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In this study the principal focus is to examine the influence of psychological stress (both positive and negative stress) on the human
articulation and to determine the vocal tract transfer function of an individual using inverse filtering technique. Both of these
analyses are carried out by estimating various voice parameters. The outcomes of the analysis of psychological stress indicate that
all the voice parameters are affected due to the influence of stress on humans. About 35 out of 51 parameters follow a unique course of
variation from normal to positive and negative stress in 32% of the total analyzed signals.The upshot of the analysis is to determine
the vocal tract transfer function for each vowel for an individual. The analysis indicates that it can be computed by estimating the
mean of the pole zero plots of that individual’s vocal tract estimated for the whole day. Besides this, an analysis is presented to find
the relationship between the LPC coefficients of the vocal tract and the vocal tract cavities. The results of the analysis indicate that
all the LPC coefficients of the vocal tract are affected due to change in the position of any cavity.

1. Introduction

1.1. Voice Production Process. The process of voice produc-
tion involves a sequence of complex biological activities. It
originates from the production of airflow in the lungs, which
is modulated by the vocal folds (for voice sounds). Spectral
shaping of the modulated airflow is done by the vocal tract
cavities which transfer the airflow to the lips to radiate the
sound in the outside world. This process of voice production
is very well discussed in [1–3]. A simplified view of speech
production is shown in Figure 1. Here the speech organs
are divided into three main parts: lungs, larynx, and vocal
tract. Lungs are acting as a power supply which supplies air
pressure signals to the larynx stage. The larynx modulates
the airflow as is given by the lungs. It consists of two vocal
folds or vocal cords. These folds are made up of masses of
flesh, ligament, and muscles [2]. The basic functionality of
these folds is to stretch between the front and back parts of
the larynx. The glottis is a slit like space between the two
folds. The vocal folds are open during breathing. But they

can either be in open or vibrating condition depending upon
the speaking state. In case of voice sources like vowels, the
vocal folds are in a vibrating state. This means vocal folds
are opening and closing rapidly. For other sources, the vocal
folds are not vibrating rapidly [1]. After the larynx stage the
signal passes through the vocal tract which consists of three
cavities; pharynx cavity, oral cavity, and nasal cavity. These
organs are helpful in shaping themodulated airflow spectrally
and also in adjusting the quality of speech [2]. The vibration
of the vocal folds in case of voice sources can be estimated
in the form of a pulse called glottal pulse. A glottal pulse
is shown in Figure 2. As we can see, initially the folds are
in closed position (air flow is zero above vocal folds); then
they are opening slowly (air flow is increasing); then they
are fully open (air flow is maximized), and after that they
are closing at a faster rate as shown in the figure. From this
we can determine the time duration of one glottal cycle,
which is known as pitch period and the reciprocal of pitch
period is known as fundamental frequency [1]. The value
of the fundamental frequency is influenced by many factors
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Figure 1: Simplified view of speech production [1].
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Figure 2: Periodic glottal airflow waveform [1].

like vocal fold muscle tension, vocal fold mass, and the air
pressure behind the vocal folds. The average pitch range is
roughly 80Hz to 400Hz in males and 120Hz to 800Hz in
females [2].

As the glottal pulse or the excitation signal moves upward
on its way through the mouth and nose, it encounters certain
obstructions. First the wall of the throat (in the pharyngeal
cavity) creates impedance in its path. This impedance causes
certain resonance frequencies in the signal. The same effect
is caused by the walls of the mouth surrounding the oral
cavity and by the walls of the nose surrounding the nasal
cavity.The sizes and conformations of these cavities are purely
speaker dependent. The resonances of these three cavities
(pharyngeal, oral, and nasal) are frequently called formants:
the first formant, the second formant, and the third formant,
respectively. These frequencies depend upon the shape and
dimension of the vocal tract [4]. Because of the motion
of organs like tongue, and teeth, higher formant values are
likewise possible. As these formant values are immediately
linked to the vocal tract cavities so these parameters are
also very important and must be measured. After travelling
through the vocal tract, the signal is radiated outwards in the
form of speech through the lips or nose (in case of nasal voice
signals).

The parameters of these organs play a significant role
in determining the speaker’s characteristics. Getting a true
appraisal of these parameters helps us to see the operation
of the human speech production mechanism in a more
skillful way [5]. These parameters can be beneficial for many
speech processing applications such as speaker recognition
and speech synthesis [6]. Similarly in biomedical applications
or clinical research for the analysis of psychological stress or
alcohol intoxication, these parameters play an important role
[7, 8]. There is some change in the values of these parameters
for normal to diseased or stressed state [9]. So there is a
need to effectively estimate these parameters from the voice
signal.

1.2. Introduction to Stress. For a number of years the
researchers in the field of Speech science and Laryngological
studies, are constantly working on the acoustic characteristics
of normal and pathological voice. Variousmethods have been
modernized in this subject area for providing the quantitative
data [10]. The major reason of growing research in this area
is because of the importance of voice signal in determining
the effect of clinical disorders like psychological stress. Stress
or emphasis is mostly specified as a psychological state that
is a reaction to a perceived threat or task demand and is
normally accompanied by some specific emotions (e.g., fear,
anger, or disgust) [11]. The long term occurrence of stress
has serious health consequences [12]. The obvious question
that comes to mind is how do we measure stress? The
most accurate estimations of a person’s stress level can be
found by measuring various psychological parameters, such
as ECG, EEG or other biological signals, or some biochemical
methods [9]. But all these methods require costly and large
setup. However, it is very easy to analyze the voice or speech
signal; hence this type of analysis is easy and inexpensive.
In daily life we often use the term stress to identify negative
emotions. However, stress can be classified in two parts,
eustress which is a term for positive stress or emotion
(like happiness) and distress, which refers to the negative
stress or emotions (like anger, fear, or disgust). The positive
stress motivates, focuses energy, feels exciting, and improves
performance. In contrast, negative stress causes anxiety, feels
unpleasant, and decreases performance [9].

1.3. Glottal Pulse Extraction. As discussed in the first section,
the glottal airflow is filtered by the vocal tract to provide the
air flow at the lip. This airflow is then converted to a pressure
waveform at the lips and propagated as a sound signal. So,
to get an estimate of the glottal airflow or glottal pulse, one
needs to remove the effects of estimated vocal tract filter and
lip radiation from the original speech signal.This technique is
termed as inverse filtering, since in this process the estimated
vocal tract filter and lip radiation effects are inversed to get
the glottal flow estimate. MATLAB environment can be used
to implement this technique [13–15].

