considering both sen-
sor providers and consumers in CSaa$S, and on-demand big
data sensing service. Further, these studies have not demon-
strated a prototype implementation of the platform with real
Sensors.

In this study, we develop a CSaaS system called Sense-
Cloud. The system aims to create a universal cloud platform
with the following features: (1) It engages and manages
various sensors on IoT devices by using the virtualization
layer; (2) it gathers data from diverse sources such as sensors
and sensor networks for useful and predictive analysis on a
cloud system; (3) it provides access to real-time and historical
data for analysis on an intuitive and feature-rich web inter-
face; (4) it gives multiple users access to virtualized sensor
networks while sharing the same underlying infrastructure;
(5) it provides easy and standardized sensing data service for
consumers and third-party applications dependent on data;
and (6) it allows dynamic provisioning for users to leverage
the vast pool of resources on demand. We implement a
prototype of SenseCloud with real sensors. Then, we evaluate
the operation and feasibility of our system and verify the
system performance in terms of request time, load balancing,
and scalability.

The contributions of this study are as follows:

(i) Design of a CSaaS$ platform with virtualization, mul-
titenancy, and dynamic provisioning.

Journal of Computer Networks and Communications

(ii) Sensor virtualization at two levels—that is, sensor
level and consumer level—to enable multiple con-
sumers to customize and control virtual sensors
corresponding to a single physical sensor.

(iii) Two different multitenancy architectures, one for sen-
sor consumers and another for sensor providers. The
architecture for sensor consumers offers the highest
degree of multitenancy to enable sharing of the same
application for login, engagement, and management
of sensors and sensor data. The architecture for
providers provides instances dedicated to each sensor
provider, taking into consideration security, failover
mechanisms, high availability, and reliability.

(iv) Dynamic provisioning of CSaaS$ to allow consumers
to leverage the vast pool of resources on demand and
on a pay-per-use basis.

(v) Implementation of a SenseCloud prototype system
with real sensors and evaluation to ensure the feasi-
bility of the system and analyze its performance.

The remainder of this paper is organized as follows.
Section 2 introduces existing works related to CSaaS or
sensor data sharing approaches. Section 3 designs the Sense-
Cloud architecture and explains the system design. Section 4
describes the experiment results for operation and perfor-
mance. Finally, Section 5 provides concluding remarks with
future work.

2. Related Work

Numerous devices around us generate an enormous amount
of data. Devices with sensors to capture such data have existed
for decades; however, recent developments in technology
have enabled these devices to be equipped with energy-
efficient and cost-effective wireless modules that allow the
devices to transmit data wirelessly in real-time. This feature
enables the measurement, inference, and understanding of
environmental indicators, ranging from delicate ecologies
and natural resources to urban environments. The prolifer-
ation of these devices in a communicating-actuating network
creates [oT, in which sensors and actuators blend seamlessly
with the environment around us, and the information is
shared across platforms in order to develop a common
operating picture [17]. IoT has been defined as object sensing,
object identification, and communication of object-specific
information. The information is the sensed data related
to temperature, orientation, motion, vibration, acceleration,
humidity, chemical changes in the air, and so forth, depend-
ing on the type of sensors. A combination of different sensors
can be used for the design of smart services [18].

A multitude of these sensors connected wirelessly form
a sensor network. These sensor networks can be leveraged
for a variety of applications. Some of these applications,
mentioned in [18], are natural-disaster prediction, indus-
trial applications, water-scarcity monitoring, smart-homes
design, medical applications, agricultural applications, intel-
ligent transport system design, smart-cities design, smart
metering and monitoring, and smart security [2, 12, 19, 20].
However, general users are deterred by the huge investments

Journal of Computer Networks and Communications

TaBLE 1: Comparison of sensor data sharing approaches based on cloud system.

Scalg Loaq . Sen.sor. E)fp ficit Dype_lmi_c System development
mechanism balancing virtualization multitenancy provisioning

Sensing sharing [4] v N N
TaaS [9] v/ v N

SlaaS$ [10] v

SCI [11] N N N
PPSE [12] J

FSCI [14] N N

VESN [15] V J v N
SenseWeb [16] N v v
SenseCloud N v v N v N

and high maintenance costs involved in sensor network
infrastructure to utilize sensor data. Thus, the concept of
CSaasS originated [1, 2], and it could be a value-added service
to boost the expansion of IoT infrastructure.

The emergence of a plethora of applications for sensor
networks is accompanied by several challenges and problems
in the management of these networks. The IoT gateway acts
as a bridge between WSNs with traditional communication
networks or Internet, and it plays an important role in IoT
applications; thus, it facilitates the seamless integration of
‘WSNs and mobile communication networks or Internet and
the management and control with WSNs [21, 22]. Some of the
problems and challenges that arise are the standardization of
governance and management models [3, 11, 18], complexity
arising from heterogeneity [3, 21], virtualization, and moni-
toring [11].

As shown in Table 1, several models have been proposed
in order to address these challenges in sensor networks.
WSNs as a service [3-5] leverage the widespread use of
WSNs and adopts a SOA approach based on the integration
of WSNs. In particular, sensing sharing mechanism [4]
provides a module to integrate industrial sensor information
with the World Wide Web through the cloud in order to
monitor and control the development process (e.g., nuclear
plant management system). In the system, the integration
controller and sensor node communicate through SOA to
enable the services to be discovered and invoked by the sensor
applications (client). Cloud computing is used to provide the
extensibility of application servers and constant availability
of data to users. However, the system does not address sensor
virtualization, which would enable on-demand sharing of the
physical sensors among users.

Service-centric models [6-11] focus on the services pro-
vided by a WSN and view a WSN as a service provider. Infor-
mation as a service (IaaS) for WSNs [9] uses virtualization
of WSNs to provide techniques for sensor provisioning and
sharing for the large number of existing WSNs. However,
TaaS leaves further scope for expansion in terms of load
balancing and universal abstraction for all classes of sensors
or sensor networks. A new service model called sensing
instrument as a service (SlaaS) [10] provides virtualized
sensing instruments to users and shares them as a common
resource in a controlled manner. However, SlaaS does not

consider on-demand provisioning, which is important to
users. Sensor-cloud infrastructure (SCI) [11] manages phys-
ical sensors by virtualizing them as virtual sensors on the
cloud. SCI provides monitoring, automatic provisioning, and
control for virtual sensors and virtual sensor groups, similar
to our system; however, SCI does not explicitly design the
scalability, load balancing, and multitenancy mechanisms to
efficiently manage the infrastructure.

