
Research Article
A Mechanically Proved and an Incremental Development of
the Session Initiation Protocol INVITE Transaction

Rajaa Filali and Mohamed Bouhdadi

LMPHE laboratory, Faculty of sciences, University of Mohammed V, 4 Street Ibn Batouta, PB 1014 RP Rabat, Morocco

Correspondence should be addressed to Rajaa Filali; rajaa.filali@gmail.com

Received 31 May 2014; Revised 25 September 2014; Accepted 19 October 2014; Published 19 November 2014

Academic Editor: Kyandoghere Kyamakya

Copyright © 2014 R. Filali and M. Bouhdadi. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The Session Initiation Protocol (SIP) is an application layer signaling protocol used to create, manage, and terminate sessions in an
IP based network. SIP is considered as a transactional protocol. There are two main SIP transactions, the INVITE transaction and
the non-INVITE transaction. The SIP INVITE transaction specification is described in an informal way in Request for Comments
(RFC) 3261 and modified in RFC 6026. In this paper we focus on the INVITE transaction of SIP, over reliable and unreliable
transport mediums, which is used to initiate a session. In order to ensure the correctness of SIP, the INVITE transaction is modeled
and verified using event-B method and its Rodin platform. The Event-B refinement concept allows an incremental development
by defining the studied system at different levels of abstraction, and Rodin discharges almost all proof obligations at each level.
This interaction between modeling and proving reduces the complexity and helps in assuring that the INVITE transaction SIP
specification is correct, unambiguous, and easy to understand.

1. Introduction

Session Initiation Protocol is a network communications
protocol commonly employed for Voice over IP (VoIP)
signaling. It is based on request/response transaction model.
Each transaction consists of a client request that invokes a
particular method on the server and at least one response.
The two main SIP transactions are the INVITE transaction
for setting up a session, and the non-INVITE transaction for
maintaining and closing down a session. Their specifications
are defined in Request for Comments (RFC) 3261 [1] and they
have been modified in RFC 6026 [2].

A large number of the practical protocols have only
informal specifications. Several formal methods have been
applied to analyze these protocols, such as model checking
[3] and theorem proving [4]. However, only a few papers on
analyzing SIP using Colored Petri Nets (CPNs) have been
published [5–8]. CPNs are based on model checking which
verifies the implementation of the system.

Recently a new method Event-B [9] has been developed
by Abrial who has developed the B method [10] and the Z
language [11]. In this paper, we use Event-B to model and
prove the SIP INVITE transaction over reliable andunreliable

transport medium. The most important benefit of using
Event-B is its capability to use abstraction and refinement
[12]. Indeed, in this approach the modeling process starts
with an abstraction of the system which specifies the goals
of the system. The abstract level of our Event-B model shows
these goals in a very general way, and then during refinement
levels features of the protocol are modeled and the goals are
achieved in a detailed way. Moreover the Rodin tool [13]
permits an automated proof of the different models of the
system.

In this paper, we use Event-B to model and prove the
SNMPprotocol.Themost important benefit of using Event-B
is its capability to use abstraction and refinement [7].

The remainder of the paper is organized as follows.
Section 2 gives a brief overviewof Event-B. Section 3 provides
the requirements which are informally defined. A refinement
strategy is proposed in Section 4. Finally, in Section 5, the
formal development is presented.

2. Overview of Event-B

Before Event-B is a formal method for specifying, modeling,
and reasoning about systems, especially complex systems

Hindawi Publishing Corporation
Journal of Computer Networks and Communications
Volume 2014, Article ID 352071, 11 pages
http://dx.doi.org/10.1155/2014/352071

2 Journal of Computer Networks and Communications

such as an electronic circuit, an airline seat booking system,
a PC operating system, a network routing program, a nuclear
plant control system, and a Smartcard electronic purse.
Event-B has evolved from classical B.