To receive such type of inverse filtering automatically,
iterative adaptive inverse filtering (IAIF) algorithm has been
used [16–18]. The block diagram of IAIF algorithm used
is presented in Figure 3 [7]. Before estimation, the input
speech signal is first high pass filtered using a linear-phase
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Figure 3: Block diagram of IAIF.

finite impulse response (FIR) filter with a cut-off frequency
of 60Hz to eliminate low frequency fluctuations and DC
bias. The high pass filtered signal is used as the input to the
next stages. The speech signal is divided into frames before
filtering. In block 1, the LPC coefficient fit of order 1 is used to
calculate the contribution of the glottal pulse to the speech
signal. In the next block 2, this LPC coefficient of order 1
which symbolizes the force of the glottal pulse in the signal
is used to design an inverse filter (all zero FIR filters) which
is applied to get rid of the glottal effect of the original speech
signal. So the input to block 3 represents the speech signal
with the glottal flow component filtered out. Next in block
3, LPC fit of order 12 is used to capture the vocal tract filter
effect in terms of filter coefficients. Here order 12 is chosen in
accordance with the number of formant frequencies which is
more than the double number of formants considered for the
analysis [19, 20]. So in block 4, the vocal tract filter effect is
removed from the original speech signal by inverse filtering.
Signal out of this block consists of the effect of glottal flow and
lip radiation effect. So to scrub out the radiation issue, a leaky
integrator (with coefficient value more than 0.9 and less than
1) is used in block 5, which removes the lip radiation effect
from the flow obtained after block 4. The output of block 5
is the first estimate of the glottal pulse. The second repetition

runs analogously [7, 15]. The output of block 10 is the glottal
pulse estimate of the original speech signal.

1.4. Glottal Pulse and Its Derivative Parameters. The parame-
ters of the glottal pulse can provide the quantitative informa-
tion to examine their importance in the biomedical applica-
tions. There are three categories of glottal pulse parameters:
time and amplitude domain, frequency domain, and glottal
pulse derivative (LF) parameters. The time and amplitude
domain parameters involve the extraction of certain time
and amplitude instants from the glottal pulse. By counting
on these timing instants, several time and amplitude based
parameters can be calculated. These time instants can be
specified using the glottal pulse and its derivative pulse as
shown in Figure 4.

(i) The fundamental time period𝑇 is calculated using the
fundamental frequency (𝑓

𝑜
) of the signal frame.

(ii) 𝑡max is that time instant when the amplitude of the
glottal pulse is maximum or when the two vocal folds
are completely open. 𝑡min can be defined similarly [21].

(iii) 𝐴
𝑎𝑐
is the peak to peak amplitude level of the glottal

pulse which is the difference between the maximum
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Figure 4: Time and amplitude instants in glottal pulse (a) and its
derivative pulse (b) [15].

amplitude to the minimum amplitude of the glottal
pulse [21].

(iv) 𝑡
𝑐
is known as closure time instant which is the

time instant when the two vocal folds are just about
to close. This time instant is equal to that instant
when the glottal pulse derivative pulse crosses to the
positive amplitude after 𝑡

𝑑min. Here 𝑡
𝑑min is the time

instant when the glottal pulse derivative pulse is at its
minimum value [21].

(v) 𝑡
𝑜1

and 𝑡
𝑜2

are the two opening time instants. To
calculate 𝑡

𝑜1
first consider the time sequence which

is having 10% amplitude of 𝑡max on the left side of it.
Now go left from that time instant up to when the
derivative pulse has approached the positive value of
its amplitude. This time instant is the first opening
time instant. For estimating 𝑡

𝑜2
, first mark the time

instant which is 5%more than 𝑡
𝑜1
; then after this time

instant look for the maximum positive value of the
amplitude of the second derivative pulse of glottal
waveform.That time instant is 𝑡

𝑜2
. The importance of

considering two opening instants is due to the more
gradual opening of the glottal pulse than closing [21].

(vi) 𝑡
𝑞𝑐
and 𝑡
𝑞𝑜
are the time instantswhere the amplitude of

the glottal pulse is 50% of the peak to peak amplitude
𝐴
𝑎𝑐
[21].

(vii) All the time based parameters are calculated with
respect to the time instant 𝑡max [21].

From these timing instants, several time and amplitude
based parameters can be calculated which are as follows.

(i) OQ (open quotient) measures the relative portion of
the open phase compared to cycle duration. Two open
quotients can be counted, namely, OQ

1
andOQ

2
[22].

(ii) SQ (speed quotient) measures the ratio of the dura-
tion of opening phase to the duration of the closing
phase. Possible speed quotients are SQ

1
and SQ

2
[22].

(iii) CIQ (closing quotient) is the ratio of the duration of
closing phase to the period length 𝑇 [23].

(iv) AQ (amplitude quotient) is the ratio of peak to
peak amplitude level of glottal pulse and minimum
amplitude of glottal pulse derivative [24, 25].

(v) NAQ (normalized AQ) is the normalized value of AQ
which is worked out by dividing AQ with the period
length 𝑇 [24, 25].

(vi) QOQ (quasiopen quotient) is same as OQ except
that it measures the relative portion of the quasitime
instants, that is, 𝑡

𝑞𝑐
and 𝑡
𝑞𝑜
, compared to the cycle

duration [26].
(vii) OQ

𝑎
is the amplitude counterpart of OQ.

Mathematically, these parameters can be developed as
follows:

OQ
1
=

(𝑡
𝑐
− 𝑡
𝑜1
)

𝑇
,

OQ
2
=

(𝑡
𝑐
− 𝑡
𝑜2
)

𝑇
,

OQ
𝑎
= 𝐴
𝑎𝑐

(
Π

2𝐴
𝑑max

+
1

𝐴
𝑑min

)𝑓
𝑜
,

QOQ =

(𝑡
𝑞𝑐

− 𝑡
𝑞𝑜
)

𝑇
,

SQ
1
=

(𝑡max − 𝑡
𝑜1
)

(𝑡
𝑐
− 𝑡max)

,

SQ
2
=

(𝑡max − 𝑡
𝑜2
)

(𝑡
𝑐
− 𝑡max)

,

CIQ =
(𝑡
𝑐
− 𝑡max)

𝑇
,

AQ =
𝐴
𝑎𝑐

𝐴
𝑑min

,

NAQ =
AQ
𝑇

.

(1)

To estimate frequency domain parameters, the frequency
or the power spectrum of the glottal pulse is considered
as shown in Figure 5 [15]. There are three main frequency
domain parameters of the glottal pulse.

First is 𝐻1-𝐻2 or 𝑑𝐻12 which is the difference of the
first and second harmonics of the glottal frequency spectrum
waveform in decibel [27]. Another similar parameter is
harmonic richness factor (HRF), which is defined as the
ratio between the sums of the amplitudes of harmonics
above the fundamental frequency and the magnitude of the
fundamental frequency or the first harmonic in decibels [28].
It is shown by the mathematical formula given below:

HRF =
∑
𝑟≥2

𝐻
𝑟

𝐻
1

. (2)

Here 𝐻
𝑟
represents the magnitude of the 𝑟th harmonic.