Approaches using crowd-sourced mobile devices as sen-
sors have been proposed [2, 12, 13]; these approaches utilize
the sensors of existing mobile devices and fulfil user requests.
A priced public sensing framework (PPSF) [12] is designed for
heterogeneous IoT architectures; this framework considers
resource limitations in terms of delay, capacity, and lifetime
from the perspective of the data provider and considers qual-
ity and trust requirements from the perspective of requesters.
However, PPSF does not consider the service efficiency of the
framework, that is, scalability or load balancing.

Integrated approaches to share the sensing data on exist-
ing sensor networks [14-16] provide efficient sharing mecha-
nisms among multiple applications. A framework of sensor-
cloud integration (FSCI) [14] utilizes the ever-expanding
sensor data with a content-based pub/submodel. Virtual
federated sensor network (VESN) [15] enables multiple appli-
cations to share widely distributed sensor networks flexibly,
preserving resource isolations. In VESN, virtualized sinks
are interconnected to achieve a dedicated federated sensor
network; further, VESN provides operations for multiple-
sensor information to service providers. An infrastructure
for shared sensing (SenseWeb) [16] enables applications to
initiate and access sensor data streams from shared sensors
across the entire Internet. The SenseWeb infrastructure helps
ensure optimal sensor selection for each application and
efficient sharing of sensor streams among multiple applica-
tions. However, these integration approaches do not address
the multitenancy challenge that will enable each provider to
exclusively and efficiently manage their own resources in a
large integrated infrastructure.

In summary, none of the previous studies have developed
a prototype of CSaaS$ with real sensors supporting all the fol-
lowing features: the scaling mechanism, load balancing, vir-
tualization, multitenancy, and dynamic provisioning. In this
study, we propose and demonstrate SenseCloud, a prototype

Journal of Computer Networks and Communications

Entity E E E E
Sensor consumer Sensor provider Network admin Cloud admin

Register user info‘% (‘nnfrar'f/rpgic'fm’r 0 N

manage VSGs/ 1 physical sensor 1 | !

1 ! 1

use sensingdata r--------------------- ! Manage VSsi . Manage !

et it ’ infrastructure,

Cloud infrastrucﬂlure

I
! Portal server Forward SenseCloud management server
v reqpiests
Authentication and | Roles /rgply Load Scale in/out of
--=3 Dashboard --4-F . i - .
authorization ashboan < 7 balancing Multitenancy virtual machines
__ LT
| Retrieve VSGs Acceps sensing data Retrieve monitoring|info.
- Retrieve VSs - Send monitoring S
N <~ = == = = = = = = = > . oo grogmoe = Sensor monitoring
Provisioning server Virtual server and health data server
4---> - q4---3 <---3
VSGs Virtualization of VSs/PSs health
management Sensors p management
User/VSGs Sensing
data a data x
| One-to-one mapping between ,
« _ physical sensors and VSs <

Physical sensor (PS) networks

L

i

FIGURE 2: System architecture of SenseCloud.

that implements sensor system management and addresses
the above mentioned challenges.

3. SenseCloud System

This section describes our proposed SenseCloud system
according to a top-down approach: first, the overview and
then, the detailed system design.

3.1. Overview of SenseCloud System Architecture. This sub-
section presents an overview of our SenseCloud system
architecture, which consists of three main components—
Entity, Cloud Infrastructure, and Sensor Network—as shown
in Figure 2.

The four entities are Sensor Consumer, Sensor Provider,
Network Admin, and Cloud Admin. The roles of each entity
are described below. All entities perform their roles after
authentication by the portal server.

(i) Sensor Consumer. First, sensor consumers register on
the system and log in. After successful authentication,
they subscribe to interesting sensors and create or
modify sensor groups that include these sensors.
Then, sensor consumers fetch the sensing data from
sensors and view the analytical data. Further, they can
download historical data and view their bills.

(ii) Sensor Provider. Sensor providers register on the
system and log in. After successful authentication,
they register their sensors on the system, manage the

sensors, and control them while checking their status.
Sensor providers view the sensor usage statements.

(iii) Network Admin. After logging in to the system as a
network admin, this entity monitors sensor health
and manages virtual sensors. Further, a network
admin manages the sensor provider accounts.

(iv) Cloud Admin. After logging in to the system as a cloud
admin, this entity monitors virtual machines (VMs)
and manages cloud infrastructure. A cloud admin
manages the sensor consumer accounts and services.

The cloud infrastructure consists of the following
servers and storage: Portal Server, SenseCloud Management
Server, Provisioning Server, Sensor Monitoring Server, Virtual
Server, and Data Storage for User/Virtual Sensor Group
(VSG)/Sensing Data. The features of the main components
and the roles of each entity are described below:

(i) Portal Server. When a user logs in to the SenseCloud
portal, the user role, which can be sensor consumer,
sensor provider, or admin, determines the operations.
In the case of sensor consumers, the dashboard
presented by the portal server allows the user to place
arequest to monitor their virtual sensors, to provision
or terminate virtual sensor groups, and to control
virtual sensors. In the case of sensor providers, the
dashboard provided by the portal server allows the
user to register or remove physical sensors. In the case
of SenseCloud admins, the dashboard presented by
the portal server allows the user to create, modify, and
remove the VMs, virtual sensors, and virtual sensor

Journal of Computer Networks and Communications

groups. The portal server also forwards the requests
to other servers when required.

(ii) Provisioning Server. The SenseCloud provisioning
server creates the virtual sensor groups and manages
them according to the requests that are received from
the portal server. This task is achieved by the workflow
engine and some predefined workflows in the system.
The workflow is executed in the following order:

The provisioning server creates and reserves a VM
(if not already created) when it receives the request
for provisioning. After the VM is ready, a virtual
sensor group is automatically provisioned by the pro-
visioning server. The virtual sensor group is owned
by a sensor consumer, and it has one or many virtual
sensors. The provisioning server updates the records
in the data storage for the virtual sensor groups
created by consumers. The consumers can control
the virtual sensors. For instance, they can activate
or deactivate their subscribed virtual sensors, set the
frequency of data, and check the status.