Key features of Event-B are the use of set theory as a
modeling notation, the use of refinement to represent systems
at different abstraction levels and the use of mathematical
proof to verify consistency between refinement levels. From a
givenmodelM1, a newmodelM2 can be built as a refinement
of M1. In this case, model M1 is called an abstraction of M2,
and model M2 is said to be a concrete version of M1. A
concrete model is said to refine its abstraction. Each event of
a concrete machine refines an abstract event or refines skip.
An event that refines skip is referred to as a new event since it
has no counterpart in the abstract model. An Event-B model
has two parts, context and machine. Each context specifies
the static properties of the system, including sets, axioms, and
constants. Each machine specifies the dynamic part of the
system, including variables, invariants, and events. Variables
represent the current state of the system and invariants
specify the global specification of the variables and system
behaviors.

An event is defined by the syntax: EVENT e WHEN G
THEN S END, where G is the guard, expressed as a first-
order logical formula in the state variables and S is any
number of generalized substitutions, defined by the syntax
𝑆 ::= 𝑥 := 𝐸 (V) | 𝑥 := 𝑧 :| 𝑃(𝑧). The deterministic
substitution, 𝑥 := 𝐸(V), assigns to variable 𝑥 the value of
expression 𝐸(V), defined over set of state variables V. In a
nondeterministic substitution, 𝑥 := 𝑧 :| 𝑃(𝑧), it is possible
to choose nondeterministically local variables, 𝑧, that will
render the predicate 𝑃(𝑧) true. If this is the case, then the
substitution, 𝑥 := 𝑧, can be applied, otherwise nothing
happens.

The Rodin is the tool of the Event-B. It allows formal
Event-Bmodels to be createdwith an editor. It generates proof
obligations that can be discharged either automatically or
interactively. Rodin ismodular software andmany extensions
are available. These include alternative editors, document
generators, team support, and extensions (called plugins)
some of which include support decomposition and records.

3. Informal Description of
SIP INVITE Transaction

TheINVITE client and server transactions are defined inRFC
3261 and its modifications are presented in RFC 6026 using
two state machines.

3.1. INVITE Client Transaction. When Transaction User
(TU) at the client side wants to initiate a session, it creates
an INVITE client transaction and passes an INVITE request
to the transaction.

(i) An INVITE client transaction has five different states:
(1) calling, (2) proceeding, (3) accepted, (4), completed,
and (5) terminated.

(ii) The initial state, calling, must be entered when the
TU initiates a new client transaction with an INVITE
request.

(iii) For any transport (reliable or unreliable), the client
transaction must start timer B with a value of 64∗T1
seconds (Timer B controls transaction timeouts).

(iv) If an unreliable transport is being used, the client
transaction must start timer A with a value of T1
(Timer A controls request retransmissions).

(v) When timer A fires, the client transaction must
retransmit the request by passing it to the transport
layer and must reset the timer with a value of 2∗T1.
When timer A fires 2∗T1 seconds later, the request
must be retransmitted again.

(vi) If the client transaction is still in the calling state when
timer B fires, the client transaction should inform the
TU that a timeout has occurred.

(vii) If the client transaction receives a provisional
response while in the calling state, it transitions to
the proceeding state.

(viii) If a Transport Err (Error) occurs or timer B expires,
the client transaction moves to the terminated state
and informs its TU immediately.

(ix) In the proceeding state, the client transaction should
not retransmit the request any longer. Furthermore,
the provisional response must be passed to the TU.
Any further provisional responses must be passed up
to the TU while in the proceeding state.

(x) When in either the calling or proceeding states, recep-
tion of a response with status code from 300–699
must cause the client transaction to transition to
completed.

(xi) The client transaction should start timer D when it
enters the completed state, with a value of at least 32
seconds for unreliable transports, and a value of zero
seconds for reliable transports. Timer D reflects the
amount of time that the server transaction can remain
in the completed state when unreliable transports are
used. This is equal to timer H in the INVITE server
transaction, whose default is 64∗T1.