If 𝐻1 increases, then 𝐻1-𝐻2 will increase and HRF will
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decrease [15]. In [29], the author introduced another similar
parameter, parabolic spectral parameter (PSP), which is
the second order polynomial to the flow spectrum on a
logarithmic scale, computed over a single glottal period [15].

The final type of glottal pulse parameters is the glottal
pulse derivative parameters. These parameters are termed as
model based parameters because these parameters take on
some mathematical expression on the glottal derivative pulse
that generates an artificial derivative pulse.With the aid of the
artificial pulse the model parameters are estimated.Themost
used mathematical model is Liljencrants-Fant (LF) model [7,
30]. It is a four parametermathematical formulation of glottal
flow derivative pulse [15]. It accepts applications in both
voice analysis and speech synthesis [8, 31–35]. The spectral
properties of glottal pulse parameters can also be considered
with the aid of this model [36]. The LF approximated glottal
derivative pulse is shown in Figure 6 [8].

Following are the timing instants and parameters of LF
model.

(i) 𝑇
𝑜𝑝
is same as the opening time instant 𝑡

𝑜1
as we have

talked about above.
(ii) 𝑇
𝑒
is that time instant when the derivative pulse is

having its minimum amplitude value [37].

(iii) Time instant 𝑇
𝑎
is the timing instant of the tangent

line drawn from the timing instant 𝑇
𝑒
to the right side

of derivative pulse [37].
(iv) Another timing instant 𝑇

𝑝
, is the instant when the

derivative pulse crosses to zero amplitude level for the
first time [38].

(v) 𝑇
𝑐
is same as the glottal pulse closure time instant 𝑡

𝑐
.

(vi) The parameter 𝐸
𝑒
is the magnitude of the slope of the

negative going glottal pulse [38].

From these timing instants a number of parameters can
be obtained:

(i)

𝑅
𝑎
= 𝑇
󸀠

𝑎
𝑓
𝑜
, (3)

where 𝑇
󸀠

𝑎
time interval is equal to the difference

between 𝑇
𝑎
and 𝑇

𝑒
and 𝑓

𝑜
is the fundamental fre-

quency of the glottal pulse [32].
(ii)

𝑅
𝑔
=

1

2𝑇󸀠
𝑝
𝑓
𝑜

, (4)

where 𝑇
󸀠

𝑝
time interval is equal to the difference

between 𝑇
𝑝
and 𝑇

𝑜𝑝
[32].

(iii)

𝑅
𝐾

=

(𝑇
󸀠

𝑒
− 𝑇
󸀠

𝑝
)

𝑇󸀠
𝑝

, (5)

where 𝑇
󸀠

𝑒
time interval is the difference between 𝑇

𝑒

and 𝑇
𝑜𝑝
[32].

(iv)

𝑅
𝑑
=

(0.5 + 1.2𝑅
𝐾
) (𝑅
𝐾
/4𝑅
𝑔
+ 𝑅
𝑎
)

0.11
. (6)

OQ (return) is the open quotient for return (closing)
phase, which is calculated using the LF model. Con-
sider

OQ = 𝑇
󸀠

𝑒
𝑓
𝑜
=

(1 + 𝑅
𝐾
)

2𝑅
𝑔

. (7)

1.5. Time, Frequency, and Energy Domain Parameters of Voice.
To estimate the glottal parameters one has to apply several
steps and algorithms for each frame of data. So if one does
not want to look in depth of glottal based parameters, then,
he can study the parameters that are directly estimated from
the speech signal itself. Here in this section we will discuss
time domain, frequency domain, and energy parameters of
speech signal.
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(i) Autocorrelation function is a time domain parameter
of voice. It serves to see the similarity between a
speech signal with itself after a little span of time. Let
us consider a speech signal 𝑠(𝑛) with a frame length
of 𝑁 samples. Let number of frames be 𝑚. Then the
autocorrelation function of the speech signal for 𝑚th
frame is defined as

𝑟 (𝑚) =
1

2𝑁 + 1

𝑁

∑

𝑛=−𝑁

𝑠 (𝑛) 𝑠 (𝑛 + 𝑚) . (8)

When 𝑚 = 0 then 𝑟(0) represents the short term
energy of the signal [39]. The value of the autocorre-
lation function varies between 0 and 1. It yields the
value 1 if the speech signal is perfectly coupled with
the signal frame just next to it.

(ii) Harmonic to noise ratio (HNR) is the difference
between the energies of the speech signal in periodic
part and the energies of the signal in the noise in
decibels. IfHNR=0 dB, then it implies that the energy
in the harmonic part is equal to the energy in the
noisy part. A large value ofHNR is desirable in speech
signals.

(iii) Noise to harmonic ratio (NHR) is the average ratio of
the energy of the noise components to the energy of
the harmonic components present in the frequency
range of speech signal. It evaluates noise present in
the speech signal. Variations in amplitude, turbulence
noise, subharmonic components, voice breaks, and so
forth are considered in NHR. Low value of NHR is
desirable in speech signals.

(iv) Short time energy (STE) is defined as the energy of the
short segment or frame of speech signal [40]. It can
be applied as an effective parameter to differentiate
between the voiced and unvoiced segments [41]. The
short time energy can be expressed by the following
mathematical expression:

STE
𝑛
= ∑

𝑛

[𝑠 (𝑛) 𝑤 (𝑛 − 𝑚)]
2

. (9)

Here 𝑠(𝑛) is the speech signal and𝑤(𝑛) is the window
function applied to the speech signal and 𝑚 varies
from 0 to 𝑛 in a step of the frame size𝑁, whichmeans
𝑚 = 0,𝑁, 2𝑁, 3𝑁 ⋅ ⋅ ⋅ 𝑛.

(v) Energy entropy (EE) is a measure of the abrupt
changes in energy. This is applied to observe silence
and voiced region of speech segments. To calculate
EE, first of all each frame is divided into𝐾 subframes
and energy of each sub frame is computed. Let 𝑒

𝑖
be

the energy of a subframe, then EE of each frame is
calculated using the formula [40]:

EE = −

𝐾−1

∑

𝑖=0

𝑒
2

𝑖
log
2
(𝑒
2

𝑖
) . (10)

(vi) Zero crossing rate (ZCR) is a time domain parameter
of speech signal.The number of times per second that

the speech signal crosses the zero axis in a frame gives
the ZCR in that frame [40]. Overall ZCR of the speech
signal is computed by assuming the average value of
all the individual ZCRs.

(vii) Spectral centroid (SC) is used to characterize the cen-
ter of mass of the speech spectrum. It is the weighted
mean frequency for a given frame of the speech
signal. Weights are the normalized energy of each
frequency component in that frame. It can be helpful
in detecting frequency peaks in the frame which can
either correspond to the location of formants or pitch
frequencies [42]. It is given by the formula below:

SC =
∑
𝑁−1

𝑛=0
𝑓 (𝑛) 𝑥 (𝑛)

∑
𝑁−1

𝑛=0
𝑥 (𝑛)

. (11)

Here 𝑥(𝑛) represents the weighted frequency value for
the frame number 𝑛 and 𝑓(𝑛) represents the center
frequency value at that frame [40].

