
Research Article
Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for
Optical Burst Switched Networks

Abubakar Muhammad Umaru, Muhammad Shafie Abd Latiff, and Yahaya Coulibaly

Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

Correspondence should be addressed to Abubakar Muhammad Umaru; amumaru@yahoo.com

Received 19 June 2014; Revised 4 October 2014; Accepted 4 October 2014; Published 3 November 2014

Academic Editor: Rui Zhang

Copyright © 2014 Abubakar Muhammad Umaru et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The optical burst switching (OBS) paradigm is perceived as an intermediate switching technology for future all-optical networks.
Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm
that is based on fuzzy logic is proposed.The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and
the fuzzy adaptive threshold (FAT) burst assembly algorithm via simulation. Simulation results show that the proposed algorithm
outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

1. Introduction

Optical burst switching (OBS) [1] is envisioned as the inter-
mediate next-generation optical switching paradigm that is
capable of providing huge bandwidth. Because of its statistical
multiplexing capability, OBS has better resource utilization
over optical circuit switching (OCS) [2]. Furthermore, OBS
can work efficiently in a buffer-less environment unlike
optical packet switching (OPS) that requires optical memory
which is still technologically immature [3]. The OBS archi-
tecture (Figure 1) consists of edge (ingress/egress) and core
nodes which are interconnected by high speed multichannel
wavelength-division multiplexing fibre links. The edge node
is responsible for burst assembly/disassembly, offset-time
computation, signalling, and routing and wavelength assign-
ment, while scheduling and contention resolution are per-
formed at the core node [4]. In OBS, data and control chan-
nels are decoupled, thereby allowing data and control packets
to be transmitted on separate channels. This feature allows
OBS to eliminate the need for optical buffers at the core nodes.
Also, stringent synchronization requirement between a data
burst and its control packet is reduced [5]. OBS requires opti-
cal switching devices with high response rate in order to uti-
lize the huge bandwidth provided by the optical fiber. More-
over, these optical devices should have low switching power

[6] and low insert loss, should be compact in size and easy to
integrate, and should not be affected by polarization [7].

Comprehensive reviews of different aspects of OBS have
been conducted in [8–12] and the following issues have been
identified: burst assembly, burst contention, quality of service
(QoS) provisioning, routing and wavelength assignment, and
core node scheduling. Contention is a major issue because it
leads to loss, increased delay, and poor network throughput.
Several contention avoidance and resolution techniques have
been proposed in OBS literatures [13]. Avoidance techniques
are used at the edge nodes to prevent contention while
resolution techniques are applied at the core nodes to resolve
contention when it occurs. Also, resolution techniques
such as wavelength converters and fiber delay lines require
additional hardware. Other resolution techniques such as
burst segmentation incur additional processing overhead [14]
while deflection routing increases delay.

Avoidance techniques utilize electronic memory at the
edge in order to prevent contention from occurring at the
network core nodes. Therefore, the process by which traffic
is injected into an OBS network has an effect on the perfor-
mance of the network. Thus, a careful selection of a burst
assembly technique can regulate the congestion level of a
network, thereby reducing the occurrence of contention and
its effect on the network. Hence, for the aforementioned

Hindawi Publishing Corporation
Journal of Computer Networks and Communications
Volume 2014, Article ID 803518, 10 pages
http://dx.doi.org/10.1155/2014/803518

2 Journal of Computer Networks and Communications

IP network

Ingress node
∙ IP packet assembly
∙ Burst size decision
∙ Offset-time decision
∙ Optical burst generation

Data burst

Control
packet

Control
plane

Control
plane

Optical burst switching network

Core node
∙ Control packet lookup
∙ Switching
∙ Data burst monitoring
∙ (e.g., blocking probability,

latency)

Egress node
∙ Data burst deframing

IP network

Figure 1: An OBS network architecture [15, Figure 2].

IP packet stream

IP packet stream Packet
assembler

Classifier

C

Routing
information

𝜆1

𝜆2

𝜆n Class 0

Class 1

Class m
...

...

Burst length
decision

Scheduling

Offset-time
generator

Control
packet

generator

Framing Optical
burst

Control
packet

Figure 2: A functional model of an ingress node [15, Figure 3].

reason, burst assembly is a suitable candidate for congestion
reduction.

Taking into account the benefits of fuzzy logic as dis-
cussed in [16–18], this paper proposes and evaluates a fuzzy-
based adaptive hybrid burst assembly (FAHBA) algorithm
that aims to reduce the average end-to-end delay experienced
by burst and packet in an OBS network.

The paper is organized as follows: Section 2 presents
a review of related studies. The proposed burst assembly
algorithm is described in Section 3; Section 4 describes the
simulation setup and presents the analysis and discussion of
the results. Finally, the paper is concluded in Section 5.

2. Review of Related Studies

The burst assembly process starts at an ingress node upon the
arrival of a client data. In the case of an IP packet, the routing
module reads the IP header and determines its destination.