(xii) If timer D fires while the client transaction is in the
completed state, the client transaction must move to
the terminated state. When in either the calling or
proceeding states, reception of a 2xx response must
cause the client transaction to enter the accepted state.

(xiii) The purpose of the accepted state, which presents the
correction of INVITE client transaction according
to RFC 6026, is to allow the client transaction to
continue to exist to receive and pass to its TU any
retransmissions of the 2xx response. When this state
is entered, timer M must be started. This timer
reflects the amount of time that the TU will wait for
retransmissions of the 2xx responses. When timer M
fires, transaction enters the terminated state.

Journal of Computer Networks and Communications 3

3.2. INVITE Server Transaction. The INVITE server trans-
action is created by TU on the server side when it receives an
INVITE request.

(i) The INVITE server transaction can enter five different
states: (1) proceeding, (2) accepted, (3) completed, (4)
confirmed, and (5) terminated.

(ii) Initially, the INVITE server transaction enters the
proceeding state when it is created.

(iii) The server transaction must generate a 100 (Trying)
response unless it knows that the TU will generate a
provisional or final response within 200ms, in which
case it may generate a 100 (Trying) response.

(iv) While in the proceeding state, if the TU passes a
response with status code from 300 to 699 to the
server transaction, the response must be passed to
the transport layer for transmission, and the state
machine must enter the completed state.

(v) When the TU on the server side forwards a final
success response (2xx) to the server transaction, the
transaction delivers this response to the transport
layer for transmission and enters the accepted state.
Retransmissions of the 2xx response are handled by
TU, not by the server transaction.

(vi) The purpose of the accepted state, which presents the
modification of INVITE server transaction according
to RFC 6026, is to absorb retransmissions of an
accepted INVITE request. Any such retransmissions
are absorbed entirely within the server transaction.

(vii) Timer L is started when the accepted state is entered.
This timer reflects the wait time for retransmissions of
2xx responses. When timer L fires, transaction enters
the terminated state.

(viii) For unreliable transports, the server transactionmust
start timer G to control the time for each retransmis-
sion.

(ix) If timer G fires, the response is passed to the transport
layer once more for retransmission, and timer G is set
to fire inmin (2∗T1, T2) seconds. From then on, when
timer G fires, the response is passed to the transport
again for transmission, and timer G is reset with a
value that doubles, unless that value exceeds T2, in
which case it is reset with the value of T2.

(x) When the completed state is entered, timer Hmust be
set to fire in 64∗T1 seconds for all transports. Timer
H determines when the server transaction abandons
retransmitting the response.

(xi) If an ACK is received while the server transaction
is in the completed state, the server transaction must
transition to the confirmed state. As timerG is ignored
in this state, any retransmissions of the response will
cease.

(xii) If timer H fires while in the completed state, it implies
that the ACK was never received. In this case, the
server transaction must transition to the terminated

SETS
REQUESTS
RESPONSES

Box 1

VARIABLES
cl sent
sr got,
sr sent
cl got

Box 2

state, and must indicate to the TU that a transaction
failure has occurred.

(xiii) The purpose of the confirmed state is to absorb any
additional ACK messages that arrive, triggered from
retransmissions of the final response. Once timer I
fires, the server must transition to the terminated
state.

4. Refinement Strategy

The development is made of an initial model followed by
some refinements.

The initial model is high level abstraction showing that
the transaction has a client side and a server side; the client
and the server can both send and receive a message.

The first refinement: in this model we specify the requests
and the responses sent by the client and the server, respec-
tively; we introduce also their different states.

The second refinement contains the introduction of the
timer constraints for reliable transport.

The third refinement contains the introduction of the
timer constraints for unreliable transport.

5. Formal Development

5.1. Initial Model. In this initial model, we just formalize
a communication between client and server by means of
messages (Algorithm 1).