(viii) Spectral flux (SF) is a measure which calculates how
quickly the power spectrum of the signal is changing.
It is themean fluctuation of the power spectrum from
one frame to the other frame. It is given by the formula
below [40]:

SF =
1

(𝑁 − 1) (𝐾 − 1)

×

𝑁−1

∑

𝑛=1

𝐾−1

∑

𝑘=1

[log𝐹 (𝑛, 𝑘) − log𝐹 (𝑛 − 1, 𝑘)]
2

.

(12)

Here 𝐹(𝑛, 𝑘) is the FFT of the 𝑛th frame of the input
speech signal, 𝑁 is the total number of frames and 𝐾

is the order of the FFT [40].
(ix) Spectral roll off (SR) is a criterion of the spectral shape

of sound like SC. It is that value of frequency forwhich
85% of the energy of the signal is less than that of
frequency [40].

(x) Jitter is a measure of period to period fluctuations
in the fundamental frequency or pitch of the speech
signal [43]. Jitter in the signal is mainly affected due
to the lack of control in the vibrations of the two vocal
folds [44]. Jitter can be assessed in many ways given
below [43, 44]:

(a) Jitter (absolute) is expressed as

𝐽𝑖𝑡𝑡𝑒𝑟 (abs) =
1

𝑁 − 1

𝑁−1

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑇𝑘 − 𝑇
𝑘+1

󵄨󵄨󵄨󵄨 . (13)

Here 𝑁 is the number of periods or frames of the
signal and 𝑇

𝑘
is the pitch periods for the frame

number 𝑘.

(b) Jitter (relative) can be expressed equally:

𝐽𝑖𝑡𝑡𝑒𝑟 (relative) =
(1/ (𝑁 − 1))∑

𝑁−1

𝑘=1

󵄨󵄨󵄨󵄨𝑇𝑘 − 𝑇
𝑘+1

󵄨󵄨󵄨󵄨

(1/𝑁)∑
𝑁

𝑘=1
𝑇
𝑘

. (14)
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(c) Jitter (rap) is the jitter calculated using relative
average perturbation:

𝐽𝑖𝑡𝑡𝑒𝑟 (rap)

=
(1/ (𝑁 − 2))∑

𝑁−1

𝑘=2

󵄨󵄨󵄨󵄨𝑇𝑘 − (((𝑇
𝑘
+ 𝑇
𝑘+1

+ 𝑇
𝑘+2

)) /3)
󵄨󵄨󵄨󵄨

(1/𝑁)∑
𝑁

𝑘=1
𝑇
𝑘

.

(15)

(d) Jitter (ppq5) is the five point period perturba-
tion quotient jitter. It is computed as the average
absolute difference between a period and the
average of it and its four closest neighbors
divided by the average period.

(xi) Shimmer is a measure of period to period variation in
the amplitudes of the speech signal [43]. It is affected
mainly due to the reduction in the tension of the vocal
folds [44]. Shimmer can also be assessed inmanyways
listed below [43, 44]:

(a) Shimmer (absolute) is the variation in the peak
to peak amplitudes of the speech signal for
consecutive periods taken in decibels. It can be
expressed as

𝑆ℎ𝑖𝑚𝑚𝑒𝑟 (absolute) =
1

𝑁 − 1

𝑁−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

20 log(
𝐴
𝑘+1

𝐴
𝑘

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (16)

Here 𝐴
𝑘
is the peak to peak amplitude for the

current frame 𝑘 and𝑁 is the number of frames.
(b) Shimmer (relative) is the average absolute dif-

ference between the amplitudes of consecutive
periods, divided by the average amplitude. It can
be expressed as

𝑆ℎ𝑖𝑚𝑚𝑒𝑟 (relative) =
(1/ (𝑁 − 1))∑

𝑁−1

𝑘=1

󵄨󵄨󵄨󵄨𝐴𝑘 − 𝐴
𝑘+1

󵄨󵄨󵄨󵄨

(1/𝑁)∑
𝑁

𝑘=1
𝐴
𝑘

.

(17)

(c) Shimmer (apq3) is the three point amplitude
perturbation quotient which can be computed
by considering the mean absolute deviation
between the amplitude of a period and average
of the amplitudes of its neighbors divided by
the mean amplitude of the period. It can be
expressed as

𝑆ℎ𝑖𝑚𝑚𝑒𝑟 (apq3)

=
(1/ (𝑁 − 2))∑

𝑁−1

𝑘=2

󵄨󵄨󵄨󵄨𝐴𝑘 − ((𝐴
𝑘
+ 𝐴
𝑘−1

+ 𝐴
𝑘+1

) /3)
󵄨󵄨󵄨󵄨

(1/𝑁)∑
𝑁−1

𝑘=1
𝐴
𝑘

.

(18)

(d) Similarly Shimmer (apq5) and Shimmer (apq11)
can be determined.

It is said that jitter (absolute) and shimmer (absolute) are
useful in speaker recognition [44].

(i) Intensity or vocal intensity of the speech signal refers
to the loudness effect of speech signal. Vocal intensity
is related to the subglottis pressure of the airflow,
which depends on the tension and the vibrations of
the vocal folds [44]. A small number of vibrations
in the vocal folds make quieter voice as compared
to the large number of vibrations of the folds [45].
Mathematically vocal intensity can be expressed as
sound intensity level (SIL) or sound pressure level
(SPL) [46]. SIL or SPL is measured in dBs. SIL
basically tells how much louder a given sound is
as compared to the standard (soft) reference vocal
intensity, of 10–12 watt/m2 . This can be determined
by [46]

SIL = 10 log 𝐼

𝐼
0

dB, (19)

where 𝐼
0
is the standard intensity value and sound

intensity can also be expressed in terms of SPL also.
Consider

SPL = 10 log 𝑃

𝑃
0

dB. (20)

Here 𝑃
0
is the standard pressure level and is having

the value of 0.00002 Pascal. SIL and SPL describe
the same point of acoustic energy and can be used
interchangeably [46].

The formant frequencies can be estimated by taking the
frequency response of the vocal tract filter. The peaks of the
response are the formant frequencies. The amplitude and
bandwidth values at those peaks are also very important
parameters and must be considered.

2. Results and Discussion

This section describes the experiments performed and results
produced by those experiments. The experimental method-
ology is first outlined and then followed by the results of the
experiment. Let us discuss various experiments performed on
the voice parameters.