The packet is passed through the classifier which forwards the
packet to the appropriate destination buffer (DB). Upon the
arrival of the first bit of data at any empty DB, timer counter,
burst length counter, or both are initialized. The counters
will continue counting until either the time threshold or
burst length threshold is reached. When either threshold is
reached, a burst and its corresponding control packet (BCP)
are generated and all threshold counters are reinitialized
again.TheBCP is sent ahead of its burst tomake the necessary
reservations while the burst waits at the ingress node output
buffer. After a period of time also known as the offset time, the
burst is then transmitted into the OBS network. A functional
model of an ingress router is shown in Figure 2.

The two basic burst assembly algorithms in OBS are the
timer algorithm [19] and the length or threshold-based algo-
rithm [20].The timer algorithm uses a timer for burst assem-
bly while the threshold-based algorithm uses the number of
packets as the threshold for burst generation. Both assembly

Journal of Computer Networks and Communications 3

algorithms are simple to implement. However, at low loads
packets inside the bursts generated using the threshold-based
assembly algorithm experience high end-to-end delay, while,
at high loads, many fixed-size bursts will be injected into the
network. Similarly, the timer burst assembly algorithm will
generate average-size bursts under low loads while, at high
loads, it will generate large but variable-size bursts.Therefore,
under high loads, either algorithm will increase the burst
blocking rate in the core node. Generally, fixed-size bursts
are always generated for the threshold-based algorithmwhile
variable-size bursts are periodically generated for the timer
assembly algorithm.

The min-burst-length-max-assembly-period (MBMAP)
[21] algorithm was proposed to address the limitations of the
timer and threshold-based assembly algorithms. MBMAP is
a hybrid algorithm that uses the burst generation conditions
used by both the timer and the length algorithms. Even
thoughMBMAP solved the problems of the basic algorithms,
it does not consider the dynamic nature of the incoming
traffic. That is, at certain loads, the MBMAP will perform
exactly like the basic assembly algorithms.

The threshold-based mixed assembly algorithm [22]
aggregates packets of different classes into the same burst.
High priority packets are stored at the head while low priority
packets are stored at the tail burst. When contention occurs,
the tail dropping segmentation policy is employed in order
to provide a resource for the contending burst. This scheme
supports only two classes of traffic in a burst and in addition
it still suffers from the drawbacks of the length threshold
algorithm. Reference [23] is similar to the work proposed in
[22] except that the high priority packets are placed at the tail
of the burst.Thework in [23] suffers fromout-of-order packet
delivery problem which increases delay.

Authors in [24, 25] have proposed an adaptive hybrid
burst assembly algorithm that adjusts the timer and size
threshold values of the assembler using the congestion infor-
mation of links incident to the ingress node.These algorithms
were used to study the performance of core scheduling under
different types of traffic. Even though the algorithms are
adaptive, additional delay is still incurred due to the large
burst sizes that are generated.

A traffic prediction based assembly algorithm is the
mixed-threshold burst assembly (MTBA) [26] algorithm.
MTBA uses a traffic prediction to calculate the expected
length of a burst. The predicted length is then added to the
BCP.The BCP is immediately transmitted into the network in
order to make early reservation before the burst is generated.
This approach improves the end-to-end delay performance
of high priority bursts in OBS network since it does not wait
for the burst generation process to complete before sending
the BCP. However, poor resource utilization may occur if the
generated burst size is less than the predicted length.

Authors in [27] also used traffic prediction techniques to
propose a set of burst assembly schemes that work together
with a fast reservation protocol (FRP).The assembly schemes
aim to reduce the queuing delay while the FRPworks towards
reducing the burst end-to-end delay. The predicted result is
used as a criterion to assemble burst. Additionally, the FRP
uses another prediction filter to calculate the expected burst

length and assembly duration in order to send the BCP to
make an early reservation. Therefore, the assembly process
does not need to wait for the burst to be assembled before
sending the BCP.These approaches reduce the burst assembly
and reservation times and improve packet end-to-end delay.
However, the predicted values may be inaccurate and there-
fore lead to poor resource utilization.

The fuzzy adaptive threshold algorithm (FAT) [28] is
based on the length threshold burst assembly algorithm. FAT
takes into account the amount of incoming traffic in order
to adjust the length threshold of the assembler. FAT has
the capability to intelligently adjust the assembly threshold.
However, at low loads, bursts generated using FAT will
experience high delay. And at high loads, FAT generates large
bursts that increase the blocking probability.

Authors of [29] have proposed an adaptive classified
cloning and aggregation scheme (ACCS) for high priority
traffic that aims to provide better performance in terms of
loss and end-to-end delay for high priority traffic. ACCS
uses network loss-rate information to adaptively adjust the
hybrid burst assembly thresholds. However, at high loads,
ACCS cannot handle the input traffic due to the limitation
imposed by the bandwidth at the outgoing link of the edge
node. Hence, low priority packets are dropped.