First, we define two carrier sets REQUESTS and
RESPONSES: they describe, respectively, the set of messages
which can be sent by the client and the set of messages which
can be sent by the server (see Box 1).

Then the variables cl sent, sr got, sr sent, and cl got are
introduced to define, respectively, the set of requests sent by
the client, the requests received successfully by the server, the
set of responses sent by the server, and successfully received
responses by the client (see Box 2).

We now define the invariants. In invariants (inv1 and
inv2), the set cl sent and sr got are simply typed as subset of
REQUESTS. As expected in invariants (inv3 and inv4), the
set sr sent and cl got are defined as a subset of RESPONSES.

4 Journal of Computer Networks and Communications

INVARIANTS
inv1: cl sent ⊆ REQUESTS
inv2: sr got ⊆ REQUESTS
inv3: sr sent ⊆ RESPONSES
inv4: cl got ⊆ RESPONSES
inv5: ∀ m ⋅m ∈ REQUESTS ∧ m ∉ cl sent⇒m ∉ sr got
inv6: ∀ l ⋅ l ∈ RESPONSES ∧ l ∉ sr sent⇒ l ∉ cl got

Box 3

client Send ∧=
ANY

msg
WHERE

grd4: msg ∈ REQUESTS
grd3: msg ∉ cl sent

THEN
act6: cl sent := cl sent ∪ {msg}

END
server Receive ∧=

ANY
msg

WHERE
grd5: msg ∈ REQUESTS
grd6: msg ∈ cl sent

THEN
act5: sr got := sr got ∪ {msg}

END
server send ∧=

ANY
msg

WHERE
grd1: msg ∈ RESPONSES
grd2: msg ∉ sr sent
grd3: sr got ̸= 0

THEN
act2: sr sent := sr sent ∪ {msg}

END
client Receive ∧=

ANY
msg

WHERE
grd5: msg ∈ RESPONSES
grd6: msg ∈ sr sent

THEN
act5: cl got := cl got ∪ {msg}

END

Algorithm 1: Events of initial model.

The invariant (inv5) denotes that if any message is not in the
set cl sent, it must not be in the set sr got. The same for (inv6)
(see Box 3).

Finally, we define four events in our abstract model. An
event client send represents the sending request from the
client to the server. An event server receive represents the
request received successful by the server, guards of this event

CONSTANTS
Ready
Calling
Proceeding
Accepted
Completed
Confirmed
Terminated
INVITE
ACK
r2xx
r3xx r699
r1xx

Box 4

state that a message should be in the set cl sent. An event
server send represents the response sent from the server to
the client, the guard of this event state that the set sr got
should not be empty. The last event client got represents the
response received successful by the client.

Proofs. In this initial model, there are 6 invariant preservation
proofs, with 2 of them proved interactively.

5.2. First Refinement. In this first refinement, we introduce
specific requests (INVITE, ACK) and responses (1xx, 2xx,
3xx-699). We introduce also the different states of the client
and the server. First we define the context which contains the
carrier set STATES. It represents the different states of client
and server. We define also the constants in the context and
their associated axioms by the agent (see Box 4).

In order to manipulate states we introduce two new
variables (See Box 5):

c st denotes the current state of client,
s st denotes the current state of server.

We are now ready to define our events (Algorithm 2).

(i) Client send INVITE refining the abstract event client
send: the client sends an INVITE and the state calling
must be entered.

(ii) Server receive INVITE refining the abstract event
Server receive: the server receives the INVITE and it
enters in proceeding state.

(iii) Server send 1xx refining the abstract event
server send: after receiving the request INVITE,
the server sends a provisional response (1xx) to a
client and it remains in proceeding state

(iv) Client receive 1xx refining the abstract event
client receive: the client receives the response
1xx and the state proceeding must be entered.

(v) Server send 2xx refining the abstract event server
send: while the server is in proceeding it can send
the final success response to a client and it enters in
accepted state.