2.1. Estimation of Glottal Flow. The goal of this experiment
was to estimate the glottal flow or glottal pulses from the
voice signal of vowels using IAIF algorithm described in the
above section by using MATLAB as well as SIMULINK [16–
18]. The foremost prerequisite of this algorithm is to obtain
the predictor coefficients from the speech signal. For this,
lpc function in MATLAB or lpc model of SIMULINK can
be used [13, 14]. The speech signal recordings were available
in wav format. The speech signals were converted into data
samples by taking the sampling frequency of 10 KHz using
MATLAB. The workspace block was used to take those
samples in SIMULINK. Digital filter design blocks were used



8 Journal of Computer Networks and Communications

y
Workspace

FDATool

FDATool

FDATool

DigitalF
SubSystem (mask) (link): 󳰀󳰀󳰀󳰀

LPC 1

Autocorr
ALPC

Autocorr
ALPC

Input

In
Num

TDF FIR
Out

Digital filter Digital

LPC 4
Digital filter 2

Digital filter 1

Digital filter 3 Output glottal

Autocorr
ALPC

Autocorr
ALPC

LPC 12 1

integrator 1

LPC 12 2

In
Num

TDF FIR
Out

In
Num

TDF FIR
Out

In
Num

TDF FIR
Out

Digital
integrator 2

Figure 7: SIMULINK model of IAIF algorithm.
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Figure 8: Input speech waveform and Output glottal waveform of IAIF algorithm for vowel /a/.

for FIR high pass and inverse filtering. The Autocorrelation
LPC blocks were employed to get the predictor coefficients.
The digital Integrator block was used for integration. The
SIMULINKmodel of the IAIF algorithm is shown in Figure 7.

The input speech waveform and output glottal waveform
for vowel /a/ are shown in Figure 8.

Using theMATLAB code of IAIF algorithm, glottal pulses
of five vowels /a/, /e/, /i/, /o/, /u/ obtained are shown in
Figure 9.

2.2. Comparison of Computed Formant Frequencies. Using
the inverse filtering technique the formant parameters can be
computed by using two methods. One of them is to find out
the peaks of the frequency response of the vocal tract filter
and other is to find out the roots of the polynomial equation
formed using LPC coefficients of vocal tract filter as explained
in [9]. This experimentation was performed to compare the
computed formant frequencies by those two methods with
the values obtained using phonetic software PRAAT [47].

A total of 15 speech signals were analyzed and four
formant frequencies were computed for each case.The speech
signals used consist of five vowel segments each for male,
female, and child and are available in [48]. In 12 of them (80%

Table 1: Comparison of computed formant frequencies for male
vowel /i/.

Formant number By roots By response By PRAAT
1 241.3 244.1 233.5
2 2263.6 2270.5 2246.1
3 3194.5 3203.1 3148.6
4 3832.6 3837.9 3828.7

of the total), formant values obtained using the two methods
above were rather near to the values computed using PRAAT
software. In case of LPC polynomial root method, some false
formants were also noted. So this idea is not so precise and
should be used rarely. By applying thesemethods, we can also
compute the 3 dB bandwidth values and amplitude values for
each formant [9].

Tables 1 and 2 are shown formale vowel /i/ and child vowel
/a/.

2.3. LPC Coefficients versus Vocal Tract Cavities. As we have
discussed in the first section that inverse filtering and LPC
coefficients approach can be used to model the human
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Figure 9: Glottal pulses for five vowels /a/, /e/, /i/, /o/, and /u/,
respectively.

vocal tract and is helpful in determining the formant fre-
quencies, so there can be some relationship between the
LPC coefficients of the vocal tract and vocal tract cavities.
This relationship can be helpful in determining which LPC
coefficient of the vocal tract corresponds to which cavity
of the vocal tract. It was talked about in the beginning
section that each cavity of the vocal tract corresponds to
a formant frequency and in the last experiment, we have

Table 2: A comparison of computed formant frequencies for child
vowel /a/.

Formant number By roots By response By PRAAT
1 532.5 546.9 549.5
2 1194.1 1196.3 1259.4
3 1807.9 1801.8 1872.6
4 3903.8 3911.1 3893.7

Table 3: Change in the formant parameters when a single coefficient
value is changed from 5 to 20%.

Parameters/change 5% 10% 15% 20%
𝐹1 (Hz) 551.0 542.0 532.0 512.7
𝐴1 (dB) 31.2 29.7 20.7 16.4
𝐵1 (Hz) 37.4 47.6 138.0 225.0
𝐹2 (Hz) 913.0 883.8 849 825.2
𝐴2 (dB) 22.1 19.4 16.9 14.6
𝐵2 (Hz) 98.7 144.3 196.0 245.2
𝐹3 (Hz) 1967.0 1958.0 1953.0 1948.2
𝐴3 (dB) 3.3 2.8 2.4 1.9
𝐵3 (Hz) 312.0 323.9 335.0 348.1
𝐹4 (Hz) 3291.0 3281.2 3276.0 3271.5
𝐴4 (dB) 8.6 7.4 6.4 5.4
𝐵4 (Hz) 228.0 253.4 277.0 310.4
𝐹5 (Hz) 3842.0 3847.7 3857.0 3867.2
𝐴5 (dB) 11.9 11.0 10.2 9.4
𝐵5 (Hz) 84.6 89.0 93.5 98.2

computed formant frequencies using LPC coefficients of the
vocal tract calculated during the final stage of IAIF algorithm.
So a relationship can be derived between LPC coefficients
and formant frequencies. To derive a relationship 5 speech
signals (different persons) were taken. In each signal, each
LPC coefficient of the vocal tract was changed (increased and
decreased) from 5 to 50%. Corresponding to each change
all the formant parameters (frequencies, amplitudes, and
bandwidths) were estimated. So for a single signal a total of
24 sets of parameters (both increased and decreased) were
tabulated. So for five signals a total of 120 (24 ∗ 5) sets of
parameters were tabulated. A single set of the table for the
first signal for a change up to 20% is shown in Table 3. This
table determines the change in the formant parameters when
the 1st LPC coefficient of the vocal tract is increased. Here
bold values determine that the corresponding value is more
than its original value when no parameter was changed. The
original values of the parameters are depicted in Table 4.

After analyzing all the data, the following conclusions
were derived.

(i) All the formant parameterswere altered due to change
in a single coefficient. This signifies that all the
portions of the vocal tract are associated to each
coefficient.

(ii) Obtained results indicate that these variations follow
an individual trend rather than any global trend. So
this type of analysis is purely speaker dependent.
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Table 4: Original values.

𝐹1 (Hz) 556.6
𝐴1 (dB) 21.1
𝐵1 (Hz) 109.7
𝐹2 (Hz) 947.3
𝐴2 (dB) 24.7
𝐵2 (Hz) 66.3
𝐹3 (Hz) 1977.5
𝐴3 (dB) 3.7
𝐵3 (Hz) 300.2
𝐹4 (Hz) 3300.8
𝐴4 (dB) 9.9
𝐵4 (Hz) 80.4
𝐹5 (Hz) 3833.0
𝐴5 (dB) 12.8
𝐵5 (Hz) 201.9

(iii) Yet a similar trend can be imaged in the change of the
value of formant frequencies of all the signals.