(iii) Sensor Monitoring Server. The sensor monitoring
server receives the informational or health data about
virtual sensors from the virtual servers and stores
these data. This information about the virtual sensors
is available to sensor consumers on the dashboard.
Further, the sensor monitoring server monitors the
health status of the physical sensors. This monitoring
is important because live data provisioning is based
on the live physical sensors. The admins can also
monitor the status of the servers.

(iv) SenseCloud Management Server. This server provides
the location-aware load balancing algorithm that
attempts to select a VM instance that is closest to the
request sender zone and that has the shortest pending
list. This server provides a multitenant solution over
the cloud to the registered sensor consumers and
providers. It also performs scaling according to the
policy engine. This policy engine is based on the
network and system performance.

(v) Virtual Server. When requested by the provisioning
server, the virtual server creates virtual sensors (VSs)
on the VM. The VSs are controlled by the portal
server. The virtual server provides health information
about the sensors to the sensor monitoring server
when requested and saves the information in data
storage.

(vi) Data Storage. Data storage consists of databases for
user, VSG, and sensing data.

3.2. System Design. This subsection provides a detailed expla-
nation of the operations of the sensor provider and consumer
in SenseCloud by using sequence diagrams, state machine
diagram, and active diagram. Then, this subsection presents
the functional view of our system.

3.2.1. Operations of Provider and Consumer. Figure 3 depicts
the sequence diagram for the workflows of an important

entity, that is, the sensor provider. The sensor provider installs
the sensors or sensor network at the corresponding locations.
As shown in Figure 3, the sensor provider registers the sensors
or sensor network with SenseCloud. After the sensors or
sensor networks are registered (registerSensor()), the sensor
providers can view them on the dashboard of the portal
server, monitor their health (listSensor()), view the usage of
their sensors (sensorUsageDetails()), and obtain the monthly
usage statement (viewStatement()).

Figure 4 describes the state machine for registerSensor().
When a sensor provider registers for an account, the setup is
executed in the cloud. This setup involves the creation of a
VM for that sensor provider; the VM will hold all the virtual
sensors for every physical sensor plugged in to the cloud by
the sensor provider. This setup initiates a process on amazon
web service (AWS) using AWS CloudFormation, creates a
VM, and updates the database by recording the assignment of
the newly created VM against the entry of the sensor provider.
If the setup fails, or if the assignment of the VM to the sensor
provider account fails, the process is stopped, and the sensor
provider is notified. On de-registering the account, the VM
is unassigned, and the user account is removed from the
records.

Figure 5 shows the detailed flow of the sensor consumer
operations in SenseCloud. The sensor consumer registers
with SenseCloud. After registration, the consumers can view
the list of available sensors on their dashboard of the portal
server. They can subscribe to any interesting sensors. After
subscription, the consumers can club multiple sensors in a
group and can manage their groups through the dashboard.
The end consumer can view the real-time analytics, download
the archived data, and use the developer APIs to utilize the
data in their own applications.

Figure 6 illustrates the activity flow of the sensor con-
sumer who subscribes to the sensor, downloads the historical
data, and views the analytics on the dashboard. The cloud
infrastructure creates a virtual sensor for each physical sensor
that the consumer subscribes to. After subscription to a
sensor, the consumer can view and download the real-
time and historical data in addition to the analytics on the
dashboard.

3.2.2. Functional View of SenseCloud. Figure 7 shows the
functional modules corresponding to each entity in Sense-
Cloud; each module provides the following features:

(i) Registration. The registration module provides con-
sumers with the login and registration capability to
enable them to consume the services and data from
the sensors via the dashboard. Further, the sensor
providers can register their sensors, which will be
authenticated by the admins.

(ii) Virtualization. The virtualization module virtualizes
the sensor network in the cloud by virtually grouping
the sensors and services requested by a consumer.
Thus, each consumer can group the sensors and
services and can configure, add, edit, and delete the
virtualized sensors in the group.

Journal of Computer Networks and Communications

sd sequence diagram (operation))

SensorProvider

! 1: userRegistration()
1.1: verifyEmail()

SensorDashboard
1

1.1.1: confirmVerificationLink()

L]

2: authenticateUser(uname,pwd)

L 2.1: authentication()
2.2: viewDashboard()

1

3: registerSensor()

3.1: storeSensorDetails()
3.2: listSensor()

1

4: controlSensor(sensorld,operation) 4.1: performSensorOperation()

1

5: sensorUsageDetails(sensorld)

5.1: processUsageDetails()

5.2: showUsageOnDashboard()

1

6: viewStatement(month) || 6.1: processStatement()

=

6.2: showStatement()

7: deregisterSensor(sensorld) Ll 7.1: removeSensor()

1

FIGURE 3: Sequence diagram for sensor provider workflow.

(iii) Provisioning. The provisioning module provides a
sensor provisioning capability to consumers. The net-
work admin should be able to provision the requested
sensor resources to the consumers.

(iv) Multitenancy. The multitenancy module provides a
multitenant solution over the cloud to the registered
users (i.e., consumers and providers).

(v) Scalability and Load Balancing. The scalability and
load balancing module provides easy scalability
through an effective and efficient load balancing algo-
rithm. The cloud admin can scale the cloud solution
easily. The load balancing ensures the appropriate
redirection of user requests to the multiple servers in
order to handle the load efficiently.

(vi) Security and Policy Engine. The security and policy
engine ensures authorization and user-level permis-
sions for different types of users based on configurable

policies and security features. The cloud admin can
apply and configure policies to restrict or provide
different access control based on the user type.

(vii) Monitor. The monitor module provides monitoring
capability to sensor providers, cloud admin, and
network admin. It uses different metrics such as
data bitrate, time, and sensor state to gauge band-
width, performance, health, and billing. The sensor
provider can monitor the actual physical state of
the sensors to perform maintenance, provisioning,
and de-provisioning of sensors. The cloud admin can
monitor the VMs. The network admin can monitor
the resource usage for billing and the sensor state for
health.