Journal of Computer Networks and Communications 5

VARIABLES
s st
c st

INVARIANTS
inv1: s st ∈ STATES
inv2: c st ∈ STATES
inv3: c st = Calling⇒ INVITE ∈ cl sent
inv4: s st = Proceeding⇒ INVITE ∈ sr got ∨ r1xx ∈ sr sent
inv5: c st = Proceeding⇒ r1xx ∈ cl got
inv6: s st = Accepted⇒ r2xx ∈ sr sent
inv7: c st = Accepted⇒ r2xx ∈ cl got
inv8: s st = Completed⇒ r3xx r699 ∈ sr sent
inv9: c st = Completed⇒ r3xx r699 ∈ cl got ∨ ACK ∈ cl sent
inv10: s st = Confirmed⇒ ACK ∈ sr got

Box 5

(vi) Client receive 2xx refining the abstract event
client receive: the client receives the final success
response 2xx and the state proceeding must be
entered.

(vii) Server send 3xx-699 refining the abstract event
server receive: when the server sends the final
nonsuccess response, it enters in completed state.

(viii) Client receive 3xx-699 refining the abstract event
server receive: while the client is in calling or pro-
ceeding state and it receives the nonsuccess response
3xx-6xx, the state completed must be entered.

(ix) Client send ACK refining the abstract event
client send: the client sends an acknowledgment
(ACK) to the server after receiving the nonsuccess
response.

(x) Server receive ACK refining the abstract event
server receive: the server receives the ACK and it
enters in confirmed state.

(xi) We add two new events client final state and serv-
er final state as anticipated events.

Proofs. The proof obligation generator of the Rodin Platform
produces 49 proof obligations, with 7 of them proved inter-
actively.

5.3. Second Refinement. In this refinement, we introduce the
time constraints for reliable transport.We add six timers B,H,
D, I, L, and M: timer B controls transaction timeouts, timer
H determines when the server transaction abandons retrans-
mitting the response, timer D reflects the amount of time
that the server transaction can remain in the “completed”
state, timer I determines the server state from confirmed to
terminated, timer M reflects the amount of time that the
TU will wait for retransmissions of the 2xx responses, and
timer L reflects the wait time for retransmissions of 2xx
responses. For modeling these timers, we define six variables
that represent each of them, and others six Boolean variables
for whether the timer is held or not (see Box 6).

VARIABLES
H
B
I
D
Temp B
Temp H
Temp D
Temp I
Temp M
Temp L

Box 6

Concerning events, we add six new events Expire B,
Expire D, Expire H, Expire I, Expire M, and Expire L; they
represent when each timer will expire. We add also six time
progression events: Tick Tock B, Tick Tock D,Tick Tock H,
Tick Tock I, Tick Tock L, and Tick Tock M (Algorithm 3).

We refine some events:
Client send INVITE, client receive 1xx, server send 3xx-

699, client receive 3xx-699, server receive ACK, client re-
ceive 2xx, server send 2xx.

When the client transaction sends an invite, the client
transaction must start timer B (we refine the abstract event
client send INVITE by adding the action temp B := TRUE). If
the client transaction is still in the calling state when timer
B fires, the client transaction should pass to the final state
terminated. If the client transaction receives a provisional
response while in the calling state, it transitions to the
proceeding state; then the timer B must turn off (we refine the
abstract event client receive 1xx by adding the action temp B
:= FALSE). The client transaction should start timer D when
it enters the completed state, so we add temp D := TRUE
as action in the event client receive 3xx-699. If timer D fires
while the client transaction is in the completed state, the client
transaction must move to the terminated state.