(iv) Formant F1 changes (either increase or decrease) the
most, if any individual coefficient is changed.

(v) After that formant F2 and F4 come in 2nd and 3rd
place in the list.

(vi) In 4 out of 5 signals, F3 comes after F4, and in 1 signal
F5 comes after F4.

(vii) No such character of pattern was obtained for ampli-
tudes and bandwidths.

(viii) Nevertheless, in some cases an opposite tendency was
seen in bandwidth and amplitude, meaning that if
bandwidth was increasing, the amplitude was also
decreasing for the whole change.

Figure 10 shows diagrammatically the change in formant
values along with bandwidths and amplitudes for a sample.

2.4. Estimation of Vocal Tract Transfer Function for an Individ-
ual. According to source-filter theory of speech production,
to model the speech production mechanism digitally, we
need to consider separate elements of speech production.
The speech production system can be modelled with three
separate elements: the source, the vocal tract filter, and the
radiation effects [17]. The steady state system function of the
digital filter is given by the expression:

𝐻(𝑧) =
𝑆 (𝑧)

𝑈 (𝑧)
=

𝐺

1 − ∑
𝑝

𝑘=1
𝑎
𝑘
𝑧−𝑘

. (21)

The primary purpose of this experimentation was to
somehow count for a method to forecast or predict the trans-
fer function of vocal tract for an individual.Themethodology
usedwas first to calculate the vocal tract predictor coefficients
for a signal from the final stage of IAIF algorithm and the
gain factor 𝐺 using lpc function in MATLAB, then by the
use of (21) pole zero plot was plotted. As we have discussed
before that the LPC order for the vocal tract filter taken is 12
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Figure 10: Variations in the formant parameters due to change in
LPC coefficients for a signal.

so there will be 12 poles in the transfer function of the vocal
tract (Section 1.3).

The experimentation was done on two male persons of
ages 24 and 26, respectively, by recording their voice samples
using Sony IC Recorder (ICD-UX513F) device. Vowels /a/,
/e/, and /o/ were taken for the analysis. Each person was
asked to pronounce the vowels for at least 3 seconds. Both the
persons were asked not to change their day to day activities
during the analysis. Total 16 speech samples of each vowel
were taken in a single day starting from 7:00 in the morning
to 10:00 at night with each sample taken after each hour for
each person. So for two persons a total of 96 voice signals of
individual vowelswere analyzed during two consecutive days.
Each vowel signal was pulled out in frames with the help of
phonetic software PRAAT [47]. The middle frame was taken
for the analysis considering the fact that the speech signal
is stationary for a small window of 30–50msec and has the
highest energy at its middle portion [15].

For each signal, parameters like pitch, LPC coefficients
of the vocal tract, formant frequencies, pole zero plot,
and transfer function were estimated. LPC coefficients were
estimated using IAIF algorithm. Formants were estimated
using the frequency response method of LPC coefficients
of the vocal tract. The pitch was estimated using PRAAT.
MATLAB was used for pole zero plot for each signal.

The following are the observations of this experiment.
It was expected that the transfer function for a particular

vowel must be unique for a person if calculated at any time of
the day. But the experiment showed that the individual shapes
of pole zero plots at any time in the daywere different from the
shapes of pole zero plots calculated at other times. Figure 11
shows pole zero plots for first person at four sampling times.

When the mean value of all the coefficients for each
individual vowel for each day was taken and pole-zero plot
was plotted for those coefficients, then it was observed
that the overall shapes of pole-zero plot for each day were
approximately the same. Figure 12 shows overall pole zero
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Figure 11: Pole zero plots of the vocal tract for vowel /a/ at times 7:00AM day 1 (upper left side) 10:00 PM day 2 (upper right side), 3:00 PM
day 1 (lower left side), and 9:00 PM day 2 (upper right side).
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Figure 12: Mean Pole zero plots for vowel /o/ for person 2 for day 1 (left side) and day 2 (right side).
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Figure 13: Mean Pole zero plots for vowel /e/ for person 1 for day 1 (left side) and day 2 (right side).

Table 5: Average formant frequencies and pitch for person 1 for both days.

𝐹1 (Hz) 𝐹2 (Hz) 𝐹3 (Hz) 𝐹4 (Hz) 𝐹5 (Hz) Pitch (Hz)
/a/

Day 1 405.58 1777.6 2413.9 3463.1 4312.0 109.60
Day 2 398.87 1753.2 2427.6 3355.6 4327.0 106.24

/e/
Day 1 304.56 1982.2 2395.8 3498.2 4101.6 110.12
Day 2 300.60 2062.7 2207.3 3564.1 4207.1 106.18

/o/
Day 1 389.40 811.16 2430.1 2770.5 4260.8 108.58
Day 2 403.07 862.75 2329.2 3185.8 4207.7 104.85

plot for person 2 for vowel /o/ for both days and Figure 13
shows overall pole zero plot for vowel /a/ for person 1 for both
days. So it can be said that the average behaviour of the vocal
tract throughout the day is the same which corresponds to its
resonance or unique behaviour.

The average pitch value and formant frequencies for
person 1 are shown in Table 5.

The following observations can be concluded with this
experiment.

(i) This experiment shows that the human vocal tract sys-
tem tends to change its shape differently in different
times of the day.

(ii) This variation in the shape of the vocal tract can be
due to day to day activities of that person and can be
due to intake of food in the body through the throat
or due to lack of energy in the body as the day goes
on.

(iii) But in spite of the fluctuations of the vocal tract,
the overall shape follows clear uniqueness as we have
found out from the pole zero curves.

(iv) The pole-zero plot obtained after taking the mean
values corresponds to the vocal tract transfer function
for that individual for some specific vowel.

(v) This uniqueness in the pole zero plot can act as a
unique signature of that person because the shapes of
the pole zero plot were different for same vowels in
those two persons.

(vi) So there exists a possibility to find out the biological
signature of a person utilizing the vocal system in
man.

(vii) This type of analysis can be helpful in studying the
vocal tract system behavior in terms of poles.