(viii) Control. Similar to the monitor module, the control
module provides controlling capability to the sensor

Journal of Computer Networks and Communications

stm sensor account registration)

./ Register sensor account

Registering sensor

Initial setup successful

Assigning VM

Setup acknowledged

Running setup

Setup failed

Setup command unsuccessful

VM assigning successful

[Registered sensor account].

VM assigning unsuccessful

Unassigning VM

) De-register sensor account

FIGURE 4: State machine diagram for registerSensor() in Figure 3.

provider and admins in order to control the users and
sensor network services.

(ix) Billing. The billing module provides billing to the
consumer according to the usage of data and services.
The billing is based on a configurable cost model. The
sensor providers can view the usage of their sensors
and obtain the monthly usage statement.

(x) Analytics. Sensor consumers can access real-time
sensor data analysis and archived sensor data analysis
on the dashboard.

(xi) Management. The management module enables the
network admin to manage the virtual sensors. The
network admin can create virtual groups with virtual
sensors. Further, this module provides user account
management and cloud infrastructure management
capabilities to the cloud admin.

We focus on the design of virtualization, multitenancy,
and dynamic provisioning. We explain our solutions that
address these aspects.

(1) Virtualization Solution. In order to obtain the typical
benefits of virtualization and provide an abstraction and
isolation to the consumers, the virtualization in SenseCloud
is composed of two levels (similar to the model in [11]), as
shown in Figure 8; these levels are Sensor-Level Virtualization
and Consumer-Level Virtualization. Sensor-Level Virtualiza-
tion refers to the actual virtualization of physical sensors
to VMs. Consumer-Level Virtualization refers to the logical

grouping of virtual sensors, thus providing an abstraction and
isolation to the consumers.

In Sensor-Level Virtualization, SenseCloud virtualizes
physical sensors from providers to virtualized instances avail-
able to individual consumers. Besides sensor virtualization,
we allocate a VM instance to each sensor provider to register,
manage, and monitor their sensors and sensor networks, as
shown in Figures 8 and 9. In Consumer-Level Virtualization,
if a consumer subscribes to any of the sensors, the sensors
are virtualized, and multiple virtualized sensors are grouped
together. This process allows multiple consumers to cus-
tomize and control virtual sensors corresponding to a single
physical sensor. For example, a consumer Cl could group
the temperature sensor (virtual sensor) and light sensor
(virtual sensor) as virtual sensor group VSGI, and another
consumer C2 could group the temperature sensor (virtual
sensor) and pressure sensor (virtual sensor) as virtual sensor
group VSG2. These two virtual groups (VSG1 and VSG2) are
independent of each other and can be customized by the
consumer.

Although our system consists of two levels of virtual-
ization, the sensor data are not replicated by each virtual
sensor, and the data from each sensor are stored in a common
distributed database. Thus, instead of replication of data, the
data are shared with consumers who subscribe to the sensors
and own the virtual sensors in their virtual sensor group.

(2) Multitenancy Solution. As shown in Figure 10, SenseCloud
has two different perspectives for multitenancy: perspective
of sensor consumer and perspective of sensor provider.

Journal of Computer Networks and Communications

sd sequence diagram 1
| SensorConsumer | SensorCloudDashboard | SensorCloudSDK PhysicalSensor
T T
! 1: userRegistration() ! 1.1: processRequest() : :
1.2: verifyEmail() 1 1
1 1
o | i
1.2.1: confirmVerificationLink()| | |
1 1
J 1 1
1 1
= 1 1
L] 1 1
2: authenticateUser(uname,pwd) 1 | |
Y 2.1: authentication() : :
2.2: viewDashboard() I I
1 1
I I | .
1 1
. T I I
3: addSensor(sensorld) 1 3.1: createVirtualInstance() | 3.1.1: subscribeToDataServices() :
3.].1.1: subscriptionConfirmatior)(
3.1.1.1.1: processSubscription()
3.1.2: instanceConfirmation() J
3.2: listSensorOnDashboard() L :
1 1
I | .
1 1
. . T 1 1
4: retrieveLiveData(sensorld) 1 4.1: fetchLiveDataFromQueue(sensorld) :
1
1
L |, 5: publishLiveDataOnQueue() 1
T
1
! 5.1: bundleData()
H 5.1.1: streamData()
6: createGroup(name,listOfSenso;ﬁ-
6.1: storeGroupDetails()
1 T
1 T
. 1 1
7: updateGroup(name,operation) |
i P P 2 L7.1: processUpdateRequest(operationb :
1 1
1 1
1 1
1 1
8: showServiceUsage() 1 : :
8.1: processUsage() 1 1
1 1
8.2: showUsageOnDashboard(1 1
1 1
J 1 1
1 1
1 1
T 1 1
9: showAnalytics(sensorld) | 1 1
9.1: fetchData() ! :
1
/I':'I 10: publishLiveDataFromQueue():
T
! 10.1: bundleData()
10.1.1: processData()
10.1.2: displayAnalytics()
L]
1
11: viewBill() 1 11.1: processBill()
11.2: showBill()
.
L 1
1 1
1 1 L]
1 1 T
1 1 1 L
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1

FIGURE 5: Sequence diagram for sensor consumer workflow.

Journal of Computer Networks and Communications

act activity diagram 0

-

Launch
dashboard
Add
sensor
List Create

sensor

SensorConsumer CloudInfrastructure PhysicalSensorQueue
Start Authenticate
session user

Subscribe
sensor

virtual sensor|

it

Request

View
analytics

47

Download

data

-

Fetch data

data

Fetch live lj

Fetch histor;
data

i

Fetch data
from database

Collect data

on virtual
machine

Process for

View analytics \

analytics

on dashboard

FIGURE 6: Active diagram for sensor consumer.

10

Journal of Computer Networks and Communications

| \ h Ly |
| Sensor i | Sensor | | Cloud i ! Network :
i consumer ! | provider | : admin | : admin !
1 ! | |
: ! i | Multitenancy/ ! | |
| Registration/billin | | [scalability and load balancing/| ! | Virtualization |!
g g | y 81y)
! i ! security and policy i |
| L | | |
| I
! Dashboard :
1 |
T T T !
: : : I Il :
: : | Provisioning/monitor/control :
| ! |
: ¥ N = :
| Analytics i 1 Management :
|
! i ! !