From the above review it can be concluded that current
assembly algorithms still suffer from high end-to-end delay.
Therefore, this paper proposes a new assembly algorithm
to address end-to-end delay issue in OBS network. The
proposed algorithm is described in Section 3.

3. Materials and Method

In hybrid burst assembly (HBA) algorithm, the timer and
the length thresholds are fixed. These thresholds are used to
generate a burst when either of the threshold conditions is
satisfied in the assembler.Therefore, in the proposedmethod,
the fixed threshold values are made adaptive subject to the
incoming offered load and the bandwidth capacity of the
output channel. The HBA process is modelled as a multiple-
input-multiple-output (MIMO) fuzzy logic control process in
which three control variables have been selected.The selected
control variables are the timer, the length, and the assembler
offered load. The assembler offered load (or load) is the
aggregated traffic at an assembler within a time interval. And
it can range from microseconds to seconds.

The load, the timer, and the length control variables are
the inputs to the fuzzy logic controller, while a new timer
and new length values are the outputs of the controller. The
controller contains the inbuilt intelligence required to adapt
the threshold values of the HBA and it is executed once at
the end of every cycle. A cycle is defined as a period of time
set by a microtimer. The microtimer is independent of the
underlying HBA timer. Similarly, another timer also known
as a macrotimer is also executed periodically to reset the
load counter variable. Whenever the fuzzy logic controller is
executed, it produces a new set of timer and length threshold
values which will be used for the next cycle of the burst
assembly process. Algorithm 1 shows the pseudocode of the
fuzzy-based adaptive hybrid burst assembly algorithm.

4 Journal of Computer Networks and Communications

(1) Begin Initialization
(2) Timer = 𝑡; //𝑡 is the timer threshold in seconds
(3) Length = 𝑙; //𝑙 is the length threshold in bytes
(4) Load = 0; //Load at the assembler
(5)MinBurstLength =𝑚; //𝑚 is minimum burst size
(6) newTimer = newLength = 0;
(7) perSecondTraffic = 0; //Load accumulator
(8) setFuzzyMicroTimer(𝑘); //𝑘 seconds micro-timer
(9) setFuzzyMacroTimer(𝐾); //𝐾 seconds macro-timer
(10) setTimer(Timer); //Set the assembler Timer threshold
(11) setLength(Length); //Set the assembler Length threshold
(12) End Initialization
(13) while (IsTrafficStillArriving?) do
(14) perSecondTraffic = perSecondTraffic + packetSize;
(15) if ((getTimer() == Timer) OR (getLength() == Length)) then
(16) Call hybridBurstAssembler() Return burst; //generate a burst
(17) setTimer(Timer); //reset the timer
(18) setLength(Length); //reset the length counter
(19) end if
(20) if (getFuzzyMicroTimer() == 𝑘) then
(21) setFuzzyMicroTimer(𝑘);
(22) Load = perSecondTraffic;
(23) Call FuzzyEngine(Timer, Length, Load) Return newTimer, newLength;
(24) if (newLength ≤MinBurstLength) then
(25) Length =MinBurstLength;
(26) Timer = newTimer;
(27) else
(28) Length = newLength;
(29) Timer = newTimer;
(30) end if
(31) end if
(32) if (getFuzzyMacroTimer() == 𝐾) then
(33) setFuzzyMacroTimer(𝐾); //reset the fuzzy macro-timer
(34) Load = perSecondTraffic;
(35) perSecondTraffic = 0; //reset to zero
(36) end if
(37) end while

Algorithm 1: Fuzzy-based adaptive hybrid burst assembly (FAHBA) algorithm.

The fuzzy rules are developed based on experiment and
they are stored in the fuzzy logic controller. The controller
uses fuzzy logic operations in conjunction with the rules and
inputs to compute the appropriate timer and length threshold
values. These new threshold values are used to control the
burst generation process for the underlying hybrid burst
assembler.

Therefore, by using fuzzy logic, the new assembler can
handle uncertainties associated with the highly variable
nature of input traffic. Generally, FAHBA uses the fuzzy
inputs (timer, length, and load), the fuzzy rules, and the
bandwidth of the outgoing channel to compute the new set
of threshold values using fuzzy logic. The fuzzy logic control
process consists of the following three steps.

Step I. Fuzzification converts the crisp input and output
control variables and values to their equivalent fuzzy (linguis-
tic) variables and values using the appropriate membership
functions. The crisp input control variables are timer, length,

and load and, for simplicity, we maintain the same names of
the crisp variables for their fuzzy equivalent. Similarly, the
crisp output control variables are newTimer and newLength
and again for simplicity we maintain the same names of
the crisp variables for their fuzzy equivalent. The triangular
membership function is used in this study. Table 1 shows the
summary of the input and output variables. Figure 3 shows
a graphical representation of the input and output linguistic
variables and their membership functions.