When the completed state is entered, timer H must be set
to fire (we refine the abstract event server send 3xx 699 by

6 Journal of Computer Networks and Communications

INITIALISATION ∧

=

BEGIN
act7: cl sent := 0
act8: cl got := 0
act9: sr sent := 0
act10: sr got := 0
act11: c st := Ready
act12: s st := Ready

END
client Send INVITE ∧=

REFINES
client Send

ANY
msg

WHERE
grd4:msg ∈ REQUESTS
grd3:msg ∉ cl sent
grd5: msg = INVITE
grd6: c st = Ready

THEN
act6: cl sent := cl sent ∪ {msg}
act7: c st := Calling

END
server receive INVITE ∧=

REFINES
server Receive

ANY
msg

WHERE
grd5:msg ∈ REQUESTS
grd6:msg ∈ cl sent
grd7: msg = INVITE
grd8: s st = Ready

THEN
act5: sr got := sr got ∪ {msg}
act6: s st := Proceeding

END
server send 1xx ∧=

REFINES
server send

ANY
msg

WHERE
grd1:msg ∈ RESPONSES
grd2:msg ∉ sr sent
grd3: sr got ̸= 0
grd4: msg = r1xx
grd5: s st = Proceeding

THEN
act2: sr sent := sr sent ∪ {msg}
act3: s st := Proceeding

END
client Receive 1xx ∧=

REFINES
client Receive

ANY
msg

Algorithm 2: Continued.

Journal of Computer Networks and Communications 7

WHERE
grd5:msg ∈ RESPONSES
grd6:msg ∈ sr sent
grd7: msg = r1xx
grd8: c st = Calling

THEN
act5: cl got := cl got ∪ {msg}
act6: c st := Proceeding

END
server send 2xx ∧=

REFINES
server send

ANY
msg

WHERE
grd1:msg ∈ RESPONSES
grd2:msg ∉ sr sent
grd3: sr got ̸= 0
grd4: msg = r2xx
grd5: s st = Proceeding

THEN
act2: sr sent := sr sent ∪ {msg}
act3: s st := Accepted

END
client Receive 2xx ∧=

REFINES
client Receive

ANY
msg

WHERE
grd5:msg ∈ RESPONSES
grd6:msg ∈ sr sent
grd7: msg = r2xx
grd8: c st = Calling ∨ c st = Proceeding

THEN
act5: cl got:= cl got ∪ {msg}
act6: c st := Accepted

END
server send 3xx-699 ∧=

REFINES
server send

ANY
msg

WHERE
grd1:msg ∈ RESPONSES
grd2:msg ∉ sr sent
grd3: sr got ̸= 0
grd4: msg = r3xx r699
grd5: s st = Proceeding

THEN
act2: sr sent := sr sent ∪ {msg}
act3: s st := Completed

END
client Receive 3xx-699 ∧=

REFINES
client Receive

ANY
msg

Algorithm 2: Continued.

8 Journal of Computer Networks and Communications

WHERE
grd5:msg ∈ RESPONSES
grd6:msg ∈ sr sent
grd7: msg = r3xx r699
grd8: c st = Calling ∨ c st = Proceeding

THEN
act5: cl got := cl got ∪ {msg}
act6: c st := Completed

END
client send ACK ∧

=

REFINES
client Send

ANY
msg

WHERE
grd4:msg ∈ REQUESTS
grd3:msg ∉ cl sent
grd5: msg = ACK
grd6: c st = Completed

THEN
act6: cl sent := cl sent ∪ {msg}
act7: c st := Completed

END
server Receive ACK ∧

=

REFINES
server Receive

ANY
msg

WHERE
grd5:msg ∈ REQUESTS
grd6:msg ∈ cl sent
grd7: msg = ACK
grd8: s st = Completed

THEN
act5: sr got := sr got ∪ {msg}
act6: s st := Confirmed

END
Client final state ∧=
STATUS

anticipated
BEGIN

act1: c st := Terminated
END
Server final state ∧=

STATUS
anticipated

BEGIN
act1: s st := Terminated

END

Algorithm 2: Events of first refinement.

adding the action temp H := TRUE). If timer H fires while
in the completed state, it implies that the ACK was never
received. In this case, the server transaction must transition
to the terminated state and must indicate to the TU that a
transaction failure has occurred.