F1GURE 7: Functions of SenseCloud.

& &

1 1 1 1
IVSIIIVS3) 1VS211VS3 I'VS11 VSN

1 1 1 1 1

Consumer level virtualization
S N B 1T
" Virtual | " Virtual ! 7 Virtual
1 sensor 1 : | sensor2 i ! L_s_er_ls_oz{\l__l
T T T T
Sensor level virtualization
T

Physical sensors

F1GURE 8: SenseCloud virtualization approach (Ci is the ith sensor
consumer, and VSj is the jth virtual sensor).

Virtualization
start

Received
registerSensor
request from
provider

Received
addSensor request
from consumer

Create VS and group
the VSs of the

consumer

Create VM from the
images stored on the
cloud

Virtual machine
(VM) already created?

No

Register sensor and
create virtual
sensor (VS) on the VM

1

Map one-to-one
communication
between physical
sensor and VS

L]

FIGURE 9: SenseCloud virtualization algorithm.

Let us consider SenseCloud from the perspective of
the sensor consumer. SenseCloud has the highest degree of
multitenancy from this perspective. Sensor consumers share
the same application to log in, engage, and manage sensors
and sensor data. The application servers (i.e., provisioning
servers in the infrastructure) are also shared among various
sensor consumers. These application server instances can
scale out or in according to the policy engine (refer to (3)
Dynamic Provisioning below). The data corresponding to the
sensor consumers are stored in shared tables in a common
database (i.e., MySQL).

Next, let us consider SenseCloud from the perspective
of the sensor provider. Each sensor provider has dedicated
infrastructure (i.e., VMs). Each of the instances dedicated to
the sensor provider runs its own software stack exclusively
for the particular sensor provider. This design considers the
following important aspects: security, failover mechanisms,
high availability, and reliability. For each sensor provider,
several sensors can post data to their specific instances. In
case of data corruption, failover, or deliberate attacks, the
specific sensor provider can be isolated without affecting
or compromising the entire application. However, the data
collected from the sensors across sensor providers are stored
in a shared database (i.e., Cassandra DB) after filtering and
validation. This step is performed to enable analytics over the
entire data set.

Further, the multitenancy solution in SenseCloud spans
three levels: sensor level, sensor-data level, and sensor-
service level. In the multitenancy view of the sensor level,
SenseCloud provides diverse sensors and sensor networks to
each tenant—that is, consumer—according to the individ-
ual demand. Our cloud infrastructure of sensors provides
customized composition, provision, and schedule of sen-
sors for each tenant. SenseCloud provides sensor-data level
multitenancy—that is, customized data collection, data man-
agement, and data visualization—according to the demand of
each tenant. Further, our system provides sensor-service level
multitenancy, for example, real-time data service and histor-
ical data service. In addition, this feature could be enhanced
to provide prediction and recommendation services through
in-depth analysis of historical data.

Journal of Computer Networks and Communications 1

Yy ST

& i

S— N

P >N Sensors
{ 4
—> (@))
=

Cassandra sensor data DB

Database
>

B =~y

Provider ID Sensor ID Data

R . '
/"/Q@iéaéi A — Q8 1

® LSy TeT . !

Sl -
Virtual machine 3

-
Sensor

Sensor
network

providers

Policy engine

User Sensor Policy Preferences

1D
4
| 5 1
Sensor data
consumers

L2
2 &
[a=y

‘ 6 Application DB

FI1GURE 10: SenseCloud multitenancy solution.

Measure the avg CPU
of the autoscale group

AN

as-create-or-update-trigger my—as-th\g%g --auto-scaling-group my—a/s—group
--namespace “AWS/EC2” --measure CPUUtilization --statistic Average --

Specify the autoscale
group name

dimensions “AutoScalingGroupName= my-as-group ” --period 60 --lower-
threshold 20 --upper-threshold 80 --lower-breach-increment”=-2" --upper-

Lower CPU limit is 20% and
upper CPU limit is 80%

Scale down by 2 servers and
scale up by 4 servers

F1GURre 11: Example of SenseCloud scaling policy.

(3) Dynamic Provisioning. In order to allow the sensor
consumers to efficiently leverage the vast pool of resources on
demand and on a pay-per-use basis, we provide two solutions:
scalability solution and load balancing solution.

Our scaling solution considers three parameters for scal-
ing in and out. We consider the average incoming network
traffic per instance, average outgoing network traffic per
instance, and average CPU utilization per instance. As shown
in Figure 11, we dynamically set thresholds for each of these
parameters according to the usage patterns. When surpassed,
these thresholds trigger the dynamic creation and deletion of
instances to efficiently scale out and scale in, respectively.

The load balancing solution is shown in Figure 12. When
an application server (e.g., provisioning server) receives the
request, it selects a load balancer from the multiple load
balancers by using the round robin algorithm. If only one
load balancer exists, it is selected by default. The selected load
balancer uses the location-aware load balancing algorithm

in conjunction with the least outstanding request routing
algorithm. Thus, the location-aware load balancing algorithm
attempts to select an instance that is closest to the request
sender zone and that has the shortest pending list. First,
the load balancer selects the availability zone closest to the
location where the request is sent. Then, the load balancer
determines the application server instances that exist in
the selected availability zone. If multiple application server
instances exist, the load balancer selects an instance accord-
ing to the least outstanding request routing algorithm; that
is, it selects an instance that has the smallest queue size for
outstanding requests.