Step II. Fuzzy inferencing implies the process of making a
fuzzy decision based on the fuzzy input values. The inferenc-
ing process involves the computation of input fuzzy values,
their aggregation, and then the activation of the affected fuzzy
rules. Finally, the fuzzy rules that have been activated are
accumulated to produce a single crisp output for each of the
output variables in step III. The 27 fuzzy rules used for this
study are shown in Table 2. Each line in the table represents
a fuzzy rule with its corresponding inputs and outputs. Fuzzy

Journal of Computer Networks and Communications 5

Table 1: Crisp and fuzzy input and output variables.

Crisp variable Fuzzy variable Fuzzy values/terms set

Input
Timer Timer (Sht: short, Avg: average, and Lng: long)
Length Length (Sml: small, Mid: middle, and Big: big)
Load Load (Low: low, Med: medium, and Hig: high)

Output newTimer newTimer (Sht: short, Avg: average, and Lng: long)
newLength newLength (Sml: small, Mid: middle, and Big: big)

Timer Timer
0.000 0.000

0.000

0.000

0.000

0.000

0.000

0.0006000.000 6000.000

100000.000

100000.000

10.000

Length Length

Load Load

Sht

Sht

Avg

Avg

Lng

Lng

Sml

Sml

Mid

Mid

Big

BigLow Med Hig

newLength newLength

newTimer newTimer

OutputsInputs

𝜇 = 0.000/Sht + 0.000/Avg + 0.000/Lng

𝜇 = 0.000/Sml + 0.000/Mid + 0.000/Big

𝜇 = 0.000/Low + 0.000/Med + 0.000/Hig

100.000

Figure 3: Input and output linguistic variables and their membership functions.

rules have the following syntax: IF (Load AND Timer AND
Length) THEN (newTimer, newLength).

Step III. Defuzzification: in this step, the computed out-
put fuzzy values are converted into crisp values using a
defuzzification technique.The two output crisp values are the
newTimer and newLength and they are used to control the
burst assembly process.

4. Simulation Setup, Results, and Discussion

In order to evaluate the new algorithm, a simulation environ-
ment was set up in Omnet++ [30] using OBSModules [31]
and fuzzylite [32]. OBSModules provides the OBS network

simulation environment while fuzzylite provides the fuzzy
logic control library. The node configuration and network
simulation parameters are given in Table 3. The NSFNET
and COST239 networks consist of 14 and 10 bidirectional
source/destination pairs, respectively. All the nodes in both
topologies were configured to transmit and receive uniformly
distributed traffic. Traffic with exponential interarrival time
was used to generate the network offered load according to
the formula described in the following as in [33]:

𝐿offered =
∑
𝑛

𝑖=1
𝐿
𝑖

∑
𝑚

𝑗=1
𝐶
𝑗

; (1)

(i) 𝐿offered is the network offered load;

6 Journal of Computer Networks and Communications

Table 2: Fuzzy rules.

Rule
number Load Timer Length newTimer newLength

1 Low Sht Sml Avg Sml
2 Low Sht Mid Sht Sml
3 Low Sht Big Sht Sml
4 Low Avg Sml Sht Sml
5 Low Avg Mid Sht Sml
6 Low Avg Big Sht Sml
7 Low Lng Sml Sht Sml
8 Low Lng Mid Sht Sml
9 Low Lng Big Sht Sml
10 Med Sht Sml Sht Sml
11 Med Sht Mid Avg Mid
12 Med Sht Big Avg Mid
13 Med Avg Sml Avg Sml
14 Med Avg Mid Avg Sml
15 Med Avg Big Sht Sml
16 Med Lng Sml Avg Sml
17 Med Lng Mid Avg Sml
18 Med Lng Big Avg Mid
19 Hig Sht Sml Lng Mid
20 Hig Sht Mid Lng Mid
21 Hig Sht Big Lng Mid
22 Hig Avg Sml Avg Big
23 Hig Avg Mid Lng Mid
24 Hig Avg Big Lng Mid
25 Hig Lng Sml Avg Mid
26 Hig Lng Mid Avg Mid
27 Hig Lng Big Avg Mid

(ii) 𝐿
𝑖
is the amount of traffic generated by a single user

in a unit time;
(iii) 𝐶

𝑗
is the capacity of a single link 𝑗 (out of 𝑚) in the

network;
(iv) 𝑚 is the number of links in the network;
(v) 𝑛 is the number of active users in the network.

Offered load is incremented in steps of 0.1 for every point
of measurement. Latest available unused channel scheduling
with full wavelength conversion is used in the core node. Our
evaluationmetrics are average number of bursts sent, average
packet end-to-end delay, average burst end-to-end delay, and
average packet loss ratio (PLR).The average burst end-to-end
delay is the burst delay from the ingress node to the egress
node. The packet end-to-end delay consists of queuing delay,
burst end-to-end delay, and burst disassembly delay. FAHBA
and FAT are used to represent the proposed and the existing
fuzzy burst algorithms, respectively, while HBA represents
the traditional burst assembly algorithm.

