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The prediction based target tracking in wireless sensor network is being studied from many years. However, the presence of a
coverage hole(s) in the network may hamper tracking by causing temporary loss of target, which is a crucial issue in mission critical
applications. This raises the need for robust recovery mechanism to capture the lost target. However, the problem of recovery of lost
target during tracking has received less attention in the literature. In this paper, we present an energy efficient recovery mechanism.
The performance of proposed algorithm for lost target recovery using different tracking filters has been evaluated with and without
awakening hole boundary nodes. The efficacy of the algorithm has been tested using various causes of losing target with and without
energy saving modes. We have conducted exhaustive simulations for recovery of the lost target and presented the analysis of how
the recovery gets affected with linear and nonlinear filters. From the simulation results and energy analysis, it is evident that the

proposed recovery algorithm outperforms the existing work in the literature.

1. Introduction

Wireless sensor network (WSN) is emerging as an impor-
tant area which is attracting considerable research interest
due to advancement in low cost embedded processor and
wireless transmission technology. Target tracking in WSN
has been successfully implemented in applications like aque-
ous surveillance system for drinking water reservoir [1],
wildlife habitat observation system [2], network to monitor
the behaviour of glaciers [3], in-house person tracking [4],
battlefield data collection network [5], and so forth. However,
there are several challenges and limitations in developing
tracking algorithm in WSN. As the sensor nodes have
limited energy and bandwidth, they cannot be always active
in sensing, computing, and data forwarding. The tracking
algorithm should be energy efficient to prolong the network
lifetime by switching nodes periodically in active and sleep
mode. Moreover, tracking algorithm is vulnerable to loss of
target due to anisotropic nature of WSN containing coverage
hole(s), where some part of the area under observation may
not be monitored.

Aforementioned limitations of node energy in sensor
network raise the need for prediction of precise location of
the target, so that number of nodes participating in tracking
is as small as possible. The prediction is performed using
different linear and nonlinear filters in WSN [6, 7]. Though
there have been efforts towards improving performance in
tracking by modifying these filters, there is no considerable
amount of work done on tracking in presence of hole(s). The
presence of hole badly hampers the tracking in the network.
Hole is that region of the network where nodes are depleted.
This is also referred to as communication void since it is
an obstacle for communication [8]. Such holes make deep
impact on the sensor network’s performance. Once the target
enters into the hole, tracking nodes cannot detect its position
and in turn fail to provide the useful information about the
target. When the target enters into the hole it gets temporarily
lost. Such an event can be a dangerous situation in mission
critical applications such as enemy tracking, harmful or wild
animal tracking inside a habitat, and tracking a terrorist.
Various causes of losing the target may be summarized as
follows.



(1) Communication Failure due to Coverage Hole(s) in the
Network. It may occur due to insufficient coverage in the
network. The sensor nodes are randomly deployed in the
area of interest. For example, if the inspected area is vast and
precarious for human intervention such as dense forest or
battlefield, then sensor nodes are dropped from aeroplane.
Here, nodes may form anisotropic network with large cov-
erage holes.

(2) Node Failures. The main cause of failure is battery
exhaustion of node. In addition, it may occur due to physical
damage of the nodes. For example, when the nodes are
deployed in battle field, group of nodes may be destroyed by
means of warheads such as grenades and bombs or physically
capturing and destroying the nodes by enemy [9]. Similarly,
when the nodes are deployed randomly through aeroplane,
these may fall into pond resulting in failure, if they are not
water resistant. Similarly, with a sudden outburst of fire in
the forest, nodes in a particular region may be gutted by fire
creating a hole in that region.

(3) Location Estimation Errors. If erroneous localization is
performed and such coordinates are assigned to nodes,
target’s current location may be estimated wrongly by the
tracking nodes. Similarly, the localization error may have
cumulative effect on tracking [10].

(4) Prediction Errors. If erroneous location is predicted,
wrong node and cluster may be alerted for tracking. Similarly,
the delay in disseminating predicted location by intermediate
nodes may miss the target as the corresponding cluster may
not wake up timely.

(5) Random Manoeuvring. If the target is manoeuvring with
sudden variation in speed, target may go undetected by the
sensing nodes as the target object may flee the detection areas
by the time they wake up.

(6) Faulty Node. If the node is incapacitated by adversary,
it may stop working or give results which may significantly
deviate from the results of the neighbour nodes [11], which
needs to be detected immediately.

Thus, these facts need to be considered while developing
the tracking with recovery protocol. Few researchers have
addressed the issue of tracking in presence of hole and
recovery of the lost target [10, 12-15]. To the best of our
knowledge, none of the tracking algorithms mentioned in
literature address how the role of filter affects recovery
performance for the lost target. In this paper, we present
how the filter based tracking algorithms perform in the
presence of hole, with and without awakening hole boundary
nodes. The performance of proposed recovery algorithm is
compared with recovery algorithm presented in literature
[12]. In addition, the recovery analysis is conducted in the
presence of static and event driven clustered architecture.

The rest of the paper is organized as follows. Section 2
deals with related work in the literature. Section 3 introduces
network architecture used for tracking, and proposed
algorithm for recovery of lost target is presented in Section 4.
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Performance evaluation and results are discussed in
Section 5. Conclusion is presented in Section 6.

2. Related Work

In this section, the existing recovery mechanisms are
reviewed for lost target during tracking. Typically, before
initiating tracking, it is essential to detect the target entering
into the network and its current location. For detection all
sensor nodes either need to be awake all the time [16] or
may periodically switch between active and inactive (sleep)
state for energy conservation as explained in probabilistic
sensing approaches [17]. Once the target is detected, it is nec-
essary to compute its location. For prolonging the network
lifetime minimum number of sensor nodes should participate
in location estimation and tracking. Trilateration [18] and
triangulation [19] are such techniques where minimum of
three and two nodes, respectively, are sufficient for location
estimation.