When confirmed state is entered, timer I is set to fire in
zero seconds for reliable transports.We add temp (I :=TRUE)
as action in the refined event server receive ACK.Once timer
I fires, the server MUST transition to the terminated state.

Timer L is started when the accepted state is entered.
When timer L fires, transaction enters the terminated state.

When accepted state is entered, timer M must be started.
When timer M fires, transaction enters the terminated
state.

Proofs.There are 10 invariant preservation proofs.They are all
straightforward and easily proved automatically by the Rodin
platform prover.

Journal of Computer Networks and Communications 9

Exipre B ∧=
REFINES

client final state
WHEN

grd3: r1xx ∉ cl got
grd1: B = 64 ∗ cst
grd4: c st = Calling

THEN
act1: c st := Terminated
act2: B := 0
act3: Temp B := FALSE

END
Expire H ∧

=

REFINES
server final state

WHEN
grd3: ACK ∉ sr got
grd1: H = 64 ∗ cst
grd2: s st = Completed

THEN
act1: s st := Terminated
act2: H := 0
act3: Temp H := FALSE

END
Expire D ∧

=

REFINES
client final state

WHEN
grd1: Temp D = TRUE
grd2: c st = Completed

THEN
act1: c st := Terminated
act2: Temp D := FALSE

END
Expire I ∧=

REFINES
Server final state

WHEN
grd2: Temp I = TRUE
grd1: s st = Confirmed

THEN
act1: s st := Terminated
act2: Temp I := FALSE

END
Expire M ∧

=

REFINES
Client final state

WHEN
grd2: Temp M = TRUE
grd1: c st = Accepted

THEN
act1: c st := Terminated
act2: Temp M := FALSE

END
Expire L ∧=

REFINES
Server final state

Algorithm 3: Continued.

10 Journal of Computer Networks and Communications

WHEN
grd2: Temp L = TRUE
grd1: s st = Accepted

THEN
act1: s st := Terminated
act2: Temp L := FALSE

END

Algorithm 3: Events of second refinement.

Resend INVITE ∧=
WHEN

grd1: c st = Calling
grd2: A = T1

THEN
act1: T1 := 2 ∗ T1
act2: cl sent := cl sent ∪ {INVITE}
act3: c st := Calling
act4: A := 0

END
Resend 3xx-699 ∧=

ANY
data

WHERE
grd1: data = T1
grd2: G = min ({data, T2})
grd3: s st = Completed

THEN
act1: sr sent := sr sent ∪ {r3xx r699}
act2: s st := Completed
act3: T1 := 2 ∗ T1
act4: G := 0

END

Algorithm 4: Events of third refienement.

5.4. Third Refinement. In this last refinement, we introduce
the time constraints for unreliable transport. New variables
are declared, “A” as the timer that controls request retrans-
missions, “G” controls the time for each retransmission, and
two Boolean variables temp A and temp G for whether the
timer is held or not. We add also two new events.

Resend INVITE. When timer A fires, the client transaction
must retransmit the request INVITE andmust reset the timer
with a value of 2∗T1. When timer A fires 2∗T1 seconds later,
the request must be retransmitted again.

Resend 3xx-699. If timer G fires, the response 3xx-699 is
passed to the transport layer once more for retransmission,
and timerG is set to fire inmin (2∗T1, T2) seconds. From then
on, when timer G fires, the response is passed to the transport
again for transmission, and timer G is reset with a value that
doubles, unless that value exceeds T2, in which case it is reset
with the value of T2 (Algorithm 4).

Table 1: Proof statistics.