Figures 4 to 7 show the plots of burst end-to-end delay,
packet end-to-end delay, packet loss ratio, and the number of

Table 3: Simulation parameters and values.

NumberParameter Value
1 Network topologies NSFNET, COST239
2 Number of channels per link 4 (3 data and 1 control)
3 Bandwidth per channel (Gbps) 1
4 Packet size (bytes) 1250
5 Packet interarrival time Exponential
6 BCP processing time (us) 10

7 Fuzzy microtimer (s)
𝑘 0.1

8 Fuzzy macrotimer (s)
𝐾 1

9

Timer threshold (s)
Minimum 0.001
Maximum 0.006
Initial (𝑡) 0.004

10

Burst threshold (bytes)
Minimum (𝑚) 1500
Maximum 100000
Initial (𝑙) 60000

11

Offered load
Minimum 0.1
Maximum 1
Increment 0.1

12

Fuzzy logic controller
T-norm Algebraic-product
S-norm Algebraic-sum
Activation Minimum
Accumulation Maximum
Inference engine Mamdani
Defuzzification Centre of gravity (CoG)

bursts that have been generated and sent into the COST239
network.

Figure 4 shows the average burst end-to-end delay versus
offered load. At low loads, from 0.1 to 0.4, the traffic arriving
at the HBA gradually increased. For the duration of the low
loads, the time threshold value for HBA was still in effect,
thereby generating small to medium size bursts which have
average transmission duration over the network. However,
when the load increased to the medium range (loads 0.5 to
0.7), the HBA length threshold condition is rapidly satisfied
to generate bursts. As the load entered its high region (from
0.8 to 1), the delay increased steeply because of the fixed-size
bursts that were rapidly generated and transmitted into the
network. This puts the network into a congestion state with
burst competing for resources, thereby increasing burst end-
to-end delay. The burst end-to-end delay for FAHBA is lower
than that of the HBA because of the intelligence that is built
into the fuzzy controller of the assembler. FAHBA adapts the
burst generation conditions based on the arriving loads at the
ingress node and the available channel bandwidth. The fuzzy

Journal of Computer Networks and Communications 7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Offered load

Bu
rs

t e
nd

-to
-e

nd
 d

el
ay

 (s
)

×10−3

FAHBA COST239
HBACOST239
FAT COST239

Figure 4: Burst end-to-end delay versus offered load.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

Offered load

Pa
ck

et
 en

d-
to

-e
nd

 d
el

ay
 (s

)

×10−3

FAHBA COST239
HBACOST239
FAT COST239

Figure 5: Packet end-to-end delay versus offered load.

rules satisfy the creation of average-size bursts which have
short transmission duration. The burst end-to-end delay for
FAHBA gradually increased as the load increased from loads
0.1 to 0.8. But at loads 0.9 to 1, the FAHBA rules satisfy
the generation of large bursts which lead to longer trans-
mission delay and congestion on the network. Even with
this behaviour, the FAHBA has lower burst end-to-end delay
when compared with that of HBA. As for the FAT algorithm,
the burst size kept on increasing as the traffic increased. Fur-
thermore, at loads 0.9 and 1, FAT has lower delay due to the
fact that it satisfies the upper limit of the burst size threshold
which enables it to have fixed transmission duration.

Figure 5 shows the plot of average packet end-to-end
delay versus offered load. From loads 0.1 to 0.4, packets
transmitted using HBA experience very high delay due to the
high queuing delay at the ingress node. Such high delay is a
result of low traffic that does not satisfy the length threshold
and, therefore, the fixed time threshold must be satisfied in
order to generate the burst. The HBA satisfies the length
threshold starting from loads 0.5 to 0.8 which signifies that
the packets experienced low queuing delays at the ingress

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Offered load

Pa
ck

et
 lo

ss
 ra

tio

FAHBA COST239
HBACOST239
FAT COST239

100

10−1

10−2

10−3

Figure 6: Packet loss ratio versus offered load.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000
2000
3000
4000
5000
6000
7000
8000

Offered load

N
um

be
r o

f b
ur

sts
 se

nt

FAHBA COST239

HBACOST239

FAT COST239

Figure 7: Number of bursts sent versus offered load.

nodes. However, at high loads from 0.9 to 1, the packets that
arrive at the ingress node experience higher delay because
of the fact that they were buffered for a longer time. As for
FHBA, the fuzzy rule satisfies early burst generation by adapt-
ing the assembler thresholds to satisfy the load at the ingress
node. At load 1, FAHBA generates very large bursts in order
to satisfy the fuzzy rules. And as a result of that the packets
experienced higher end-to-end delay.The good performance
exhibited by FAT at loads starting from 0.1 to 0.4 is because
FAT continuously adapts its threshold for every burst that was
generated. Hence, in this case, FAT was able to detect the low
nature of the traffic and then adapt the burst size such that the
packets experienced lower queuing delay. On the other hand,
as the load increased FAT generated larger bursts and for this
reason the packets experienced higher queuing delay.