The lost target recovery can be performed using var-
ious tracking techniques. Hence, we review the tracking
techniques in brief. The tracking algorithms are classified
according to the underlying techniques. A detailed survey
of tracking algorithms can be found in [20]. The prediction
based tracking approaches either use prediction mechanisms
based on target’s movements, velocity, and direction as in [21-
23] or use various linear and nonlinear filters. An optimal
or linear filtering technique used in tracking is Kalman filter
(KF) [6, 24]. An estimate of the state of the process is per-
formed recursively so that each time mean of squared error is
reduced while tracking a target with random trajectory. The
KF assumes linear system dynamics, that is, linear state vector
and Gaussian noise. For nonlinear system dynamics, the
tracking performance of Kalman filter is degraded. To address
this problem, researchers developed suboptimal extension of
KE namely, extended Kalman filter (EKF) [25], which is the
most widely used approximate filter for tracking [25, 26].
Though EKF performs better than KE it suffers from serious
drawbacks [27].

The EKF linearizes the transformation by substituting
Jacobian matrices for the linear transformations of the KF
equations assuming that all the transformations are quasi-
linear. Linearization can be applied only if Jacobian matrix
exists. Also, the series approximations of the EKF algorithm
can lead to poor representations of the nonlinear functions
and probability distributions, so this filter may diverge.

To overcome these drawbacks another technique is
devised for nonlinear and non-Gaussian system dynamics,
which is known as particle filter (PF). In PF any probability
distribution function (pdf) can be represented as a set of
samples known as particles [7, 25]. Each particle has one set of
values for the state variables, and the density of samples in the
area of the state space depicts the probability of that region.
Hence, in PF the posterior distribution is represented by a set
of k weighted samples. These are updated recursively in time
using the importance sampling method [25]. Besides these,
there are other filtering techniques used in tracking such as
unscented KF [28] and interactive multiple models [29].
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The aforementioned tracking algorithms may suffer from
temporary loss of target due to various reasons mentioned
earlier. To circumvent this issue, recovery mechanisms have
been devised in literature. For example, authors in [13]
presented a cluster based distributed tracking protocol (DTP)
on the principal of RADAR beam. This protocol describes a
level based recovery mechanism for temporary loss of target,
mentioned as follows.

(1) First Level Recovery. When the target is lost, the sensor-
triplet which was tracking the target earlier switches from
normal beam (r) to high beam (R). If this is successful,
then the normal tracking mechanism is followed; otherwise
second level recovery is initiated.

(2) Second Level of Recovery. In this level, the region of the
search is increased and the nodes at a distance of p meters
from the last node are activated; otherwise N'th level recovery
is initiated.

(3) Nth Level Recovery. In this level of recovery the group of
sensor nodes that are (2N — 3) p meters away is activated to
locate the target.

However, this mechanism does not consider past infor-
mation of object motion. Authors in [14] have presented
prediction based strategies for energy saving (PES) and
recovery mechanism for the lost target. Three cases, namely,
naive monitoring, continuous monitoring (CM), and sched-
uled monitoring (SM), for target tracking and recovery
are discussed. The performance of PES is compared with
aforementioned three cases. However, no optimal wake up is
defined for recovery of the lost target.

As an improvement towards reducing the active nodes
participation during recovery, authors in [14] have considered
different motion features of objects for simulation. Location
prediction is done by integrating the current information of
location, velocity, and motion direction. When prediction
fails the target is lost, and the network starts hierarchical
recovery process according to its past record of motion. This
kind of recovery mechanism wakes up a lot of nodes every
time, resulting in increased energy consumption and network
lifetime reduction.

Another recovery mechanism for clustered network for
lost target is described in [10]. This protocol consists of four
phases described as follows.

(1) Declaration. When target is lost, current cluster head (CH)
checks its presence in the previous clusters. If it is not found,
then it declares that the target is missing.

(2) Search. To avoid the false initiation of recovery mecha-
nism, current CH checks the presence of target in its own
cluster. If it is not present then active recovery is initiated.

(3) Active Recovery. This phase consists of different recovery
levels. In the first level, the current CH wakes up all its single
hop clusters. If it is not found here, then two hop clusters
are woken up, and this process is repeated till the target is
recovered.

(4) Sleep. On successful recovery of the target, the CH and
cluster members that are participating currently in tracking
remain awake and the remaining cluster members go to sleep
mode.

However, this recovery mechanism wakes up large num-
ber of nodes during recovery. In the above case, as soon as
the target is lost all single hop clusters are waken to detect it.
Towards reducing the active participation of nodes, authors
in [12] present another recovery mechanism. For recovering
the target in the first level recovery, only the nearest one
hop cluster to the predicted position is woken up instead of
waking up all the single hop cluster heads. If the target is not
detected in first level recovery, the two hop clusters nearer
to the predicted location are woken up. If the target is not
captured here also, then nearest three hop clusters are woken
up in third level recovery. In this way less number of nodes
needs to be activated for recovery of the lost target.