2.5. Statistical Investigation of Psychological Stress on Human
Voice Spectrum. The following work deals with the analysis
of speech signal under psychological stress for both positive
and negative states of stress. To investigate the influence of
stress on speech, acoustic parameters of speech signal were
considered. For this type of estimation a suitable database
or corpus is required. The most frequently used database
among the researchers is the SUSAS (Speech under Simulated
and Actual Stress) database of American English which is
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distributed by Linguistic Data Consortium at the University
of Pennsylvania [49]. A German language database called
emoDB is also very popular among researchers [50]. A
list of existing emotional database is provided in [51, 52].
The database utilized in our analysis was Surrey Audio-
Visual Expressed Emotion (SAVEE) database [53, 54]. The
database consists of four persons (DC, JE, JK, and KL) of
ages 27 to 31 depicting the six basic emotions (anger, disgust,
fear, happiness, sadness, and surprise) and the neutral state.
The recordings consist of 15 phonetically balanced sentences
per emotion (with 15 additional sentences for neutral state)
resulting in a corpus of 480 British English utterances. This
database is an open source database which can be obtained
from the university website on request [55].

The database consists of 15 sentences for each speaker
and represents all emotions. Out of these 15, 3 sentences are
common and rests are emotion specific.These 3 sentences are
considered for the evaluation.

The three sentences were the following.

(i) She had your dark suit in greasy wash water all year.
(ii) Do not ask me to carry an oily rag like that.
(iii) Will you tell me why?

There were three sentences for each speaker and each
emotion so a total of 84 signals were considered. 11 vowel
segments of 40–60 milliseconds duration were extracted
from the individual words of these 3 sentences for each
speaker and each emotion using phonetic software PRAAT.

These segments consist of phonemes /aa/ (resemble vowel
/a/ sound, e.g., hate), /la/ (resemble long vowel /a/, e.g., had),
/u/ (resemble vowel sound /u/, e.g., book), /o/ (resemble
vowel sound /o/, e.g., boat) and /aj/ (resemble vowel /i/
sound, e.g., hide). For each speaker and each emotion, a total
of 11 segments were extracted so a total of 308 segments were
analyzed.

In the analysis the psychological stress is categorized into
threemajor classes. First is neutral state, the second is positive
stress, which was taken as a combination of happiness and
surprise emotion, and third is negative stress, which was
taken as a combination of anger, disgust, fear, and sadness
emotions.

A number of parameters (about 51 parameters) were
judged in the depth psychologies which are grouped under
the categories as follows.

(i) Group 1 = pitch and intensity (evaluated for all the
sentences).

(ii) Group 2 = Jitter, Shimmer, and Autocorrelation (eval-
uated for all the sentences).

(iii) Group 3 = HNR (harmonic to noise ratio) and
NHR (noise to harmonic ratio) (evaluated for all the
sentences).

(iv) Group 4 = energy, time, and frequency parameters
(energy entropy (EE), short time energy (STE), zero
crossing rate (ZCR), spectral roll off (SR), spectral
centroid (SC), spectral flux (SF), (evaluated for all the
sentences).

(v) Group 5 = formant parameters (frequencies (F1, F2,
and F3), amplitudes (A1, A2, andA3), and bandwidths
(B1, B2, and B3) (evaluated vowels segment wise).

(vi) Group 6 = glottal pulse timing parameters (NAQ, AQ
(milli), CIQ, OQ1, OQ2, Oqa, QOQ, SQ1, and SQ2)
(evaluated vowel segment wise).

(vii) Group 7 = glottal pulse frequency parameters (dH12,
PSP, and HRF) (evaluated vowel segment wise).

(viii) Group 8 = glottal pulse derivative parameters (Ra, Rg,
Rk, Rd, and Oq) (fvaluated vowel segment wise).

(ix) Group 9 = first 12 mfcc feature coefficients (evaluated
vowel segments wise).

Groups 1, 2, and 3 parameters were evaluated using
PRAAT software. Groups 4, 5, 9, and 10 were assessed by
writing their MATLAB codes. Groups 6, 7, and 8 were
evaluated using TKK APARAT software [15].

For each signal, all the parameterswere evaluated and tab-
ulated emotion wise. After evaluation, they were categorized
in terms of positive, negative, and neutral states by combining
the appropriate emotion (taking mean values).

The outcomes of the analysis were analyzed by two
methods. The foremost objective was to appear for the
individual pattern in the decreasing order of values of the
parameters in case of all the three states and second aim was
to work out the most effective parameters among different
groups.

To count on the most effective parameters under each
group, DR (discrimination ratio) criteria was used. Consider

DR (𝑖) =
(𝑚
𝑁(𝑖)

− 𝑚
𝑆(𝑖)

)
2

𝑑
2

𝑁(𝑖)
+ 𝑑
2

𝑆(𝑖)

, (22)

where 𝑚
𝑁
is the mean value of that parameter under neutral

state and 𝑚
𝑆
is the mean value of that parameter under

stressed state. 𝑑
𝑁
and 𝑑

𝑆
are standard deviations for those

parameters.
DRwas calculated for positive, negative, and overall stress

(by taking averages of DR of both positive and negative).
Higher the DR factor more effective is the parameter.

Let us consider the DR calculation for first formant F1 for
vowel /aa/ for speaker DC. By taking the mean values of first
formant F1 for all frames following data was obtained:

𝑚
𝑁

(𝐹1) = 656.74Hz, 𝑚
𝑃
(𝐹1) = 650.64Hz,

𝑚Neg (𝐹1) = 639.65Hz, 𝑑
𝑁

(𝐹1) = 37.979Hz,

𝑑
𝑃
(𝐹1) = 18.989Hz, 𝑑Neg (𝐹1) = 13.81Hz.

(23)

Using the above data DR for formant F1 for positive and
negative stressed states can be calculated using (22):

DR (𝐹1) (Positive) =
(656.74 − 650.64)

2

37.9792 + 18.9892
= 0.0206. (24)
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Table 6: DR evaluation table for vowel /aa/ for speaker JE.

Parameter Mean (N) Deviation (N) Mean (P) Deviation (P) DR (Pos)
𝐹1 615.24 41.43 610.35 34.52 0.01
𝐹2 1154.79 58.70 1182.86 44.89 0.14
𝐹3 2700.20 75.96 2967.53 84.59 5.53
𝐴1 32.26 1.09 22.43 3.05 9.24
𝐴2 13.81 1.80 16.67 3.15 0.62
𝐴3 10.63 0.70 7.65 0.65 9.65
𝐵1 71.70 8.72 173.04 136.03 0.55
𝐵2 290.47 10.67 183.69 44.65 5.41
𝐵3 105.75 32.67 143.75 30.42 0.72
NAQ 0.09 0.05 0.13 0.03 0.53
AQ (milli) 0.87 0.14 0.56 0.07 4.20
CIQ 0.16 0.10 0.27 0.09 0.73
OQ1 0.44 0.29 0.59 0.11 0.25
OQ2 0.39 0.29 0.49 0.13 0.11

Table 7: DR evaluation table for vowel /la/ for speaker JK.