Figure 6 shows the plot of packet loss ratio (PLR) versus
offered load. Both FAHBA and HBA exhibit a similar pattern
of loss. However, from low load tomedium load ranging from
0.1 to 0.7, FAHBA has lower PLR when compared to HBA
because it generated medium bursts that have lower blocking
probability. As the load increased from 0.8 to 1, the burst sizes
for both algorithms also increased, thereby increasing their

8 Journal of Computer Networks and Communications

burst blocking probabilities. However, in the case of FAHBA,
it was able to maintain the same loss ratio while reducing
delay. FAT exhibited an initial low packet loss ratio at low
traffic loads.This is due to FAT’s initial settings whichmade it
generate small burst. Also FAT’s performance at this low load
traffic is coupled with the fact that network resources were
readily available. However, as the traffic load increased, FAT
generated bigger bursts which led to more packet loss when
contention occurred.

Figure 7 shows the number of bursts sent into the network
and it proves that, for all loads, the number of bursts gener-
ated by FAHBA is always higher than that of HBA and FAT
except at maximum load of 1.The high number of bursts gen-
erated by FAHBA is a result of the size of burst it generated.
This performance of FAHBA is attributed to the fact that the
algorithm uses fuzzy rules to generate bursts, which results
in variable thresholds and burst sizes that satisfy the traffic
condition at the assembler. In the case ofHBA, burst assembly
thresholds are constants. However, at maximum load of 1, the
HBA rapidly satisfies its length threshold condition, thereby
making it possible to generate more numbers of bursts than
FAHBA. As for FAT, it generated bursts of bigger sizes as the
load increased. Hence, fewer number of bursts were sent into
the network by FAT.

Figures 8 to 11 show the plots of burst end-to-end delay,
packet end-to-end delay, packet loss ratio, and the number of
bursts that have been generated and sent into the NSFNET.
The plot of burst end-to-end delay against offered load is
shown in Figure 8. HBA has higher delay from loads 0.1 to
0.5 and this is because of the timer threshold condition of the
HBA that was satisfied. As the load increased, the burst sizes
also increased, thereby increasing the burst transmission time
over the network. But starting from loads 0.6 to 1, the length
threshold of the HBA was satisfied. Therefore, fixed-size
bursts were generated and injected into the network, thereby
causing the network congestion level to increase. As for the
FAHBA, the adaptive intelligence of the fuzzy logic controller
which is based on fuzzy rules keeps producing suitable
threshold values for the assembler. In this case, the timer
threshold condition is mostly satisfied in the FAHBA. Hence,
in FAHBA, short bursts with shorter transmission times were
generated. However, this is not the case in FAT which keeps
on increasing the size of bursts as the traffic increases, thereby
generating bursts with longer transmission delays.

Figure 9 shows the plot of packet end-to-end delay versus
offered load. Packets generated using the HBA algorithm
experience higher delay at low loads ranging from 0.1 to 0.4.
This situation arises due to the fact that packets must wait
for the time threshold condition to be satisfied before any
burst can be generated. However, when the load increased
from 0.5 to 1, the packets arrive at the assembler so quickly
that they satisfy the length threshold condition of the HBA
algorithm.Therefore, these packets experience less delay due
to the rapid generation of bursts by the HBA. The FAHBA
algorithm shows a lower delay because of its ability to satisfy
the generation of bursts using either threshold. A similar
explanation holds true for FAT as it is discussed for Figure 5.

Figure 10 shows the packet loss ratio versus offered load.
At load 0.1, FAHBA has lower PLR when compared to HBA.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

3

4

5

6

7

8

Offered load

Bu
rs

t e
nd

-to
-e

nd
 d

el
ay

 (s
)

×10−4

FAHBA NSFNET
HBANSFNET
FAT NSFNET

Figure 8: Burst end-to-end delay versus offered load.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

Offered load

Pa
ck

et
 en

d-
to

-e
nd

 d
el

ay
 (s

)

FAHBA NSFNET
HBANSFNET
FAT NSFNET

×10−3

Figure 9: Packet end-to-end delay versus offered load.

And this is because of the small burst sizes that were
generated. Both algorithms exhibit a similar pattern of loss
when the offered load increased from loads 0.2 to 1.The burst
sizes for both algorithms also increased, thereby increasing
their burst blocking probabilities. However, in the case of
FAHBA, it was able to maintain the same loss ratio while
reducing delay. As for FAT, it exhibits lower packet loss ratio
under low and medium traffic. However, as the size of bursts
generated by FAT grows bigger which is due to the increasing
traffic, the network goes into a state of congestion with many
bursts contending with each other. This consequently results
in high contention and thereby loss.