The aforementioned protocols use the prediction mech-
anisms based on its last location, velocity, angular move-
ment, and so forth to locate the target in case of missing
situation. However, to the best of our knowledge, hitherto,
none of the recovery algorithms consider waking up hole
boundary nodes or use nonlinear filter based prediction for
target recovery. In this paper, we are proposing an energy
efficient recovery mechanism for anisotropic networks. In the
proposed work, we introduce two kinds of network scenarios,
namely, wireless sensor hole aware network and unaware
network. When the network knows hole boundary; it is called
wireless sensor hole aware network (WSHAN), and if hole
boundary nodes (HBNs) are unknown, then it is a wireless
sensor hole unaware network (WSHUN). In WSHAN the
base station (BS) stores information of the boundary nodes
(BN). The performance of recovery mechanism has been
evaluated with static and event driven clustered architecture.
The event driven clustering is an energy saving architecture
of the network as compared to static or dynamic clustered
architectures [30, 31]. Details of formation of such network
are explained in the following section. The significant contri-
butions of this paper are as follows.

We propose an energy efficient, nonlinear filter based
recovery mechanism and compare its performance with
existing recovery algorithm [I2] in presence of static and
event driven clustered architecture.

We propose a recovery mechanism in WSHAN for linear
and nonlinear filters. Since less number of nodes is woken up
in recovery of the lost target with WSHAN as compared to
WSHUN, the network energy is saved.

The energy saving in WSHAN is twofold, first due to the
event driven clustered architecture and second due to waking
up optimum number of nodes.

3. Network Architecture

The following section describes the network architecture and
the energy model used in the recovery algorithm. WSN
consists of randomly spread nodes in the area of interest.
All these nodes communicate with neighbour node and
form network through self organisation. For a distributed



operation, the network is divided into clusters [32], where
only cluster head (CH) and one (or more than one according
to application requirement) cluster member are in active
mode and the remaining cluster members are in sleep mode.

In this section, we first discuss the static and event
driven network architecture used for tracking. The advantage
of having static clustered network is that the clustering is
required to be performed only once during formation of
network. In such architecture, the CHs are fixed and all the
cluster members know their corresponding CHs. These CHs
are responsible for communication and computation.

Figure 1 shows the communication in static cluster. The
boundary node BNI locates the target with the help of
other two boundary nodes that have detected the target. The
trilateration is performed to compute its current location.

Let A, B, C, and T denote sensor nodes and target,
respectively. Distance of target from nodes A, B, and Cis d,
d,, and d;, respectively, and is obtained using the following
equations. The localization is performed by trilateration, and
the equations used are as described in the following:

d? = (xl - xt)z + ()’1 - )’t)z >
dy = (- %) + (-9’ M
d§ = (x; - xt)z +(y3 - )’t)2~

Now, the CH of BN1 computes target’s future location
using KF/EKF/PF filters and finds which cluster it may enter.
It sends wake up message to respective CH through nodes
BN1and B. The CH finds the nearest node to target and wakes
it for tracking. Thus, to start target tracking the amount of
communication performed inside cluster is (5 transmission
+ 5 reception), from BN to node B, next node B to CH, and
CH to nodes D, C, and E. In next step, this CH predicts the
future location of the target and if it is inside its own cluster
then it wakes up nearest node to that location. Thus, only
CH performs communication and computation; hence there
is more possibility of failing this node. Failure of CH prohibits
participation of its cluster members in tracking. To deal with
this problem, we adopted dynamic clustering in [33]. The
dynamic clustering was performed using LEACH protocol
[34], where the role of CH is performed by each node in
rotation to increase the lifetime of the network. However, in
this kind of architecture the communication required may
be more than static clustered network. The location of the
CH is not fixed and hence more numbers of communications
are required to be performed to intimate the CH and initiate
tracking. A more flexible network design can be achieved
with dynamic clustering. However, its overhead in formation
of clusters is considered to be a serious drawback [35]. Thus,
for many practical situations, event driven clustering is an
energy efficient solution [30, 31]. Hence, in this paper, we use
an event driven clustering, where clusters are not formed a
priori, but on the occurrence of an event nearby nodes form
cluster to observe the event, that is, to track the target.

3.1. Event Driven Clustering. Figure2 illustrates tracking
inside the network by event driven clustered network. Here,
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FIGURE 1: Static clustered network.

we assume that every node including boundary node has
the distance and location information of all the nodes in
the network. Thus, every node has that information which a
CH has in static clustering. That means here every node can
perform all the activities of CH. Similarly, we also assume that
BS knows the locations of all the nodes in the network. BS
identifies the network and hole boundary nodes by applying
boundary detection algorithm such as [36]. The identity of
hole boundary is transmitted to corresponding nodes, since
they have to be awake for intrusion detection. Keeping nodes
awake all the time leads to node running out of battery; hence
these network boundary nodes are divided into two groups.
For example, if there are n boundary nodes with IDs 1 to n
assuming they are placed sequentially, all the odd numbered
nodes go to the first group and even to the second group.
When the first group is awake, second is in sleep mode and
vice versa. These groups go to active mode alternately, so that
energy is balanced during target’s intrusion.

Only nodes with energy greater than threshold (7),
also called as live nodes, can participate in the network
activities. Each node maintains an alive nodes list. There is
no communication needed to know energy of a node; as a
result, the energy consumption expended in communication
can be saved conspicuously. As soon as the target enters into
the network, the BN1localizes the target. Next, it predicts the
future location of the target with the help of filters such as
Kalman, extended Kalman, or particle.

Now, BNI finds the nearest node to the predicted location
as B. The node B becomes the CH and sends wake up
message to nodes C and D. As these nodes have energy
greater than threshold (1), acknowledgements are sent to the
node B. On receipt of acknowledgement from this node the
tracking begins. Thus only three duplex communications (3
transmissions + 3 receptions) are required to be performed
to initiate tracking. On obtaining the current position of the
target, the node B predicts its next location. If the nearest
node to the predicted location is in range then node B
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FIGURE 2: Tracking with event driven clustered network.

continues to be CH; otherwise, it handovers the role of CH
to the next nearest node. This procedure is repeated as long
as the target is not located or the energy of all nodes is not
exhausted. This ensures the saving of energy by performing
less communication. In the next subsection the energy model
used in lost target recovery is presented.