4. Performance Evaluation

This section describes the implementation of a prototype
of SenseCloud, thus demonstrating the feasibility of our
system. Then, the prototype is evaluated in terms of the

12 Journal of Computer Networks and Communications
TaBLE 2: Tools and technologies.
Tools and_ Name Version Description
technologies
Java, Python, .
Development Groovy, IS NA Independent programming language
API framework Swagger L5 Representation of RESTful API
Operating system Linux 14 Open-source operating system
White-box testing JUnit 3.8.1 Dedicated testing framework for Java with native support
framework
Black-box testing Selenium 2 Automated testing framework for web applications
framework
Integrated
development Eclipse Luna Widely used IDE with full support for Java and third-party plugins
environment
slz)r:;r?(l)llmcatlon MQTT 231 Lightweight publish-subscribe broker communication protocol for IoT
Storage Cassandra 2.1.7 Big data storage on clustered commodity hardware
MySQL 5.1.36 SQL database to store dashboard-related information
.Contmu.ous . Continuous integration for software development. Also supports Git
integration Jenkins 1 .
repository
framework
Ul HTML 5 Fundamental and flexible Web UT language for web application
CSS 3 Fundamental and flexible Web UI styling for web application
JQuery 2 DOM manipulation library
Web moris.js 0.5.1 Graphical data visualization Java Script library
Bootstrap 3 Java Script framework to build responsive websites
Repository Git 19 Open-source subversion reposuory..Powerful c.ollaboratlon, management, and
code review for projects
Cloud AWS NA Amazon Web Services to build cloud infrastructure
Build tool Maven 391 Build automation system to automate b'u}lfl, testing, publishing, and
deployment activities
UML Astah 6 Design UML diagrams
MQTT client Eclipse Paho 0.4.0 Open-source client implementation of MQTT
Logging Log4j 1217 Library for logging in Java
RasberryPi, 10 microcontrollers with sensors: RasberryPi has temperature sensor, pressure
Sensor kit Samsung NA sensor, ambient light sensor, and LED; SmartThings has temperature sensor,
SmartThings contact sensor, humidity sensor, motion sensor, and orientation sensor

system response time and the performance of our functional
algorithms.

4.1. Evaluation of Implementation. Table 2 shows the tools
and technologies that we used to implement a prototype of
SenseCloud and to test it.

We present some screenshots of our implemented pro-
totype. Users type the SenseCloud index page URL in the
browser. After successful registration, the users can log in to
their account by entering their credentials. After successful
login, the users are redirected to the main dashboard page,
which shows the links to the functions that the users can
perform, as shown in Figure 13(a).

Sensor providers can click the “Manage My Sensors”
menu to view, edit, and delete the sensors that they have
registered; Figure 13(b) shows the sensor list of a sensor
provider. Sensor providers can add sensors by clicking the
“Add a Sensor” menu. They can group their sensors and

manage the groups through the “Manage Provider Groups”
menu; further, they can add sensor hubs by selecting the “Add
a Sensor Hub” menu in order to create a sensor network.
Sensor consumers can subscribe to interesting sensors
through the “Subscribe Sensors” menu, view the list of
available sensors, search for sensors, and subscribe to these
sensors. Sensor consumers can manage their subscriptions
and view the data of the subscribed sensors through the
“Manage Subscribed Sensors” menu. The subscribed sensors
can also be grouped together; then, the consumer can view,
edit, manage, and visualize the data from the sensors of the
created group by selecting the “Manage Subscriber Group”
menu. Figure 13(c) shows the temperature sensor data for a
subscribed sensor. The consumer can view the daily current,
minimum, maximum, and average temperature and can also
download the historical data in JSON format by selecting
the date. Figure 13(d) shows the maximum and minimum
temperatures of the current week for a subscribed sensor.

Journal of Computer Networks and Communications

Load balancing
start

Receive request

Multiple load
balancers exist?

Apply round robin to

Yes select a load balancer

Select a load balancer

i

Determine an

availability zone
according to the
request location

Multiple Apply thfe least
- outstanding request
application server Yes-> X R
g 2 routing algorithm to
instances exist? A
select an instance

Select an application
server instance and
forward the request to
the instance

L 1

FIGURE 12: SenseCloud load balancing algorithm.

A map displays the current geo-location of the sensor. The
implementation of the SenseCloud prototype confirms the
feasibility of our system.

4.2. Performance Observation. In order to evaluate the
performance of our prototype, we develop the servers of
SenseCloud on AWS cloud infrastructure and generate client
requests to the servers. We observe the system response
time, varying the request types of each scenario, the number
of requests, and applied performance-tuning mechanisms.
Having many requests more than 1000 is statistically mean-
ingful. Finally, we measure request distributions to show
the performance of our functional algorithms (i.e., load
balancing and scalability).

First, in order to evaluate the system response time, we
create three scenarios by varying the number of requests
to list the subscribed sensor and the number of requests to
add sensors. Further, in a scenario, we increase the number
of users from 1 to 100. The requests from a single user
correspond to synchronous calls, and different users create
simultaneous connections.

As shown in Tables 3 and 4, the performance remains the
same even if we increase the number of synchronous requests
from 1000 to 5000. This result is an effect of the multitenant
architecture and load balancer algorithm running on the
VMs; owing to this design, the incoming requests are handled

13

(b)

63F 70F 66 F

74F 74F 76F 50F 78F 69 70F

(c)

74F 74F 74F S0F S0F 67F 63F

(d)

FIGURE 13: Screenshots of SenseCloud prototypes: (a) menu page;
(b) sensors viewed through “Manage My Sensors” menu; (c) sensor
historical data through “View” menu of each sensor; (d) view sensor
data with map through “View on Map” menu of each subscribed
Sensor.

in parallel, and the same throughput is obtained. Further,
when the number of simultaneous connections increases,
we observe that even if the number of users increases, the
performance deteriorates only by a small amount.

Next, we create eight scenarios, varying the number
of requests to perform the following 13-page traverses and
applying mechanisms for performance tuning (i.e., connec-
tion pooling, prepared statement, and object caching). A
request includes traversals of the following 13 pages:

(1) Home page.

(2) Registration.

(3) Login.

(4) Add sensor to cloud.

(5) List provided sensors.

(6) Group of provided sensors.
(7) Consumer dashboard.

14 Journal of Computer Networks and Communications
TABLE 3: System response time versus requests to list the subscribed sensors.
Scenario Number of requests Average (deviation) response time (ms)
Requests to list the subscribed sensors per user Users Total requests
1 1000 1 1000 6 (0)
2 5000 1 5000 6(7)
3 1000 100 100000 27 (63)
TABLE 4: System response time versus requests to add sensors.
Scenario Number of requests Average (deviation) response time (ms)
Requests to add sensors per user Users Total requests
1 1000 1 1000 1)
2 5000 1 5000 11 (0)
3 1000 100 100000 1177 (78)

(8) Subscribe sensors.
(9) My Sensors.
(10) My Groups.
(11) Dashboard for temperature sensor analysis.