Figure 11 shows the number of bursts sent into the net-
work by FAT, FAHBA, and HBA algorithms. The figure
demonstrates that, for all loads, the number of bursts gen-
erated by FAHBA is always higher than those generated by
FAT andHBA.The high performance of FAHBA is attributed
to the fact that it uses fuzzy logic to adjust the threshold of
the underlying burst assembler, thereby generating bursts of
suitable sizes that satisfy the traffic condition. FAT generated
bigger bursts as the traffic increased and this is the reasonwhy

Journal of Computer Networks and Communications 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Offered load

Pa
ck

et
 lo

ss
 ra

tio

100

10−1

10−2

10−3

FAHBA NSFNET
HBANSFNET
FAT NSFNET

Figure 10: Packet loss ratio versus offered load.

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1000
2000
3000
4000
5000
6000
7000
8000
9000

Offered load

N
um

be
r o

f b
ur

sts
 se

nt

FAHBA NSFNET

HBANSFNET

FAT NSFNET

Figure 11: Number of bursts sent versus offered load.

fewer bursts were generated and sent into the network. In the
case of HBA, the thresholds are constant.

5. Conclusion

In this paper, a new intelligent hybrid burst assembly algo-
rithm for optical burst switched network is proposed. The
burst assembly process is modelled as a fuzzy logic control
process. Fuzzy logic is used in conjunction with hybrid burst
assembly algorithm to minimize end-to-end delay while
maintaining packet loss ratio in OBS networks. Through
simulation, the proposed algorithm was evaluated against
the traditional hybrid and FAT burst assembly algorithms on
COST239 and NSF network topologies. In the future, service
differentiation will be incorporated in order to improve the
new algorithm.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research is supported by Universiti Teknologi Malaysia
and Ministry of Education, Malaysia, through the Com-
monwealth Scholarship and Fellowship Plan 2011, and the
Fundamental Research Grant Scheme (FRGS:R.J130000.78-
28.4F324).

References

[1] C. Qiao and M. Yoo, “Optical burst switching (OBS)—a new
paradigm for an Optical Internet,” Journal of High Speed
Networks, vol. 8, no. 1, pp. 69–84, 1999.

[2] Y. Chen, C. Qiao, and X. Yu, “Optical burst switching: a new
area in optical networking research,” IEEE Network, vol. 18, no.
3, pp. 16–23, 2004.

[3] J. P. Jue and V. M. Vokkarane, Optical Burst Switched Networks,
Springer, 1st edition, 2005.

[4] M. Maier, Optical Switching Networks, Cambridge University
Press, New York, NY, USA, 1st edition, 2008.

[5] A. K. Garg, “An optimal burst assembly approach employing
traffic shaping (OBATS) for OBS,” Optik, vol. 124, no. 22, pp.
5657–5659, 2013.

[6] Z. Zang, “All-optical switching in Sagnac loop mirror contain-
ing an ytterbium-doped fiber and fiber Bragg grating,” Applied
Optics, vol. 52, no. 23, pp. 5701–5706, 2013.

[7] Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-
doped fiber Bragg grating by using self-phase modulation and
cross-phase modulation,” Applied Optics, vol. 51, no. 16, pp.
3424–3430, 2012.

[8] H. Kaur andR. S. Kaler, “Burst assembly and signaling protocols
in OBS,” in Proceedings of the National Conference on Challenges
and Opportunities in Information Technology (COIT ’07) RIMT-
IET, Mandi Gobindgarh, India, 2007.

[9] X. Yu, J. Li, X. Cao, Y. Chen, and C. Qiao, “Traffic statistics and
performance evaluation in optical burst switched networks,”
Journal of Lightwave Technology, vol. 22, no. 12, pp. 2722–2738,
2004.

[10] J. Li, C. Qiao, and Y. Chen, “Recent progress in the scheduling
algorithms in optical-burst-switched networks [Invited],” Jour-
nal of Optical Networking, vol. 3, no. 4, pp. 229–241, 2004.

[11] C. Yahaya, M. S. Abd Latiff, and A. B. Mohamed, “A review
of routing strategies for optical burst switched networks,”
International Journal of Communication Systems, vol. 26, no. 3,
pp. 315–336, 2013.

[12] T. Tachibana and S. Kasahara, “QoS-guaranteed burst transmis-
sion for VoIP service over optical burst switching networks,”
Journal of Optical Networking, vol. 6, no. 8, pp. 991–1002, 2007.

[13] A. G. P. Rahbar and O. W. W. Yang, “Contention avoidance
and resolution schemes in bufferless all-optical packet-switched
networks: a survey,” IEEE Communications Surveys and Tutori-
als, vol. 10, no. 4, pp. 94–107, 2008.

[14] S. Askar, G. Zervas, D. K. Hunter, and D. Simeonidou, “A
novel ingress node design for video streaming over optical burst
switching networks,” Optics Express, vol. 19, no. 26, pp. B191–
B196, 2011.

[15] S.-Y.Oh,H.H.Hong, andM.Kang, “Adata burst assembly algo-
rithm in optical burst switching networks,” ETRI Journal, vol.
24, no. 4, pp. 311–322, 2002.