3.2. Energy Analysis. For the energy analysis, we adopt the
energy model presented by Shnayder et al. [37]. The MICA
2 platform has been used in this model, which uses ATMEL
128 processor and radio unit CC1000. The Mica2 mote is
powered by a 3V source. The nominal charge capacity (C)
of these batteries is about 1300-3000 mAh. Considering C =
2500 mAh and two AA batteries, the energy per mote can be
computed as follows:

Energy = 2500 - 1072 % 3600 = 3 = 27000 Joules.  (2)

The following equations show the energy expended for
communication:

Energy = (Current * Voltage * Time) Joules, (3)

where current is in Amperes, voltage is in Volts, and time is
in seconds. For the energy computation of transmission or
reception of message, the CPU is considered to be in active
state [37]. The energy cost of transmission and reception can
be evaluated using the following equations:

Transmission-Energy
= (Igpy + Ity * Voltage = Time),
(4)
Reception-Energy

= (Igpy + Igy * Voltage = Time),

where Ipy is the current drawn by CPU; Iy, and Iy, are
the current drawn by transmitter and receiver. As already

mentioned, we have formed two types of WSN depending on
network’s hole awareness. If the network knows hole(s) exists,
then it is called as WSHAN; otherwise it is a WSHUN. In
WSHAN, the hole boundary nodes location is available with
BS. These HBNs are awakened by the currently tracking node
as soon as the target comes in their vicinity. A WSHUN is that
network in which hole boundary nodes do not participate in
tracking in the specific way as mentioned above.

In our earlier work [12], we have proposed a lost target
recovery mechanism using Kalman filter for static clustered
network. The Kalman filter assumes Gaussian distribution
for the state vector with Gaussian noise. However, its per-
formance degrades with nonlinear dynamics of the target.
Hence, we evaluate and compare the performance of KF
based recovery algorithm [12] with the other two types
of nonlinear filters, that is, EKF and PE These filters are
selected because the EKF assumes nonlinear state vector with
Gaussian noise, and PF assumes nonlinear state vector with
non-Gaussian noise. In addition, we also propose a recovery
mechanism in hole aware network (WSHAN) using these
linear and nonlinear filters and compare their performance
in terms of recovery time and number of nodes waken during
recovery and energy. The following subsection presents the
system model used for tracking using KF, EKF, and PE

3.3. System Model of Tracking. The KF, EKF, and PF follow
two steps for tracking, updating, and prediction. A constant
velocity model is used for tracking. The transition and
measurement system equations are described in the following
section.

3.3.1. Kalman Filter. For each time step (¢) the state model is
expressed as

x, = Fix,; + Byu, + w,, (5)

where F, is the state transition model that is applied to
the previous state x,_;; B, is the control-input model that
is applied to the control vector u,; w, is the process noise
which is assumed to be drawn from a multivariate normal
distribution having zero mean with covariance Q,. The F
matrix can be expressed in terms of time step T and velocity
V., V, in (x, y) direction as depicted in

x+T =V,
Vx
y+T =V, [ ©)

vy

F =

At time t, an observation or measurement z, of the true state
x, is made according to

z, = Hyx, + vy, (7)

where H, is the observation model which is used to map
the true state space into the observed space and v, is the
observation noise which is assumed to be a Gaussian white
noise having zero mean with covariance R;:

v, = N(0,R,). (8)



The measurement matrix consists of trilateration equations as
described in

Ve =)'+ (-9’
7= |- x) + (a0 |- ©)
Ve =)+ (s - )’
(1) Prediction Step. For the prediction phase, the state estimate

from the previous step is used for producing an estimate of
the current state as depicted by the following equations:

Xy = BpXy_qyoq + By + wy,
] : (10)
Py = BBy F +Qp

where X;,_, is the predicted or a priori state estimate and Py;_,
is the predicted or a priori covariance estimate.

(2) Update Step. In the update phase, state estimate is refined
using the current state estimate and observation. Such an
estimate is known as the a posteriori state estimate. The
equations used in update step are as given in (11). To compute
these equations the measurement residual ¥, and residual
covariance S, are required. The innovation or measurement
residual is y, = z, — H,(X,,_;) and the innovation or residual
covariance is S, = Ht(PﬂH)HtT + R,. The optimal Kalman
gain K, the a posteriori state estimate X;,, and the a posteriori
estimate covariance P, are given in the following equations:

T o1
K, =Py H, S
Xy = X1 + K §ps (11)
Ptlt = (I - Kth) Ptlt—l'

The update step incorporates the observation and predicts
the next location. As KF works only for linear dynamics of the
target, to handle the nonlinearity in the trajectory, the EKF is
used.

3.3.2. Extended Kalman Filter. In the EKF, the state transition
and observation models are differentiable functions:

x = f (xt—1>”t—1) T Weys
(12)
z,=h (xt) v

where w, and v, are the process and observation noises
which are assumed to be Gaussian noises with covariance
Q, covariance and R, respectively. For linearization, in EKF
the Jacobian of process model and measurement model is
computed and the states are updated.

The function f is used to compute the predicted state
using the previous estimate. The function % is used to com-
pute the predicted measurement using the predicted state.
The matrix of partial derivatives (the Jacobian) is computed
for f and h before applying the covariance. At each step,
the Jacobian is evaluated with the help of current predicted
states. This process linearizes the nonlinear function around
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the current estimate. The Jacobian of the matrix H is as shown
in the following equation:

ory dry 9 On

ox 0x 0y 0y
R A S A A )
" lox ox oy oay |’

Ory Ory Or; Ory

ox 0x 0y O0dy

where 1y, 1,, and r; are the ranges of the three nearest nodes
from the target.