Model Total number
of POs

Automatic
Proof

Interactive
Proof

Initial model 6 4 2
First refinement 49 42 7
Second
refinement 10 10 0

Third
refinement 14 13 1

Total 79 69 (87%) 10 (13%)

We refine the events expire I, expire M, expire L, and
expire D by adding, respectively, the actions d = 32, I = 10∗
cst, M = 64∗cst, and L = 64∗cst, where cst = 500ms.

Proofs. This refinement requires 14 proofs, all proved auto-
matically except one.

5.5. Proof Statistics. Table 1 describes the proof statistics of
the formal development of SIP INVITE transaction in the
Rodin tool. These statistics measure the size of the model,
the proof obligations generated and discharged by the Rodin
platform, and those that are interactively proved.

6. Conclusion

In this paper, we have modeled and proved SIP INVITE
transaction over reliable and unreliable transport medium
using Event-B

We have explained our approach using refinement, which
allows us to achieve a very high degree of automatic proof.
The powerful support is provided by the Rodin tool. Rodin
proof is used to generate the proof obligations and to
discharge those obligations automatically and interactively.
Modeling and analyzing SIP specification using formalmeth-
ods can help in assuring correctness, unambiguity, and clarity
of the SIP protocol. Since a well-defined and verified protocol
specification can reduce the cost for its implementation and
maintenance, modeling and analysis are important steps of
the protocol development life-cycle from the point view of
protocol engineering.

In the future work, we would model and prove the non-
INVITE transaction over reliable and unreliable mediums.

Journal of Computer Networks and Communications 11

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo et al., “Sip: session
initiation protocol,” Tech. Rep. RFC 3261, Internet Engineering
Task Force, 2002.

[2] R. Sparks and T. Zourzouvillys, “Correct transaction handling
for 2xx responses to session initiation protocol (sip) invite
requests,” RFC 6026, 2010, http://www.ietf.org/rfc/rfc6026.txt.

[3] E. M. Clarke, O. Grumberg, and D. Peled,Model Checking, MIT
Press, Cambridge, Mass, USA, 1999.

[4] C.-L. Chang, Symbolic Logic and Mechanical Theorem Proving,
Academic Press, 1973.

[5] L. G. Ding and L. Liu, Modeling and Analysis of the INVITE
Transaction of the Session Initiation Protocol Using Colored Petri
Nets, Springer, 2008.

[6] L. Liu, “Verification of the sip transaction using colored Petri
nets,” in Proceedings of the 23nd Australasian Conference on
Computer Science, vol. 91, pp. 75–84, Australian Computer
Society, 2009.

[7] S. Kızmaz andM.Kırcı, “Verification of session initiation proto-
col using timed colored petri net,” International Journal of
Communications, Network & System Sciences, vol. 4, no. 3, pp.
170–179, 2011.

[8] S. Barakovic, D. Jevtic, and J. Barakovic Husic, “Modeling of
session initiation protocol invite transaction using colored Petri
nets,” in Proceedings of the 8th International Conference on
Modeling and Simulation (ICMS ’12), 2012.

[9] J. R. Abrial,Modeling in Event-B: System and Software Engineer-
ing, Cambridge University Press, 2010.

[10] J. R. Abrial, The B-Book: Assigning Programs to Meanings,
Cambridge University Press, Cambridge, UK, 2005.

[11] J. R. Abrial, “𝐵#: toward a synthesis between Z and B,” in ZB
2003: Formal Specification and Development in Z and B, D.
Bert, J. P. Bowen, S. King, and M. Waldén, Eds., vol. 2651 of
Lecture Notes in Computer Science, pp. 168–177, Springer, Berlin,
Germany, 2003.

[12] R. J. Back, On the Correctness of Refinement Steps in Program
Development, Department of Computer Science, University of
Helsinki, Helsinki, Finland, 1978.

[13] C. Jones, I. Oliver, A. Romanovsky, and E. Troubitsyna, RODIN
(rigorous open development environment for complex systems),
University of Newcastle upon Tyne, Computing Science, 2005.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