[16] T. J. Schwartz, “Fuzzy systems in the real world,” AI Expert, vol.
5, pp. 28–36, 1990.

10 Journal of Computer Networks and Communications

[17] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller.
II,” IEEE Transactions on Systems,Man, and Cybernetics, vol. 20,
no. 2, pp. 419–435, 1990.

[18] J.M.Garibaldi andR. I. John, “Choosingmembership functions
of linguistic terms,” in Proceedings of the 12th IEEE International
conference on Fuzzy Systems (FUZZ ’03), pp. 578–583, IEEE,
May 2003.

[19] A. Ge, F. Callegati, and L. S. Tamil, “On optical burst switching
and self-similar traffic,” IEEECommunications Letters, vol. 4, no.
3, pp. 98–100, 2000.

[20] V. M. Vokkarane, K. Haridoss, and J. P. Jue, “Threshold-based
burst assembly policies for QoS support in optical burst-
switched networks,” in Proceedings of the Optical Networking
and Communications (OptiComn ’02), pp. 125–136, Boston,
Mass, USA, July 2002.

[21] X. Cao, J. Li, Y. Chen, and C. Qiao, “Assembling TCP/IP packets
in optical burst switched networks,” in Proceedings of the IEEE
Global Telecommunications Conference (GLOBECOM ’02), vol.
3, pp. 2808–2812, November 2002.

[22] Z. Zhang, J. Luo, Q. Zeng, and Y. Zhou, “Novel threshold-
based burst assembly scheme for QoS support in optical burst
switchedWDMnetworks,” in Performance and Control of Next-
Generation Communications Networks, pp. 250–256, 2003.

[23] Z. Zhang, F. Cheng, J. Wang, J. Luo, Q. Zeng, and X. Xuan, “A
new burst assembly and dropping scheme for service differen-
tiation in optical burst switched networks,” in Proceedings of
the Asia-Pacific Optical and Wireless Communications: Optical
Transmission, Switching, and Subsystems (APOC ’03), pp. 236–
245, Wuhan, China, November 2003.

[24] B. Kantarci and S. Oktug, “Adaptive threshold based burst
assembly in OBS networks,” in Proceedings of the Canadian
Conference on Electrical and Computer Engineering (CCECE
’06), pp. 1419–1422, Ottawa, Canada, May 2006.

[25] A. Gupta, R. S. Kaler, and H. Singh, “Investigation of OBS
assembly technique based on various scheduling techniques for
maximizing throughput,” Optik, vol. 124, no. 9, pp. 840–844,
2013.

[26] H.-l. Liu and S. Jiang, “A mixed-length and time threshold
burst assembly algorithm based on traffic prediction in OBS
network,” International Journal of Computers Communications
& Control, vol. 2, pp. 87–93, 2012.

[27] K. Seklou, A. Sideri, P. Kokkinos, and E. Varvarigos, “New
assembly techniques and fast reservation protocols for optical
burst switched networks based on traffic prediction,” Optical
Switching and Networking, vol. 10, no. 2, pp. 132–148, 2013.

[28] J.-R. Yang, S.-I. Jia, and G. Wang, “Burst assembly algorithm
based on fuzzy-adaptive-threshold,” Journal of Harbin Engineer-
ing University, vol. 28, no. 6, 2007.

[29] S. Askar, G. Zervas, D. K. Hunter, andD. Simeonidou, “Adaptive
classified cloning and aggregation technique for delay and loss
sensitive applications in OBS networks,” in Proceedings of the
Optical Fiber CommunicationConference andExposition and the
National Fiber Optic Engineers Conference (OFC/NFOEC ’11),
pp. 1–3, March 2011.

[30] A. Varga and R. Hornig, “An overview of the OMNeT++
simulation environment,” in Proceedings of the 1st International
Conference on Simulation Tools and Techniques for Communica-
tions, Networks and Systems &Workshops, p. 60, 2008.

[31] F. Espina, J. Armendariz, N. Garc, D. Morat, M. Izal, and E.
Maga, “OBS network model for OMNeT++: a performance
evaluation,” in Proceedings of the 3rd International ICST Confer-
ence on Simulation Tools and Techniques, Malaga, Spain, 2010.

[32] J. Rada-Vilela, “fuzzylite: A fuzzy logic control library written in
C++,” 2013, http://www.fuzzylite.com/.

[33] P. Lenkiewicz, M. Hajduczenia, M. M. Freire, H. J. Da Silva,
and P. P. Monteiro, “Estimating network offered load for optical
burst switching networks,” inNETWORKING2006.Networking
Technologies, Services, and Protocols; Performance of Computer
and Communication Networks; Mobile and Wireless Communi-
cations Systems, vol. 3976 of Lecture Notes in Computer Science,
pp. 1062–1073, Springer, Berlin, Germany, 2006.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