3.3.3. Particle Filter. In PF, the process x, and the observa-
tions z, can be modelled in the form as follows: x, x, ...
is a first order Markov process such that x, | x,.; ~
Pxtixe-1(x | x,_;) having an initial distribution of p(x,).
The observations z, z;,... are independent, provided that
Xg» X1, - . . are known. Thus, each z, only depends on x,:

Zt|xt ~ pzlx(zlxt)' (14)

The system equations can be written as

xp = g (%) +w,
(15)
2 =h(x,)+v,

where both w, and v, are process noise and measurement
noise, respectively, that are mutually independent and iden-
tically distributed sequences with known probability density
functions. The g(-) and h(-) are known functions. The pro-
posed algorithm is described in the following section.

4. Proposed Recovery Algorithm

As mentioned earlier, all the geographic locations of node,
network boundary, and hole boundary nodes are available
with BS. Similarly, the information of hole boundary nodes
is available with their single hop neighbour node, and each
boundary node knows the complete list of other boundary
node locations. To facilitate energy conservation all the nodes
are in sleep mode by default, except network boundary
nodes that are awake alternately. Every node is capable
of performing all the computation needed for prediction,
tracking, and localization on recovery. The activity of tracking
is informed to BS of the network and the BS communicates
with all nodes in the network by multihop communication.

The proposed algorithm is divided into the following
phases.

4.1. Target Tracking Phase. Boundary nodes detect the target’s
intrusion. The tracking is initiated with the current location
estimation.

4.1.1. Location Estimation of Target. If three boundary nodes
can detect target simultaneously then the trilateration is
initiated by any one of the boundary nodes. Otherwise, their
single hop neighbours are sent alert to wake up and detect
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the target to perform trilateration. Once target is located then
CH of respective BN starts prediction of next location of
target.

The location prediction is performed with Kalman,
extended Kalman, or particle filter as explained in Section 3.
This predicted location is further updated on receiving
target’s actual localized value.

4.1.2. Prediction of Location. KF/EKF/PF predicts the future
location of target based on current and previous locations and
updating is performed accordingly. The following subalgo-
rithms are used for KE, EKE and PF, respectively.

(1) Kalman Filter Algorithm
g
(1) Time update is as follows.
(i) State update X,,, = F,X, + B,u, + w,.
(ii) Error covariance P,,; = FPtFT +Q.

(2) Measurement update is as follows.

(i) Compute Kalman gain K, = P,'"H' (HP/H" +
R
(ii) Update the estimate via z,:

% =%+K,(z, - H%'). (16)
(iii) Update the error covariance:
P, =(I-KH)P. 17)
(2) Extended Kalman Filter Algorithm

(1) Obtain the current state estimate X, and error covari-
ance P,.
(2) Linearise the system dynamics X,,;, = FX, + w,
around X,:
F, = Vftlk}' (18)

(3) Apply the prediction step of the Kalman filter to yield
next state estimate and error covariance.

(4) Linearise the observation dynamics z, = hX, + v,
around X, ;:

Hy, = Vhtp?wt' (19)

(5) Apply the update step of the Kalman filter to yield the
state estimate and error covariance.

(3) Particle Filter Algorithm

(1) Generate a set of random particles (prior) from given
current estimate.

(2) Prediction—obtain samples from the prior:

X1 () = f (%, (), w, (1)) (20)

(3) On receipt of the measurement z,, evaluate the likeli-
hood of each prior sample and obtain the normalized
weight for each sample:

g = P(ztlxt (i)
1 Z?:OP(ztlxt (7))

(4) Resample the pdf.

(5) Obtain the current estimate as the mean of the
particles.

(1)

The current tracking node (CTN) performs the following
steps:

(1) predicting the next location of target,

(2) finding member nodes in the vicinity of predicted
location,

(3) waking up nearest nodes to target’s predicted location.

4.2. Recovery Phase. Recovery takes place in three steps,
declaration of missing target, relocation, and hibernation or
switching to the sleep mode.

4.2.1. Declaration of Missing Target. The declaration of loss of
target is done as follows:

(1) when it enters into the hole of WSHAN,

(2) when CTN does not receive any acknowledgement in
stipulated time period from the next selected node.
The nonreceipt of acknowledgement may be caused
due to any of the reasons mentioned earlier.

4.2.2. Recovery of the Lost Target. Following algorithms have
been devised for lost target recovery with hole aware and
unaware network.

(I) Recovery in WSHUN. As the loss of target occurs,
CTN initiates the recovery process described as
shown in Algorithm 1.

(2) Recovery in WSHAN. The algorithm of recovery in
WSHAN is described as shown in Algorithm 2.

4.2.3. Hibernation. All the active nodes involved in recovery
go to sleep mode as soon as target recovery message is
received except those that are currently tracing the target.
The performance of the proposed algorithm is discussed
in next section. The performance metric used for estimating
error in tracking is root mean square error (RMSE). Similarly,
for recovery of lost target, the algorithms are compared in
terms of number of nodes awakened with recovery time.

5. Performance Evaluation

The proposed algorithm has been simulated in Matlab.
Various trajectories of the target have been used for simula-
tion. The experimental set up includes 225 nodes randomly
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(1) If (!found target) Then
(2) search in past few locations if target is available
(3) Else
Initiate Recovery
(4) Predict next locations as few locations ahead
(5) Wake up all SHNs around this location
(6) If (Found by neighbouring nodes)
7) If (energy > 7)
(8) Become the CTN and localize target with Trilateration
) End if
(10) Send target found message to previous tracking node
11) Else
(12) Wake up all two hop nodes around this location
13) Repeat till target is found
(14) End if
(15) End if

ALGORITHM I: Lost target recovery in WSHUN algorithm.