Parameter Mean (N) Deviation (N) Mean (Neg) Deviation (Neg) DR (Neg)
𝐹1 755.21 25.06 802.82 54.16 0.64
𝐹2 1453.45 28.61 1515.30 76.87 0.57
𝐹3 2651.37 119.70 2606.61 173.18 0.05
𝐴1 20.15 2.18 19.09 6.11 0.03
𝐴2 14.79 4.04 15.59 4.27 0.02
𝐴3 15.74 2.52 10.62 2.76 1.88
𝐵1 136.33 30.70 208.07 125.56 0.31
𝐵2 209.80 107.89 185.96 84.99 0.03
𝐵3 141.36 39.45 216.01 85.44 0.63
NAQ 0.08 0.01 0.08 0.04 0.01
AQ (milli) 0.64 0.03 0.52 0.20 0.33
CIQ 0.12 0.02 0.14 0.08 0.06
OQ1 0.55 0.08 0.48 0.11 0.30
OQ2 0.28 0.06 0.35 0.10 0.31

Similarly,

DR (𝐹1) (Negative) =
(656.74 − 639.65)

2

37.9792 + 13.812
= 0.1787.

(25)

Overall DR can be calculated by taking the mean values
of DR (positive) and DR (negative).

Tables 6 and 7 show the DR evaluation table for some
parameters of vowels /aa/ for speaker JE for positive stress and
for vowel /la/ for speaker JK for negative stress, respectively.

The results from the pattern in the order of stress state of
the parameters are as follows.

(i) 8 parameters out of 13 parameters (61.5%), which
were evaluated for all the sentences, show a unique
rule for all the speakers so they can be helpful in
stress detection. Parameters such as pitch, intensity,
shimmer, jitter, EE, ZC, SR, and SC show these results.
For pitch and intensity, distribution functions were
plotted. Figure 14 shows the distribution function of

pitch values in case of speaker DC. In 6 out of those 8
parameters, positive stressed signal shows the highest
value, followed by negative stress and neutral case.

(ii) 27 out of 38 parameters (71%), which were evaluated
for vowel segments, show unique patterns of the
values for all the stress states in 3 out of 4 speakers.
These 27 parameters were showing results for 37%
of the total vowel signals that were analyzed. Out of
these parameters, parameter 𝑅

𝑎
was showing positive

results for all the analyzed vowels with positive
stressed data having the highest value, followed by
negative and neutral data.

(iii) In nut shell, 35 parameters out of 51 parameters are
affected due to stress and are showing a singular
practice of values in the stressed state for 32% of the
examined data.

Results according to the DR criteria were evaluated group
wise and are shown in Tables 8 and 9.
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Figure 14: Distribution function for Pitch values for speaker DC.

Table 8: Highest DR values for group numbers 1 to 4.

Group number Positive effective Negative effective Overall
1 Pitch Pitch Pitch
2 — Autocorrelation —
3 HNR HNR —
4 — — SC

2.5.1. Final Results

(i) For phoneme /aa/, F3, AQ, and Ra are the most
effective parameters for positive stress as well as
overall stress detection. F3 is also the most effective
parameter for negative stress detection.

(ii) For phoneme /la/, A3, B3, and Ra are the most effec-
tive parameters for positive as well as overall stress
detection. B3 is also the most effective parameter for
negative stress detection in this case.

(iii) For phoneme /u/, A1 and Ra are the most effective
parameters for positive stress detection; Ra is also the
most effective parameter for negative stress detection.
F1, A1, and Ra are the effective parameters for overall
stress detection.

(iv) For phoneme /o/, dH12 and Ra are the most effective
parameters for positive, negative and overall stress
detection. F2 is also the effective parameters for
positive stress detection.

(v) For vowel independent parameters, pitch and HNR
are the most effective parameters for positive stress
detection; pitch, autocorrelation, and HNR are help-
ful in negative stress detection. Pitch and SC are
helpful in overall stress detection.

Table 9: Highest DR values for group numbers 5 To 9. (P: positive;
N: negative; O: overall).

(a)

Group name /aa/ /la/
P N O P N O

Formant freq. 𝐹3 𝐹3 𝐹3 — — —
Formant amp. — — — 𝐴3 — 𝐴3

Formant BWs — — — 𝐵3 𝐵3 𝐵3

Group 6 AQ — AQ — — —
Group 7 — — — — — —
Group 8 Ra — Ra Ra — Ra
Group 9 — — — — — —

(b)

Group name /u/ /o/
P N O P N O

Formant freq. — — 𝐹1 𝐹2 — —
Formant amp. 𝐴1 — 𝐴1 — — —
Formant BWs — — — — — —
Group 6 — — — — — —
Group 7 — — — dH dH dH
Group 8 Ra Ra Ra Ra Ra Ra
Group 9 — — — — — —

(vi) On the basis of pattern of values of parameters,
phoneme /aa/ affects 7 parameters, phoneme /la/
affects 11 parameters, phoneme /u/ affects 5 parame-
ters and phoneme /o/ affects 15 parameters.

(vii) So we can say vowel /o/ should be used for stress dete-
ction as it is affecting themost number of parameters.

3. Conclusions

In this paper, we have presented the speech signal analysis
using inverse filtering and LPC coefficient approach to
estimate some of the important speech parameters like glottal
pulse estimation, glottal pulse timing and amplitude param-
eters, glottal pulse derivative parameters, voice parameters
based on time, frequency and energy, MFC coefficients for
feature extraction, pitch, intensity, and pole zero plot. The
algorithms andmethods used for the estimation were studied
and discussed in the paper. The formant parameters were
compared with the same parameters obtained using phonetic
software PRAAT. An analysis was also performed to find
out the relationship between the coefficients of the vocal
tract and cavities of the vocal tract. Obtained results show
that all the coefficients are related to the human vocal tract
and no direct correspondence could be held. However, the
amount of change in the formant frequencies follow a trend
of 𝐹1 > 𝐹2 > 𝐹4 > 𝐹3 > 𝐹5 in most of the cases.
Besides this a pole zero evaluation of vocal tract system
was discussed to determine the vocal tract transfer function
for individuals which shows that the human vocal tract
system tends to change its shape in different times of the
day for same vowel pronunciations. But the average pole
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zero plot evaluated follow a unique pattern. This indicates
that the ordinary behaviour of human vocal tract system
exhibits unique frequency response or resonance. This work
can be helpful in simplification of voice related problems in
terms of poles and zeros which can be extended further for
studying unique voice features in every individual. At last,
a speech signal analysis for stress detection was done using
SAVEE database. A total of 51 parameters were evaluated and
compared for positive stress, negative stress, and neutral state.
The features summarized in Tables 8 and 9 have been proven
to be themost effective parameters for stress detection among
all speakers.

In future, we plan to create our own database, adding
other types of stress emotions. We aim to compare the
speech features for same emotion for different languages to
check whether the emotional content in speech is language
dependent or not. Our goal is to detect similar effects with
speech with other biological signals like ECG and EEG to
identify the correlation among them, which can be helpful in
early detection or prevention of many diseases.
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