(12) Dashboard for temperature and video sensor analysis
in my group.

(13) Logout.

From the results in Table 5, the use of other performance-
tuning mechanisms such as connection pooling, prepared
statement, and object caching has significantly reduced the
average time for a request response. Our system implements
connection pooling by maintaining a connection pool of
database connections and using the queue mechanism to
dequeue or enqueue database connection objects. This pro-
cess improves the performance significantly because the con-
nection objects are reused. Instead of traditional statements,
prepared statements are used for database querying. The
prepared statements are precompiled. Object caching is also
implemented in our system; the most frequently queried
results are cached based on the time-to-live.

In order to evaluate the performance of our load bal-
ancing and scalability algorithms, we use a request generator
that, at a given time, randomly generates 1000 requests across
nine locations. Initially, each location has one instance. All
instances have different configurations created in the Elastic
Cloud Compute service of Amazon Web Services (AWS). The
nine locations on AWS are as follows [23]:

(1) US East (N. Virginia).

(2) US West (Oregon).

(3) US West (N. California).
(4) EU (Ireland).

(5) Asia Pacific (Singapore).
(6) Asia Pacific (Tokyo).

(7) Asia Pacific (Sydney).

(8) Asia Pacific (Seoul).

(9) South America (Sao Paulo).

Figure 14 is a graphical representation of the request
distribution results according to the applied algorithms. From
the results shown in Figure 14(a), in the absence of the
algorithms, all the 1000 requests were randomly distributed
across all the locations. Thus, the result of request distribution
is the most uneven in this case. In Figure 14(b), only the load
balancing algorithm is applied; the load balancer attempts to
distribute the requests originating from a particular location
until the capacity of the server to serve requests reaches a
maximum. If overload occurs, the requests are redirected to
different locations randomly, using the least pending request
algorithm. For example, location 1 received 121 requests,
and according to the load balancing algorithm, the first 101
requests are handled by the instance at location 1. After the
instance at location 1 reaches its threshold, the subsequent
requests are directed to other locations by using the least
outstanding request routing algorithm. In Figure 14(c), only
the scalability algorithm is enabled. When a particular loca-
tion experiences a surge in network traffic and high CPU
usage that reaches the threshold values, our system scales
the infrastructure for that location. For example, when the
instance at location 1 reached its threshold, the infrastructure
at location 1 scaled out, and the subsequent requests were
handled by these instances at location 1. In Figure 14(d), both
algorithms are enabled, and they work in conjunction to serve
the requests. For example, location 1 received 202 requests.
Based on the load balancing algorithm and these requests,
location 1 scaled out to serve these requests. A similar trend
is observed for the other locations.

5. Conclusions and Future Work

SenseCloud is a cloud platform that addresses the challenges
of virtualization, multitenancy, and dynamic provisioning
encountered by the IoT industry today. Our cloud infrastruc-
ture provides a layer that connects with different sensor net-
works, resolves the connectivity and engagement concerns,
and efliciently provides CSaaS between sensor providers and
consumers. SenseCloud provides a two-level virtualization
mechanism. It virtualizes the physical sensors to enable
the consumers to utilize them without apprehensions about
the specification and location details. Further, it allows the

Journal of Computer Networks and Communications

15

TABLE 5: System response time versus requests and applied mechanisms.

Number of requests

Applied mechanisms

Scenario Requests per Total Connection Prepared . Average (deviation) response time (ms)
Users . Caching
user requests pooling statement
1 1000 1 1000 65 (86)
2 1000 1 1000 v 54 (73)
3 1000 1 1000 v v 42 (66)
4 1000 1 1000 v N v 13 (17)
5 1000 10 10000 401 (392)
6 1000 10 10000 v 307 (502)
7 1000 10 10000 v v 250 (417)
8 1000 10 10000 v v N 125 (84)
L9, L9,
Ls, 23.2% 10.1%
2.0% LS,
11.1%
L7,
0.0%
L7,
Ls, 0.0%
2.0%
(b)

(c)

L9,
7.1%

L8,
14.1%

L7,
10.1% ||'
(d)

FIGURE 14: Request Distributions with/without our load balancing and scalability algorithms on AWS (Li denotes location i): (a) without
algorithms; (b) with load balancing; (c) with scalability algorithm; (d) with load balancing and scalability algorithms.

consumers to place dynamic requests for virtual sensor
groups and to customize the virtual sensor groups. Sense-
Cloud provides different types of multitenancy to sensor
providers and consumers: It provides a virtual instance ded-
icated to each provider to enable isolation without affecting
the other providers in case of failover or attacks; further,
it also provides common application server instances to all
consumers for efficient sharing of resources. SenseCloud

provides dynamic provisioning to allow the consumers to
leverage the vast pool of resources on demand and on a pay-
per-use basis. The results from our prototype implementation
and simulation have demonstrated the feasibility of Sense-
Cloud and the achievement of our objectives.

In future work, we must consider the large number of IoT
devices and the exponential growth of sensor manufacturers
in the market. Instead of adopting a de facto standard, we

16

must define a specific standard for communication, data
format, and security between the devices and the cloud
platform. The definition of such a standard will eliminate the
necessity of frequent changes in the cloud implementation
when a new manufacturer enters the market. Current security
in SenseCloud is imposed by the role-based access control
and provision policy and the two levels of virtualization. With
advanced and proper security being the most important fea-
ture in the world of connected devices, further development
and advancement is required to increase the trust in such
cloud platforms among consumers.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (Grant no.
2015R1D1A1A01057362).

References

[1] A. Botta, W. De Donato, V. Persico, and A. Pescape, “On
the integration of cloud computing and internet of things,
in Proceedings of the 2nd International Conference on Future
Internet of Things and Cloud (FiCloud ’14), pp. 23-30, Barcelona,
Spain, August 2014.

[2] X. Sheng, J. Tang, X. Xiao, and G. Xue, “Sensing as a service:
challenges, solutions and future directions,” IEEE Sensors Jour-
nal, vol. 13, no. 10, pp. 3733-3741, 2013.