(1) If (target is in range of HBN) Then

(2) Wake up all HBNs
3) Track the target till in reach (As the target becomes unreachable it is lost)
(4) If (!in range) Then
Initiate Recovery
(5) If (target is in vicinity of three HBNs) Then
(6) If (energy > 7)
(7) Become the CTN and Localize target with trilateration
(8) End If
9) Send the target found message to previous tracking node
(10) End If
(11) End If
(12) Else If (!found target)
(13) Call (KF/EKEF/PF algorithm)
(14) End If

ALGORITHM 2: Lost target recovery in WSHAN algorithm.

deployed in the field of area 140 m x 140 m. The radio range
of all these nodes is 15 m. Each node has average connectivity
of seven. The alternate boundary nodes are active to detect
the intrusion as mentioned earlier. As soon as the target
enters into the field, the boundary nodes detect the presence.
As already stated, with minimum three nodes the target is
localized using trilateration. Figure 3 shows deployment of
the nodes and the connectivity diagram of the network used
in tracking.

Figure 3 shows sensor node with its ID using blue asterisk
(%), and the border nodes are shown by circled asterisk ().
Green lines joining the nodes are radio link or connectivity.
We have evaluated performance of the proposed algorithm
for the following three cases where target may be lost:

(1) node failure,
(2) communication failure,
(3) presence of coverage hole in the network.

All the cases are discussed and analysed in detail in the
subsequent subsections.

5.1. Loss of Target due to Node Failure. The recovery algorithm
has been analyzed with various trajectories, to simulate the
loss of target due to hole created by failing nodes or group of
failing nodes at different locations. Here we present two case
scenarios for loss of target due to node failure.

Case I. In this scenario, a hole is synthetically generated by
failing a group of nine nodes with IDs 163, 138, 144, 147,
148, 155, 156, 165, and 178 as shown in Figure 4(a). These
node IDs are not shown in every figure as these will become
unreadable in the figure having many different symbols.
Therefore readers are referred to experimental setup shown
in Figure 3 to see IDs. The failing nodes are shown by squared
asterisk (). Thus, the node density in the network is 216.
The target is moving with a zigzag trajectory inside the
network with a constant speed as shown in Figure 4(a). The
red diamonds are points on trajectory, blue circles (+) are
predictions of KF, black (e) is predictions of EKF, and magenta
is predictions of PE. The target is lost at one of the turning
points of the trajectory since a hole is created due to failure of
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nodes in that region, and hollow blue circles are the positions
of the target where it is undetected by the network (i.e., lost)
as shown in the figure. As soon as the target exits the hole or
comes in the vicinity of any three sensing nodes, it is detected
and localized by them. Figure 4(b) shows the comparison
graph for zigzag track.

As can be seen from this figure the PF based tracking
performs best as compared to KF and EKF. The performance
comparison of target location estimation using all the filters
is summarized in Table 1. The total number of nodes required
to wake up for recovery are the same for all the algorithms
based on filter. However, the RMSE as well as the recovery
time is the least in PF based algorithms. The RMS error is
large in KF since the first prediction after the recovery of the
target is erroneous as shown in Figure 4(b) and Table 1. The
energy consumed in complete target tracking with recovery
for static and event driven clustered architecture is computed
according to (4).

Thus, there is approximately 34.1% saving in energy with
event driven architecture as compared to static. The total time
required for tracking with recovery using static clustering is
12.78 s and for event driven clustering is 11.2s.

Case II. Another case scenario is simulated with a different
trajectory and failing another group of nodes as shown in
Figure 5(a). Figure 5(b) shows the comparison graph for this
track. The target enters the network at location (0, 0) and
leaves from (43, 140). Total strength of the nodes in the
network is 225; however due to failure of 11 numbers of nodes,
only 214 numbers of nodes are alive. The failing nodes are
shown in square block, where hole is generated.

The performance comparison of the recovery algorithm
with filters is summarised in Table 2. The energy consump-
tion in event driven architecture is less as compared to static.
There is approximately 34.2% saving in energy using event
driven clustering. The total time required for static and event
driven clustering is 13.99 s and 11.34 s, respectively.

9
TABLE 1: Performance comparison: node failure—Case I.
Filter Node  pMSE  Time (5)
awaken
Existing recovery (KF) [12] 24 5.08 7.08
Proposed recovery (EKF) 24 0.80 5.03
Proposed recovery (PF) 24 0.72 5.04
TABLE 2: Performance comparison: node failure—Case II.
Filter Node RMSE  Time (S)
awaken
Existing recovery (KF) [12] 14 32 5.04
Proposed recovery (EKF) 14 0.85 5.01
Proposed recovery (PF) 14 0.81 5.03

TABLE 3: Performance comparison: communication failure—Case I
(A) 1st recovery.

. Node Time
Filter awaken RMSE (s)
Existing recovery (KF) [12] 23 39 522
Proposed recovery (EKF) 23 0.9 5.00
Proposed recovery (PF) 23 0.8 5.04

5.2. Loss of Target due to Communication Failure. In this
scenario we simulate a situation where two holes exist, first
due to uneven deployment of nodes and second due to failing
nodes. Two cases are discussed here, considering different
trajectories and holes at different locations.

Case I. The target’s manoeuvring inside the network and its
corresponding trajectory is shown in Figure 6(a). Figure 6(b)
shows the comparison graph for this track. To synthetically
generate the hole nine nodes are removed from the experi-
mental network shown in Figure 3. There are total 217 nodes
in the network, and one more hole is created by failing eight
nodes. Thus, there are total 208 alive nodes in the network.
The eight failing nodes are shown by squared asterisk (*).
The first loss of target has occurred due to failing nodes. The
recovery with KF is delayed, whereas the EKF and PF have
quick and accurate recovery. The second loss of target is due
to hole present in the network.

The performance comparison of the recovery algorithm is
stated in Tables 3 and 4. The energy saving in this scenario is
about 34.57% with the event driven architecture as compared
to static clustered network. The tracking time with static and
event driven clustering is 15.99 s and 13.78 s, respectively.

Case II. Figure 7(a) shows loss of target due to communica-
tion failure at two places.

Figure 7(b) shows the comparison graph for this track.
The target enters the network at location (0, 0) and leaves at
location (42, 140). There are two holes present in the network.
The first hole is supposed to be generated at the time of
deployment (10 nodes removed), and second hole is due to



10

Distance (m)

Journal of Computer Networks and Communications

140

120

100

80

60

40

20

0 1 1 1 1 1 1
20 40 60 80 120

Distance (m)

140

—— Particle filter
Extended Kalman filter

—— True target path

—— Kalman filter °

FIGURE 4: Loss of target due to failing nodes.

140
120 +
100 +
E sol
8
=]
<
2 60}
()
40 +
20
0
Distance (m)
¢ True target path > Particle filter
+ Kalman filter e Extended Kalman filter
()
140 T T T . T
* * 9'*;: * * :*** * K
MER A * * *
1201 *XQ * v s * * ** *J”QQ ** !
* * * * 9 F .
Xy % * * % * % * & @0‘
LA * * * »> * %
100} *&, x ¥ o+ g
* *x x 2 e
¢ * g * &
@ * *
g ** 0" * - *g**'
5 X% &
S *‘9 M *  * * &
§ QQ % ** * :. ; ]
*
- * % )&‘g‘ & *
* %
W’q *% * *’,0’ A
* fk* * * 1’; ? * **-
é—*—*—Failiﬁgnodes o
* * *, Xx * 4
% ¥
* * * 5 ¥ *** *
60 80 100 120 140

X coordinates

> Particle filter
e Extended Kalman filter

(a)

¢ True target path
+ Kalman filter

140

120

100

m)

80

60

Distance (

40

20

60

Distance (m)

80 100 120 140

—— Particle filter
Extended Kalman filter

—— True target path

—— Kalman filter °

(b)

FIGURE 5: Loss of target due to failing nodes.

failure of ten nodes as shown in figure. The total alive nodes
present inside the network are 205.

The performance comparison is shown in Tables 5 and
6. The detection and localization of lost target by KF is late
and erroneous; hence a large error is obtained as compared to
other counterparts. Also a significant difference can be seen
in number of nodes required to wake up for recovery of the
target as compared to others. The PE, EKF recover the target

at second level waking up 10 numbers of nodes with RMSE of
1.97% and 1.75%, respectively.

The second recovery of the lost target requires almost the
same time, number of nodes waken, and RMSE as depicted
in the table. Thus, the PF and EKF are better than KF and
perform almost the same in terms of nodes required to wake
up, time, and accuracy. The energy saving using event driven
clustering in this case is about 34.21%. The tracking time with



Journal of Computer Networks and Communications

140

120

100

[©
S

(o)
S

Y coordinates

'S
S

N8
(=}

X coordinates

> Particle filter
e Extended Kalman filter

(a)

¢ True target path
+ Kalman filter

1

140

120 |

100 -

80

60

Distance (m)

Failing nodes

20 +

0 20 40 60 80

Distance (m)

100 120 140

—4— Particle filter
—e— Extended Kalman filter

True target path
—— Kalman filter

(b)

FIGURE 6: (a) Loss of target due to communication failure—Case I trajectory. (b) Loss of target due to communication failure—Case I graph.

140 T T
: x g x
120 * x ;, *
* b# .*-Q*Q *
* Qt’ ®,
» *0 * 4
100 } * * 1
o H
g e 8
g 80 * 5 ¥
k<) *x % * ¢
S * 3
S 60 - J e Foox g -
® ¥ *
>~ * * * q;?%&;; . *'Q&* *
#
40 | *lm By O’f O*: % * *-lll- 6*‘% * 5
* ’%-oo. . 2 . ¥
* ¥ o * " ¥k *x « ¥
200 T *Failingfode§, ¥
g * * ¥ * * * * ok X
0 N Lk L L L L * x ¥ *
0 20 40 60 80 100 120 140

X coordinates

> Particle filter
o Extended Kalman filter

()

¢ True target path
+ Kalman filter

140
120 R
100 g
E 80 l
3
5
% 60 Hole— J
A Failing nodes
40 E
20 ]
0
0 20 40 60 80 100 120 140
Distance (m)
—— True target path —+— Particle filter
—— Kalman filter e Extended Kalman filter

(b)

FIGURE 7: (a) Loss of target due to communication failure—Case II trajectory. (b) Loss of target due to communication failure—Case II graph.

static and event driven clustering is about 15.99 s and 14.21 s,
respectively.

5.3. Loss of Target due to Coverage Hole in Network. A very
interesting case is discussed in this subsection. The hole exists
in the network due to uneven deployment of the nodes as
shown in Figure 8(a) by thick blue lines. In this case, we
have performed simulations with WSHAN and WSHUN.

The target enters into the network at location (140, 105) and
exits at location (0, 35) as shown in Figure 8(a).