[3] E C. Delicato, P. F. Pires, L. Pirmez, and T. Batista, “Wireless
sensor networks as a service,” in Proceedings of the 17th IEEE
International Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS ’10), pp. 410-417, Oxford, UK,
March 2010.

V. Rajesh, O. Pandithurai, and S. Mageshkumar, “Wireless sen-
sor node data on cloud,” in Proceedings of the IEEE International
Conference on Communication Control and Computing Tech-
nologies (ICCCCT ’10), pp. 476-481, IEEE, Ramanathapuram,
India, October 2010.

J. Ibbotson, C. Gibson, J. Wright et al., “Sensors as a service
oriented architecture: middleware for sensor networks,” in
Proceedings of the 6th International Conference on Intelligent
Environments (IE ’10), pp. 209-214, Kuala Lumpur, Malaysia,
July 2010.

[6] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as
a service and big data) in Proceedings of the International
Conference on Advances in Cloud Computing (ACC ’12), pp. 21-

29, Bangalore, India, July 2012.

[7] D. Gratanin, M. Eltoweissy, A. Wadaa, and L. A. DaSilva,
“A service-centric model for wireless sensor networks,” IEEE
Journal on Selected Areas in Communications, vol. 23, no. 6, pp.
1159-1165, 2005.

S. Distefano, G. Merlino, and A. Puliafito, “Sensing and actua-
tion as a service: a new development for clouds,” in Proceedings
of the IEEE 11th International Symposium on Network Computing

=

—
i)

[8

(10]

(11]

(12]

(14]

(16]

(17]

(18]

[20]

(21]

Journal of Computer Networks and Communications

and Applications (NCA ’12), pp. 272-275, Cambridge, Mass,
USA, August 2012.

A. Deshwal, S. Kohli, and K. P. Chethan, “Information as a
service based architectural solution for WSN,” in Proceedings
of the Ist IEEE International Conference on Communications in
China (ICCC ’12), pp. 68-73, Beijing, China, August 2012.

R. Di Lauro, FE Lucarelli, and R. Montella, “SlaaS—sensing
instrument as a service using cloud computing to turn physical
instrument into ubiquitous service,” in Proceedings of the 10th
IEEE International Symposium on Parallel and Distributed Pro-
cessing with Applications (ISPA ’12), pp. 861-862, IEEE, Madrid,
Spain, July 2012.

M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure—
physical sensor management with virtualized sensors on cloud
computing,” in Proceedings of the 13th International Conference
on Network-Based Information Systems (NBiS ’10), pp. 1-8, IEEE,
Takayama, Japan, September 2010.

M. A. E. Al-Fagih, E M. Al-Turjman, W. M. Alsalih, and H.
S. Hassanein, “Priced public sensing framework for heteroge-
neous IoT architectures,” IEEE Transactions on Emerging Topics
in Computing, vol. 1, no. 1, pp. 133-147, 2013.

C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos,
“Sensing as a service model for smart cities supported by Inter-
net of Things,” European Transactions on Telecommunications,
vol. 25, no. 1, pp. 81-93, 2014.

M. M. Hassan, B. Song, and E.-N. Huh, “A framework of
sensor—cloud integration opportunities and challenges,” in
Proceedings of the 3rd International Conference on Ubiquitous
Information Management and Communication (ICUIMC 09),
pp- 618-626, Suwon, Republic of Korea, January 2009.

Y. Ishi, T. Kawakami, T. Yoshihisa, Y. Teranishi, K. Nakauchi,
and N. Nishinaga, “Design and implementation of sensor data
sharing platform for virtualized wide area sensor networks,” in
Proceedings of the 7th International Conference on P2B, Parallel,
Grid, Cloud and Internet Computing (3PGCIC ’12), pp. 333-338,
Victoria, Canada, November 2012.

A. Kansal, S. Nath, J. Liu, and F. Zhao, “SenseWeb: an infras-
tructure for shared sensing,” IEEE MultiMedia, vol. 14, no. 4, pp.
8-13, 2007

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of Things (IoT): a vision, architectural elements, and future
directions,” Future Generation Computer Systems, vol. 29, no. 7,
pp. 1645-1660, 2013.

R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet:
the internet of things architecture, possible applications and
key challenges,” in Proceedings of the 10th IEEE International
Conference on Frontiers of Information Technology (FIT ’12), pp.
257-260, Islamabad, Pakistan, December 2012.

D. B. Hoang and L. Chen, “Mobile Cloud for Assistive Health-
care (MoCAsH),” in Proceedings of the IEEE Asia-Pacific Services
Computing Conference (APSCC ’10), pp. 325-332, Hangzhou,
China, December 2010.

B. B. P. Rao, P. Saluia, N. Sharma, A. Mittal, and S. V. Sharma,
“Cloud computing for Internet of Things & sensing based
applications,” in Proceedings of the 6th International Conference
on Sensing Technology (ICST ’12), pp. 374-380, Kolkata, India,
December 2012.

Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT gateway:
bridging wireless sensor networks into internet of things,” in
Proceedings of the IEEE/IFIP 8th International Conference on
Embedded and Ubiquitous Computing (EUC ’10), pp. 347-352,
Hong Kong, December 2010.

Journal of Computer Networks and Communications

[22] J. Gao, L. Lei, and S. Yu, “Big data sensing and service: a tutorial,”
in Proceedings of the IEEE Ist International Conference on Big
Data Computing Service and Applications (BigDataService ’15),
pp. 79-88, Redwood City, Calif, USA, March-April 2015.

[23] Regions and Availability Zones, http://docs.aws.amazon.com/
AWSEC?2/latest/UserGuide/using-regions-availability-zones
.html#concepts-regions-availability-zones.

17

International Journal of

Rotating
Machinery

International Journal of

The SCientiﬁC Journal of DiStribUted
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Journal of ‘ Electrical and Computer
Robotics Engineering

Advances in
Modelling & International Journal of
rrenaion ot o Simulatio Aerospace
ston in Engineering Engineering

Observation

e

/!
| Journal of

International Journal of Antennas and Active and Passive e
Chemical Engineering Propagation Electronic Components Shock and Vibration