5.3.1. Tracking with WSHUN. In this scenario the target is
lost twice as it enters the hole twice. First time when target
enters into the hole it is tracked as long as it is in range
of the tracking nodes. As soon as it becomes unreachable,
it is declared as lost by the current cluster head. Now, the
recovery mechanism is initiated, and the target is recovered
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TABLE 4: Performance comparison: communication failure—Case I
(B) 2nd recovery.

TABLE 7: Performance comparison: coverage hole in WSHUN—(A)
Ist recovery.

Filter ag;’lf:n RMSE T(‘g)‘e Filter ag;’l‘j:n RMSE T(lg)‘e
Existing recovery (KF) [12] 13 2.79 5.10 Existing recovery (KF) [12] 28 2.09 5.12
Proposed recovery (EKF) 13 0.87 5.02 Proposed recovery (EKF) 28 0.79 5.02
Proposed recovery (PF) 13 0.75 5.04 Proposed recovery (PF) 28 0.78 5.04

TABLE 5: Performance comparison: communication failure—Case IT
(A) Ist recovery.

; Node Time
Filter awaken RMSE ©)
Existing recovery (KF) [12] 19 39 5.22
Proposed recovery (EKF) 10 1.97 5.02
Proposed recovery (PF) 10 175 5.04

TABLE 6: Performance comparison: communication failure—Case IT
(B) 2nd recovery.

. Node Time
Filter awaken RMSE ©)
Existing recovery (KF) [12] 6 2.1 5.02
Proposed recovery (EKF) 5 1.8 5.01
Proposed recovery (PF) 5 1.7 5.02

with second level recovery waking up 28 nodes. Irrespective
of filters, same number of nodes is woken up for recovery.
However, the recovery time and RMSE in KF are greater

TABLE 8: Performance comparison: coverage hole in WSHUN—(B)
2nd recovery.

. Node Time
Filter awaken RMSE )
Existing recovery (KF) [12] 29 2.990 5.83
Proposed recovery (EKF) 29 0.77 5.04
Proposed recovery (PF) 29 0.71 5.06

than the other two nonlinear filters. Thus, it is clear that if
prediction is good less numbers of nodes are required to wake
up for recovery, and delay in recovering the target is less.
The detailed statistics of recovery are given in Tables 7 and 8.
When the target heads towards the hole second time, again it
is tracked inside till it is in range of tracking nodes and is lost
later as shown in Figure 8(b).

Now the recovery mechanism is initiated; however the
target is not recovered immediately outside the hole bound-
ary because the target speed is slightly increased. The target is
not found at the location predicted by recovery mechanism.
So single hop neighbours are woken up nearer to the expected
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location of the target. However, the target is missed since it
has already passed that location. Later target is recovered by
waking up two hop neighbours. Nearly for about 5 steps the
target goes undetected even if it is outside a hole, which is
shown by blue circle in the figure. The difference in tracking
with all filters is shown in Tables 7 and 8 and Figure 8(b). The
total time required for tracking is about 21 seconds with static
and 18.19 seconds for event driven clustering. The energy
saving in this scenario is about 35% using the event driven
clustering.

5.3.2. Tracking with WSHAN. In WSHAN, the single hop
tracking node wakes up boundary nodes as it enters the hole;
therefore there are less chances of losing the target and less
energy and time are spent in recovering it. When the target is
heading towards the hole, for the first time it is tracked till it
is in range and later it is lost as shown in Figure 9(a).

Now, the target is recovered by HBN near boundary.
However, initial prediction of the target location is somewhat
erroneous for all the filters, and it is diverted little away
from the track as shown in figure. From the next location
onwards it is tracked properly. When the target enters the hole
second time, again all the hole boundary nodes are alerted
and tracking is performed. As can be seen from Figure 9(b),
unlike the case of WSHUN, the target is completely tracked
throughout the coverage hole without losing it.

The advantage of having WSHAN is that there are less
chances of losing of target, and it is recovered early if lost.
The noticeable advantage is that very little number of nodes
is required for recovery; hence less network energy is spent. In
this case only 14 nodes are required to be woken up which is
boundary nodes. Thus including both entries inside the hole
only (14 + 14) nodes are required in WSHAN and (28 + 29)

TABLE 9: Performance comparison: coverage hole in WSHAN.

. Node Time
Filter awaken RMSE )
Existing recovery (KF) [12] 14 1.97 512
Proposed recovery (EKF) 14 0.84 5.02
Proposed recovery (PF) 14 0.96 5.02

nodes are required for WSHUN. The tracking and recovery
performance can be seen in Table 9 and Figure 9(b). The
energy saving is about 37% with the event driven architecture.
Thus, the energy saving is due to hole aware network as well
as event driven clustered network architecture.

6. Conclusion

The very daunting task of keeping the tracking protocol
energy efficient is due to the constraint on resources. Most
of the existing work concentrates on optimizing commu-
nication cost. However, timely waking up of nodes during
tracking with correct prediction of location is also important;
thus if a right location is predicted at right time tracking
error will be reduced. This plays a very important role in
recovery of lost target. In this paper, we have evaluated
different schemes of the recovery of lost target using linear
and nonlinear filters. Various reasons of losing objects are
also discussed and recovery mechanisms are devised. It is
proved that the recovery can be done faster with less energy, if
the hole boundary is already known and boundary nodes are
alerted as soon as target enters into the hole area. The energy
analysis of each case scenario shows that the event driven
clustering is more energy efficient than static clustering.
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In addition, the hole aware network saves energy by waking
up optimum nodes for recovery. Thus, from the performance
analysis it is observed that prediction accuracy and recovery
of PF based algorithm are the best, making it an energy
efficient tracking protocol. From the simulation results it is
evident that the proposed recovery mechanism outperforms
the existing algorithm for efficient recovery of the target.
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